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Summary. The nonlinear coupling of two scalar nonlinear Schr¨odinger (NLS) fields
results innonfocusinginstabilities that exist independently of the well-known modula-
tional instability of thefocusingNLS equation. The focusing versus defocusing behavior
of scalar NLS fields is a well-known model for the corresponding behavior of pulse
transmission in optical fibers in the anomalous (focusing) versus normal (defocusing)
dispersion regime [19], [20]. For fibers with birefringence (induced by an asymmetry in
the cross section), the scalar NLS fields for two orthogonal polarization modes couple
nonlinearly [26]. Experiments by Rothenberg [32], [33] have demonstrated a new type
of modulational instability in a birefringentnormaldispersion fiber, and he proposes this
cross-phase coupling instability as a mechanism for the generation of ultrafast, terahertz
optical oscillations. In this paper the nonfocusing plane wave instability in an integrable
coupled nonlinear Schr¨odinger (CNLS) partial differential equation system is contrasted
with the focusing instability from two perspectives: traditional linearized stability analy-
sis and integrable methods based on periodic inverse spectral theory. The latter approach
is a crucial first step toward anonlinear, nonlocalunderstanding of this new optical
instability analogous to that developed for the focusing modulational instability of the
sine-Gordon equations by Ercolani, Forest, and McLaughlin [13], [14], [15], [17] and
the scalar NLS equation by Tracy, Chen, and Lee [36], [37], Forest and Lee [18], and
McLaughlin, Li, and Overman [23], [24].
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Introduction

The nonlinear Schr¨odinger (NLS) equation arises naturally as an envelope equation in
physical wave systems where the propagation is governed by an asymptotic balance
between the effects of dispersion and nonlinearity [29]. In nonlinear optics, the NLS
describes the propagation of light pulses in a single-mode, nonlinear optical fiber [19].
Because of the polarized nature of light, fibers having near-axisymmetric cross-section
can support two orthogonal co-propagating modes which are coupled through the fiber
asymmetry. The evolution of the optical fields is described by a pair of coupled NLS-type
equations [5], [6], [10], [26].

These coupled NLS (CNLS) systems are well-known to possess modulational in-
stabilities, experimentally [32, 33] and theoretically [11], [31]. This optical instability
is usually associated with anomalous dispersion fibers and the focusing scalar NLS
equation; less well-known and far less understood is a coupling instability specific to
the two-component birefringent fibers. Benney and Yang [42], [43] have studied the
weakly oscillatory structures that arise from energy sharing between the two-component
polarizations in the nonintegrable focusing and mixed focusing-defocusing cases with
solitary wave initial conditions. The understanding of the cross-coupling instability of
plane waves is the primary objective of our current investigations. In particular, this
new instability is indeed an integrable phenomenon (just like the scalar focusing effect),
and it persists in the purelydefocusingequations even though the usual Benjamin–Feir
mechanism of the focusing equations is absent. Moreover, the integrable structure of
the equations implies that powerful tools may be available to explore the instability and
what types of waveforms one can expect to result from it.

The integrability of the CNLS system under consideration means that there is an as-
sociated pair of linear operators (called a Lax pair of linear operators), one in time (t) and
the other in space (x), in which the solutions of the CNLS system appear as coefficients.
Compatibility of the two linear flows (i.e., the existence of simultaneous eigenfunctions
Eψ(x, t) such thatEψxt = Eψt x) is equivalent to the nonlinear evolution of the potentials
according to the CNLS system. For the simplest class of constant-amplitude coupled
NLS plane waves, the basic spectral elements of the associated linear problem, now with
periodic plane wave coefficients, are explicitly constructed. In addition to the remark-
able fact that the eigenmodes of the linearized CNLS system can be constructed from
certain eigenfunctions of the Lax pair, these same Lax pair eigenfunctions can be used
to construct the nonlocal behavior of the instability via a B¨acklund transformation [35].
In particular we provide a spectral criterion for modulational instability of a spatially
periodic solution of the coupled NLS pdes, generalizing the corresponding results of
Ercolani, Forest, and McLaughlin [13], [14], [15], [17] and Forest and Lee [18] for
scalar integrable pdes. Once this behavior is revealed in the simple context of plane
wave solutions, one can then exploit integrable pde tools to reveal information far be-
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yond traditional linearized analysis. For the scalar integrable pdes with modulational
instabilities (such as the focusing NLS and sine-Gordon equations), one now can give,
from the results of Ercolani, Forest, and McLaughlin:

• spectral theoretic criteria for which solutions may be modulationally unstable,
• which spatial modes the wavetrain is unstable to,
• the growth-rate in each unstable mode,
• the dimension of the unstable manifold,
• a global parametrization of the unstable manifold,
• and an identification of which nonlinear wavetrains may saturate the instability.

Such information is clearly valuable in applications such as nonlinear birefringent optics,
for example in understanding the apparent terahertz oscillations that saturate the modu-
lational instability of defocusing fibers. One would like to both predict the instability of
the initial data and then predict the saturated state and its frequency structure. To leading
order, these are integrable properties. The evolution of the saturated states in the physical
experiments are then governed by nearly integrable dynamics, which is accessible by
perturbation methods.

The fact that coupled systems of NLS pdes may be integrable was shown by Man-
akov [25]. He exhibited systems of(n+ 1) NLS pdes which are formally completely
integrable. The associated Lax pairs consist of linear matrix operators of order n, so-called
higher order AKNS operators since they generalize the second-order AKNS (Ablowitz,
Kaup, Newell, and Segur [1]) eigenvalue problems associated to KdV, sine-Gordon,
focusing and defocusing NLS, and modified KdV equations. Manakov [25] calculated
N-soliton solutions and provided much of the inverse scattering solution for coupled
NLS equations with infinite-line boundary conditions. Beals, Deift and Tomei [7] de-
veloped scattering theory for general order n linear matrix operators, and Sattinger and
Zurkowski [34] developed B¨acklund transformations for the pdes which arise as com-
patibility conditions for the Lax operator pairs.

Some of the inverse spectral theory relevant for periodic and quasiperiodic boundary
conditions of the CNLS has been developed by Adams, Harnad, Hurtibise, and Previ-
ato [2], [3], [4]. For example, they obtained explicit formulas for a class of N-phase
waves for the coupled NLS equations, the periodic analog of N-solitons, that could be
coordinatized using the techniques of Moser [28]. McKean [22] and Previato [30] have
also obtained results for the third-order scalar linear operator associated to the integrable
Boussinesq pde under periodic boundary conditions. One of us has used several of the
results developed in the present paper to address specific questions about the modula-
tion equations for quasiperiodic CNLS plane wave solutions [40]. This paper uses the
inverse spectral theory for the third-order AKNS linear operators associated to the cou-
pled NLS pdes to identify the nonlocal structure of the simplest instabilities. Although
Adams, Harnad, and Hurtibise [3], [4] derived explicit theta function formulae for cer-
tain multiphase solutions of the CNLS equations, the question of how these wavetrains
are connected to instabilities in the equations was not addressed. In the case of unsta-
ble plane waves, we show that certainstationary equationsof the hierarchy of flows
commuting with the CNLS equations can be used to capture the low dimensional non-
local behavior associated with the linearized instabilities of some unstable plane waves.
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These orbits are near homoclinic orbits that can be explicitly constructed by B¨acklund
transformations [12], [35].

Moreover, a fact that we wish to exploit is thatthese additional cross-coupling insta-
bilities exist in the integrable CNLS pdes independently of the focusing instability in the
individual scalar pdes. By developing methods of periodic inverse spectral theory for
these special integrable cases, the nonlocal character of the instability can be studied,
leading to a detailed understanding analogous to that already available for the scalar
NLS equation. Understanding of the integrable system can then provide a basis for the
understanding of more general, nonintegrable coupled evolutions, e.g. Yang and Benney
[42], [43].

The simplest solutions of the NLS areplane waves: constant-amplitude exponential
waves whose dispersion relations are amplitude-dependent. In the scalar NLS equations,
there are two distinct cases: the defocusing case, in which the plane wave is stable,
and the focusing case, in which a long wave modulational instability is present. This
dichotomy has fundamental consequences in fiber optics: Plane wave stability allows for
the transmission of continuous-wave laser light at wavelengths which lie in the normal
dispersion regime (defocusing), whereas in the case of anomalous dispersion (focusing
fibers) plane wave instability saturates in the formation of envelope solitons which then
propagate as stable pulses. This was the scenario laid out in the early 1970s by Hasegawa
and Tappert [21], and the investigations since have centered around the various higher
order perturbative terms that couple to the integrable NLS evolution and which affect
soliton pulse propagation. We refer to the recent book by Hasegawa and Kodama [20]
for a thorough treatment of fiber optics and scalar NLS equations, both integrable and
perturbed. Furthermore, optical fibers in use today employ “super-Gaussian” pulses as
normal modes of propagation (in spite of the fact that the fibers support stable soliton
pulses), thus making the study of the nonlinear phenomena arising from instabilities in
the equations an important applied field.

The coupled NLS system, focusing or defocusing, also possesses a two-component
analog of plane wave solutions. Laboratory and numerical experiments [33] have ob-
served modulational instability in optical fibers with defocusing dispersion. The striking
feature of these experiments is that the phenomenon of modulational instability and
saturation into localized pulse-like shapes was previously associated only with focus-
ing fibers. An understanding of why this phenomenon appears in defocusing fibers is
clearly important. As we show below, this phenomenon exists in the integrable defocus-
ing CNLS equations, and occurs through a cross-coupling instability that is independent
of stability within the individual uncoupled modes. We cannot claim that we are making
the first observation of the integrable basis of this phenomenon; Forest and a collab-
orator, Daniel David, noted this fact about ten years ago and surely others have made
the connection. We are, however, pursuing its mathematical consequences by using and
developing methods of integrable soliton theory.

With respect to the integrable description of the linearized instability of CNLS pdes,
we present the analogous elements of the scalar theory:

• the fundamental elements of the periodic spectral theory associated to the CNLS
equations,
• specific results for instabilities of constant-amplitude plane waves,
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• a prescriptive theory for the link between the linearized stability theory and the inverse
spectral theory,
• an explicit construction, using the inverse theory, of the low dimensional nonlocal

waveforms (homoclinic orbits) and some of the nearby quasiperiodic orbits which
characterize the phase space of the integrable system when the plane waves are per-
turbed by unstable modes of the linearized equation.
• an explicit construction of the finite dimensional system of odes that governs the

evolution of a simple class of multiphase solutions near the homoclinic orbits of
defocusing CNLS plane waves.

The complete characterization of the constraints which the initial data must satisfy in
order to obtain a global solution in terms of theta functions remains an open problem.

The Basic Equations

The integrable generalization of the NLS equation to a two-component system is obtained
by straightforward vectorization of the scalar NLS evolution

i Ert + Erxx + σ
2
|Er |2 Er = 0, (1)

wheret, x are time and space coordinates. Note, however, that in the context of fiber
optics the roles oft andx are reversed. Denoting the two components of the vectorEr
by complex-valued scalar fieldsp(x, t) andq(x, t), the evolution can be written as the
coupled PDE system,

i pt + pxx + σ
2 (|p|2+ |q|2) p = 0,

i qt + qxx + σ
2 (|p|2+ |q|2)q = 0,

(2)

where the nonlinearity appears through the sum of the squared magnitudes of the com-
ponents ofEr .

In both the scalar and vector cases, the sign of the nonlinearity distinguishes two
evolutions and two types of fiber regimes:σ = +1 corresponds to focusing behavior
and anomalous dispersion fibers, whileσ = −1 corresponds to defocusing behavior and
normal dispersion fibers. The coupled system will be shown to possess an additional
instability that occurs even with the defocusing nonlinearity, i.e., an instability due to
the nonlinear coupling.

There is also a third integrable form where the nonlinearity appears as the difference
of the squared magnitudes of the components — this results in a hybrid coupling whereby
one component defocuses while the other focuses. This case will not be considered here.

Plane Wave Solutions

The simplest exact solution to the coupled NLS equations is theplane wave— a constant-
amplitude, exponential wavetrain,

po = aei (+kx−ωt), qo = bei (−kx−ωt), (3)
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whose frequencyω is required to satisfy the amplitude-dependent dispersion relation,

ω = k2− σ
2
(|a|2+ |b|2) = k2− σ

2
I 2, (4)

whereI 2 ≡ |a|2+|b|2 gives the total intensity of the plane wave. The complex amplitudes
a,b are constants, thereby defining a wave having fixedpolarization— that is, a wave
where the division of intensity between the two componentsp andq is uniform in both
time and space.

In the above representation of the plane wave, the wavenumbers for each component
are assumed real and have opposite signs. This antisymmetry is imposed without loss
of generality, since a symmetric shift in wavenumber can be compensated by a suitable
adjustment in the phase velocity (ignoring spatial boundary conditions). This feature
of the plane wave solution results from the more general Galilean invariance property
possessed by both the NLS and its coupled version, and can be considered as merely a
transformation to moving coordinates,

Er (x, t)→ Er (x − 2γ t, t)ei γ (x−γ t), (5)

whereγ is an arbitrary real parameter representing the half-velocity of the new reference
frame. For the plane wave, this is also seen to be equivalent to a symmetric shift ofγ in
the wavenumbers.

There is an additional symmetry which is particular to the coupled NLS equations,
which in the language of symmetry groups is equivalent to an SU(2) symmetry. This
essentially means that the solution set is invariant under both rotations of thep,q co-
ordinate basis for the field vectorEr and arbitrary complex phase shifts. Explicitly, any
solution transforms to another solution upon multiplication by the 2× 2 unitary matrix

Er (x, t)→
[
cosθ e+iφ − sinθ e+iφ

sinθ e−iφ cosθ e−iφ

]
Er (x, t), (6)

whereθ can be thought of as a rotation of polarization in thep,q coordinate axes and
φ some asymmetric complex phase shift. The rotational nature of this transformation
provides the simplest means for generating coupled NLS waves from known scalar
solutions [11].

Plane Wave Stability Analysis

The linearized stability of the plane wave is easily obtained from Fourier analysis. It
proves most convenient to introduce the disturbance quantitiesp̃(x, t) and q̃(x, t) as
multiplicative perturbations to the plane wave

p = po(1+ p̃), q = qo(1+ q̃), (7)

since this results in a convenient simplification upon linearization. Keeping only terms
linear in p̃, q̃ after direct substitution of (7) into the coupled NLS equations (2), the
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linearized disturbance equations become

i ( p̃t + 2k p̃x)+ p̃xx + σ
2 |a|2( p̃+ p̃∗)+ σ

2 |b|2(q̃ + q̃∗) = 0,

i (q̃t − 2kq̃x)+ q̃xx + σ
2 |a|2( p̃+ p̃∗)+ σ

2 |b|2(q̃ + q̃∗) = 0,
(8)

where the superscript * denotes complex conjugation.
Because of the conjugates in (8), the eigenfunctions are most conveniently expressed

as linear combinations of pure Fourier modes,

p̃ = f+ei κ(x−Ät) + f ∗−e−i κ(x−Ä∗t),

q̃ = g+ei κ(x−Ät) + g∗−e−i κ(x−Ä∗t).
(9)

These eigenmodes are parameterized by the real wavenumberκ of the disturbance and
the complex phase velocityÄ, where a positive imaginary part indicates a pure temporal
growth mode of instability in positive time. Substitution into the linearized pdes (8) and
collection of resonant terms results in four linear homogeneous equations for the Fourier
amplitudesf± andg±,

(+Ä− 2k− κ)κ f+ + σ
2 |a|2 ( f+ + f−)+ σ

2 |b|2 (g+ + g−) = 0,

(−Ä+ 2k− κ)κ f− + σ
2 |a|2 ( f+ + f−)+ σ

2 |b|2 (g+ + g−) = 0,

(+Ä+ 2k− κ)κ g+ + σ
2 |a|2 ( f+ + f−)+ σ

2 |b|2 (g+ + g−) = 0,

(−Ä− 2k− κ)κ g− + σ
2 |a|2 ( f+ + f−)+ σ

2 |b|2 (g+ + g−) = 0.

(10)

Solvability for this system requires that the determinant of the matrix of coefficients
vanish — this determines thedispersion relation for linearized disturbances[

(Ä− 2k)2+ (σ |a|2− κ2)
] [
(Ä+ 2k)2+ (σ |b|2− κ2)

]− |a|2|b|2 = 0, (11)

yielding a quartic polynomial for the complex frequencyÄ(κ) in terms of the disturbance
wavenumbersκ > 0 and the plane wave parameters; ifκ = 0 then the determinant of
the matrix of coefficients is identically zero, so this factor has been removed from the
dispersion relation.

For real wavenumbersκ, the polynomial has real coefficients and therefore, complex
rootsÄ occur in conjugate pairs. Those roots with nonzero imaginary part correspond to
linearly unstable modes, with growth rate|Im(Ä(κ))|. Furthermore the polynomial only
containsκ2, which reflects the conjugate symmetry of the eigenmodes, so it is sufficient
to consider onlyκ ≥ 0. Note also that the caseκ = 0 is degenerate and is treated
separately in the later section when the issue of completeness of the set of linearized
eigenfunctions is addressed.

Since this polynomial defies direct factorization, the analysis of this linearized dis-
persion relation is performed in various asymptotic limits and the results assembled to
construct a complete stability picture for the plane wave.

Short-Wave Stability

In the stability analysis for the scalar NLS, the behavior of high-wavenumber eigen-
modes is dominated by the derivative terms of the linearized wave operator so that
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plane waves are found to be neutrally stable to all disturbances having sufficiently short
wavelength. This behavior is no different in the coupled system, where in the limit
of large-wavenumber disturbances(κ À k, |a|2, |b|2), the four rootsÄ can be found
asymptotically

Ä ∼ ±κ ± 2k+ O(κ−1), (12)

so that all phase velocitiesÄ are clearly real and distinct to leading order. Since complex
roots can only occur as complex conjugates (having equal real parts), all higher order
corrections are necessarily real, thus implying neutral stability of the plane wave to all
short-wavelength disturbances. Since this result is independent of the sign ofσ , it applies
equally to both the defocusing and focusing systems.

Long-Wave Instability

For disturbances having precisely zero-wavenumber, the dispersion relation is trivially
satisfied for all values ofÄ, so that the possibility exists for complex eigenvalues to arise
in the breaking of this quadruple-zero degeneracy at small, but nonzeroκ. As expected,
the focusing nonlinearity leads to long-wave instability consistent with the classical
Benjamin-Feir [9] long-wave instability of the focusing NLS.

At small, nonzero wavenumbers(κ ¿ k, |a|2, |b|2), the eigenvaluesÄ for long-wave
disturbances are determined by the leading order stability polynomial

(Ä2− 4k2)2+ σ |a|2(Ä+ 2k)2+ σ |b|2(Ä− 2k)2 = O(κ2). (13)

Immediately it is clear that, with the choice ofσ = +1, this leading order part is
positive definite and all rootsÄmust be complex. This confirms the expected result that
the coupled NLS demonstrates a focusing instability in the limit of zero-wavenumber
disturbances.

Forσ negative, i.e. the defocusing case, the leading order polynomial is indefinite, and
the stability picture depends critically on the parameters of the underlying plane wave
— in particular, on the comparative magnitudes of its wavenumberk and amplitudes
|a|2, |b|2. The stability character of the roots is easily inferred asymptotically in the
extremes where either parameter is relatively small.

At small amplitudes, the quartic terms in the polynomial (13) dominate. For(κ ¿
|a|2, |b|2¿ k), all four phase velocities are found to be real and distinct to leading order

Ä ∼
{
+2k±

√
|a|2,

−2k±
√
|b|2,

(14)

so that these plane waves are thus stable to long-wave disturbances. On the other hand,
in the opposite limit of relatively large amplitudes(κ ¿ k¿ |a|2, |b|2), two of the roots
are obtained by neglecting the quartic terms in (13) and determined to leading order by
the remaining quadratic terms

|a|2 (Ä+ 2k)2+ |b|2 (Ä− 2k)2 = O(k4, κ2), (15)
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which are positive definite and confirm the existence of at least two complex phase veloc-
itiesÄ. In summary then, these asymptotic results verify that unlike the one-component
NLS, the coupled NLS can exhibit long-wave instabilities even with the choice of defo-
cusing nonlinearity.

However, we show next that the mechanism by which this instability occurs is quite
distinct from the usual focusing behavior.

Cross-Phase Resonance

Defocusing Equations

The first hint of an essential difference in the nature of the defocusing instability is the
observation that plane waves are stabilized in the limit when the spatial modulation is
absent(k = 0)

Ä =
 ±κ

±
√
κ2+ |a|2+ |b|2

, (16)

yet there is instability whenk is small and nonzero (15). By analyzing the marginally
stable normal modes, it is found that there is a band of unstable disturbance wavenum-
bersκ that scales linearly with the carrier wavenumberk according toκ ≈ ±2k. The
defocusing instability occurs when two plane waves with different wavenumbers are
present, and thus is clearly seen to be intrinsically linked to the coupled nature of the
equations.

Since complex eigenvalues occur in conjugate pairs, the marginal stability condition
(corresponding to a change in stability) coincides with the conditions for the disper-
sion relation (11) to have a real double-root. The vanishing of theresultantbetween
the stability polynomial (11) and itsÄ-derivative provides a necessary criterion for
this double-root. Analysis of this polynomial condition allows for the determination
of the boundary between regions of stability and instability in the space of parameters
k, κ, |a|2, |b|2.

The resultant simplifies greatly in the special case of a plane wave having equal
intensities in both components, viz.|a|2 = |b|2, and the band of unstable normal modes
is given by

4k2− I 2 < κ2 < 4k2, (17)

where I 2 = |a|2 + |b|2 = 2|a|2 represents the total intensity of the plane wave. The
region of instability is thus bounded by a hyperbola and its asymptotes. These are shown
by solid curves in Figure 1, where the wavenumbersκ andk have been normalized on the
amplitude|a|. As the division of intensity becomes more unequal, theκ-bandwidth of
the unstable modes shrinks, while the shape of the marginal stability boundaries remains
qualitatively similar, as in Figure 2 (solid curves). At the single polarization limit, where
all of the wave intensity is concentrated in just one component, the marginal curves
collapse onto each other at the limiting curve (withσ = −1),

κ = ±16k2+ σ |a|2
8k

, (18)
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Fig. 1. Marginal stability curves for the defocusing equations with equal intensity plane waves
(|a| = |b|). The dimension ofW1

u , the unstable manifold corresponding to each wavenumber in
the unstable sidebands, is one. The cross-phase sideband resonance for the defocusing instability
of plane waves is, in general, atintermediatewavelengths. See Figure 2 for the marginal stability
curves in the case of unequal division of intensity between the two channels.

for k ≥ 1
4|a|, and the horizontal axis for 0≤ k ≤ 1

4|a|, which appear as the dashed
curves in Figure 2.

Focusing Equations

The corresponding analysis for the focusing case reveals that plane waves are subject to
both self-phase focusing instabilities and cross-phase coupling instabilities. The marginal
stability curves in wavenumber-space are shown in Figure 3 for the case of equal am-
plitudes in each polarization. Figure 4 shows the marginal stability curves for unequal
intensities, and Figure 5 shows the collapse of the sidebands in the self-phase single po-
larization limit, reproducing the classical Benjamin-Feir instability band 0< ( κ|a| )

2 < 1.
Thedimensionof the unstable manifold and thequalitativenature of the instability

varies as the wavenumber parameters move throughout the unstable region. The dimen-
sion of the unstable manifold corresponding to a given wavenumber is found from the
eigenmode basis of the linearized equation. Thenonlocalqualitative nature of the in-
stabilities is revealed by the global construction of the corresponding homoclinic orbit
using a Bäcklund transformation. Note that the B¨acklund transformation used to ob-
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Fig. 2. Marginal stability curves (solid lines) for the defocusing instability of plane waves in a
case of intermediate division of intensity between the two channels, viz.|a|2 = 100|b|2. In the
single polarization limit (|b| → 0) the marginal stability curves collapse upon themselves at the
limiting curves indicated by the dashed curves and the unstable region vanishes, as expected for
the scalar defocusing NLS equation. Compare with Figure 1 which shows the marginal stability
curves for coupled plane waves with equal intensities.

tain the correct homoclinic orbit depends on the one-to-one correspondence between the
eigenmodes for each wavenumber (for bothκ ≥ 0 andκ ≤ 0 separately) and the Floquet
spectral points to be discussed in the integrable theory of the following sections.

In order to explain the instability diagrams of Figure 3 and Figure 4, two types of
nonlocal behavior generated by individual eigenmodes must be distinguished:

• Cross-phaseinstabilities, where the maximum magnitude of the disturbance generated
by the unstable eigenmode is the same in the two channels. Qualitatively, there is an
equal excitation of each channel by the instability. The energy is shared by the two
co-propagating channels.
• Self-phaseinstabilities, where the maximum magnitude of the disturbance generated

by the unstable eigenmode is larger in one channel than in the other channel. Qual-
itatively, the disturbance is greater in one channel than in the other channel. The
instability mode is primarily associated with one channel, although there is some
sharing of energy as dictated by the relative intensity distribution of the background
plane wave.
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Fig. 3. Marginal stability curves (solid curves) for the focusing instability of plane waves with
equal intensities (|a| = |b|). Three distinct regions of instability can be identified in the unstable
wavenumber region: cross-phase sidebands with one unstable mode denoted byW1

u cross-phase,
a cross-phase transition region with two unstable modes denoted byW2

u cross-phase, and a central
self-phase band of two unstable modes denoted byW2

u self-phase. These regions of instability are
separated by dashed lines.

Focusing Case: Equal Division of Intensity

In the case of equal division of intensity in the two channels (|a| = |b|), Figure 3 can be
divided into three distinct regions of instability:

• Cross-phase W1u : The unstable manifold is a cross-phase instability of dimension one.
• Cross-phase W2u : The unstable manifold is a cross-phase instability of dimension two.

Both unstable eigenmodes generate cross-phase disturbances. As the wave parameters
cross the boundary fromW1

u to W2
u cross-phase, the original short-wave cross-phase

disturbance is preserved but a new long-wave cross-phase instability is generated with
large spatial structure. As the wave parameters move toward the boundary with the
W2

u self-phase region, the scales of the disturbances generated by the two unstable
cross-phase modes become comparable.
• Self-phase W2

u : The unstable manifold is a self-phase instability of dimension two.
Both unstable eigenmodes generate self-phase disturbances. One eigenmode excites
the p-channel more than the q-channel, while the other excites the q-channel more
than the p-channel. The self-phase nature of each instability becomes less pronounced
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Fig. 4. Marginal stability curves for the focusing instability of plane waves (solid lines) in the case
of intermediate division of intensity between the two channels, viz.|a|2 = 10|b|2. RegionW1

u is
a region of one-dimensional instability. There is a continuous cross-phase/self-phase deformation
in the nonlocal structure as the wave parameters move from the sidebands (cross-phase) to the
horizontal band (self-phase). The narrow horizontal band denoted byW2

u is a region of two-
dimensional instability. Both instabilities are self-phase in nature for largek

|a| but one of them
becomes mixed with cross-phase properties as the normalized wavenumber decreases.

near the boundary with theW2
u cross-phase region, and becomes more pronounced as

k
|a| → ∞.

It is worth emphasizing that the qualitative nonlocal structure of the instabilities varies
continuouslyas the wave parameters vary continuously within the unstable region.

Focusing Case: Unequal Division of Intensity

In the case of unequal division of intensity in the two channels, where the p-channel is
ten times stronger than the q-channel (|a|2 = 10|b|2), Figure 4 can be divided into two
regions of instability denoted byW1

u andW2
u according to the dimension of the unstable

manifold. Each of these regions also exhibits subregions in which the qualitative nature
of the nonlocal structure is different:

• Cross-phase W1u , where the unstable manifold is a (relative) cross-phase instability of
dimension one in which both channels exhibit significant growth, although the relative
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Fig. 5. In the single polarization limit (|b| = 0), the cross-phase sidebands of the focusing
instability diagrams collapse onto the dashed curve, leaving a horizontal band (solid curve) of
pure one-dimensional long-wave focusing instabilities described by the simple classical condition
0 < k2

|a|2 < 1. A narrow band of two-dimensional self-phase instabilities has collapsed along the
horizontal axis.

dominance of the p-channel is inherited from the fundamental wave. These regions
appear as two sidebands in the instability diagram.
• Self-phase W1

u , where the unstable manifold is a self-phase instability of dimension
one. There is a continuous deformation of the nonlocal structure as the wave parameters
move from the cross-phase sidebands to the central self-phase band ofW1

u through a
transition region. This deformation is observed as a continuous strengthening of the
disturbance in the p-channel and weakening of the disturbance in the q-channel, until
the instability hardly excites the q-channel at all in the self-phase band.
• Self-phase W2

u , where the unstable manifold is of dimension two, one unstable mode
excites the p-channel almost exclusively, while the other unstable mode excites the
q-channel almost exclusively. This region appears as a narrow central band in the
instability diagram.
• Mixed W2

u , where the unstable manifold is of dimension two. One instability is rel-
atively unchanged from the long-wave self-phase mode that excites the q-channel in
the self-phaseW2

u region. The second instability is a continuous deformation of the
structure that appears in the transition region between the cross-phase and self-phase



Nonfocusing Instabilities in Coupled, Integrable Nonlinear Schr¨odinger pdes 305

W1
u regions. Although the p-channel is still larger in absolute magnitude, significant

energy is transferred to the q-channel. At the same time the features of the disturbance
become smaller in scale. This second mode is the one which is preserved when the
dimension of the unstable manifold drops to one in the regionW1

u .

A number of remarks can be made about the two cases. In both Figures 3 and 4
there are cross-phase instabilities in a sideband of intermediate wavenumbers bordered
by an hyperbola and asymptotes having slope∼ ±2k. In the case of equal intensities,
Figure 3, the transition from one-dimensional cross-phase behavior to two-dimensional
self-phase behavior occurs through a transitional two-dimensional cross-phase region.
This is due to the fact that neither channel is preferentially chosen by the fundamental
plane wave whose intensity is equally distributed between the two channels. When one
channel is preferentially selected by the fundamental plane wave as in Figure 4, where
the intensities are unequal in the unperturbed plane wave, a continuous deformation from
one-dimensional (relative) cross-phase behavior to one-dimensional self-phase behavior
can occur while one channel remains dominant in absolute terms. In the single polar-
ization limit, Figure 5 shows that the self-phase regionW1

u from Figure 4 remains and
that the centralW2

u region has collapsed and vanished on the horizontal axis, while the
cross-phase sidebands have collapsed and vanished on the curve given by Equation (18),
with σ = +1. The remaining horizontal band of long-wave instabilities is precisely the
instability diagram for the scalar focusing NLS equation.

Note also that in the regions where two-dimensional self-phase instabilities exist, the
two instabilities could be combined to produce a type of mixed self-phase and cross-phase
behavior.

In general, the conditions at which plane waves are marginally stable to the cross-
phase instability can be ascertained asymptotically for large plane wavenumberk

κ2 ∼ 4k2+ σ
4
(

√
|a|2±

√
|b|2)2+ (|a|

2− |b|2)2
64k2

, (19)

a result consistent with the two previous exact cases of equal and singly polarized limits
(17), (18). In particular, it is noted that theκ-bandwidth of the instability scales inversely
with the linearized group velocityk, and suggests that the spatial structure of unstable
envelope disturbances also has wavelengths that scale proportionally withk.

Completeness of the Eigenmode Basis

The eigenvector associated with an eigenvalueÄ(κ), for κ > 0, has the simple, implicit
representation, 

f+
f−
g+
g−

 =

(+Ä− 2k− κ)−1

(−Ä+ 2k− κ)−1

(+Ä+ 2k− κ)−1

(−Ä− 2k− κ)−1

 , (20)

and supplies the Fourier amplitudes that determine a linear eigenmode (9). Since the
equivalent of two independent Fourier modes at each wavenumber is required to span
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a complex field, a total of four eigenmodes are needed to complete the linearized basis
for p̃ and q̃ over the real field. If, for a givenκ, the four rootsÄ of the polynomial
(11) are distinct, then the set of eigenmodes generated by the above Fourier constants
are spatially complete. The only exceptions to this simple state of affairs arise at the
degenerateκ = 0 Fourier mode and the possibility of multiple-rootsÄ(κ).

Forκ = 0, the eigenvalue condition is degenerate since the complex fields are spatially
uniform. By inspection of the linearized equations, three independent constant solutions
are obtained: (

p̃
q̃

)
=
(

i
0

)
,

(
0
i

)
,

( |b|2
−|a|2

)
. (21)

Additional secular-in-t solutions can be obtained by the formal differentiation of the
original plane wave by the parameters|a| and|b|, remembering thatω also depends on
these parameters via the dispersion relation. A symmetric sum of secular solutions is(

p̃
q̃

)
= (i σ I 2 t + 1)

(
1
1

)
. (22)

Any real linear combination of these four solutions provides a complete basis of spatially-
uniform disturbances.

These space-independent linearized modes are indicative of perturbations that are
equivalent to infinitesimal changes in the parameters of the general plane wave (3). The
three time-independent modes are a consequence of small shifts in the complex phases
of eitherpo or qo, and changes in amplitudes|a|2, |b|2 which leave the total intensityI 2

fixed. The fourth mode corresponds to amplitude perturbations which change the total
intensity, I 2 — the temporal secularity is a manifestation of a change in the frequency
ω(I ) as required by the plane wave dispersion relation (4).

An additional time-independent linearized mode arises atκ = ±2k and corresponds
to the rotational symmetry of the component fields (6).

For all other multiple-root degeneracies, formal differentiation byÄ of the eigenmode
as determined by using equations (9), (20) produces additional temporally secular modes
with which the linearized basis can be completed.

Note the following observations concerning the linear effect on|p|2 and|q|2 when
the plane wave is perturbed by eigenmodes determined by equations (9), (11), (20):

• Since each eigenmode is arbitrary up to multiplication by a complex constant, the
linearized dynamics of a spatial perturbation produced by an eigenmode is arbitrary
up to a spatial phase shift in|p|2 and|q|2.
• Similarly, replacingκ by −κ in the eigenmode also produces a phase shift in the

spatial perturbation and, hence, is equivalent in the linearized dynamics to a spatial
translation.
• If Im(Ä(κ)) > 0, then the eigenmode is unstable in positive time and there is a

corresponding asymptotically stable eigenmode withIm(Ä(κ)∗) < 0. ReplacingÄ
by its complex conjugate in the eigenmode merely produces a phase shift in the spatial
perturbation.
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Integrable Theory

The previous linearized theory begins to explain the origin of two classes of instability,
cross-phase and self-phase. To more fully understand the qualitative behavior of the
system as the disturbances grow into large perturbations from the basic plane wave, it
is necessary to assemble a less local picture of the nonlinear dynamics. In particular,
it will be especially useful to discover if, and how, the unstable defocusing dynamics
differs nonlocally from the focusing dynamics, which one might expect to have a greater
similarity with scalar NLS behavior. Integrable theory can be used to obtain a nonlocal
picture of the dynamics of the instability. The eigenmodes (forκ ≥ 0 or for κ ≤ 0) of
the linearized equations will be seen to be in one-to-one correspondence with certain
distinguished points in the spectrum of the Lax pair which integrates the CNLS system.
This correspondence provides a simple geometric criterion for instability of the eigen-
mode: Unstable modes are associated with nonreal double points of the Floquet curve;
stable modes are associated with real double points.1 This correspondence is similar to
the situation in the scalar NLS equation with the following important difference: In the
case of the third-order Lax operator, the coincidence of periodic/antiperiodic eigenvalues
and geometric double points is lost. A similar observation is made by McKean [22] in
the case of the Boussinesq equation.

Once the correspondence has been established between the nonreal double points and
the linearized instabilities, it is possible to use B¨acklund transformations to generate
homoclinic orbits that result from the instability. Some results in this direction were
obtained by Sheu [35], and here we will isolate some of the simplest cases to illustrate
the difference between the focusing and nonfocusing unstable manifolds. Moreover, a
function space neighbourhood of the finite-dimensional phase space near at least some
of the homoclinic orbits can be found by using stationary equations of the integrable
CNLS hierarchy [41]. This will demonstrate the presence of crossed homoclinic saddles
in the phase space of the focusing anddefocusingCNLS fields, similar to the structure
described by Ercolani, et al. [15], [16], for the Sine-Gordon and the focusing scalar
NLS equations. The phase-space geometry of such “whiskered tori”2 is also discussed
in McLaughlin and Overman [23].

The integrability of the coupled NLS system (2) is established by similar means as
for the scalar NLS equation. Because of the two field components, the integrable theory
for the coupled version is essentially a block-matrix generalization of the usual AKNS
scheme. The crucial transformation from the complex fieldsp(x, t) andq(x, t) to a
spectral representation is achieved through the third-order, linear ODE system,

Eψx =

−
2
3 i E 1

2 p 1
2q

− σ
2 p∗ 1

3 i E 0

− σ
2 q∗ 0 1

3 i E

 Eψ ≡ L Eψ, (23)

1 For data other than plane waves (not dealt with in this paper), there may be rare exceptional cases where the
growth-rate associated with a nonreal double point vanishes.
2 In our case the torus is given by the periodic plane wave and the whiskers are given by the homoclinic orbits
that generate the unstable manifold.
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which introducesE, the spectral eigenvalue. The inherent degeneracy of this operator
follows from the equality of the eigenvalue contributions along the diagonal, so that the
roles of p andq are interchangeable. As a consequence of this symmetry, the resulting
spectral theory is quite distinct from that of the relevant third-order Lax operator pair for
the three-wave resonant interaction equations [8]. The development of the degenerate,
third-order spectral theory that follows is primarily motivated through analogy to the
scalar NLS analysis where the extra order is handled by treating the lower-right 2× 2
sub-matrix as a block element [7], [34].

Because of the additional complexity introduced by the third-order nature of the
spectral operator, it proves expedient to stay within a matrix-based formulation. Two
fundamental matrices are defined by decomposing the spectral operatorL into an eigen-
function part and a scattering part,

L = E A0+ A1, (24)

so thatA0 is a constant diagonal matrix, andA1(x, t) is a scattering matrix containing
both of the coupled complex fieldsp(x, t) andq(x, t). Explicitly,

A0 =
− 2i

3 0 0
0 i

3 0
0 0 i

3

 , A1 =
 0 1

2 p 1
2q

− σ
2 p∗ 0 0
− σ

2 q∗ 0 0

 , (25)

where the sign parameterσ = ±1 distinguishes between the focusing and defocusing
equations. In terms of the spectral theory then, the distinction appears as a contrast
between skew-Hermitian (focusing) and Hermitian (defocusing) scattering operators
A1.

As a solution method for pdes, the inverse spectral approach exploits a compatibility
condition between two linear systems known as a Lax pair:

Eψx = L Eψ; Eψt = B Eψ. (26)

The simultaneous eigenfunctionsEψ(x, t) of these two linear operators are Jost, or in the
periodic case, Bloch eigenfunctions. The temporal operatorB is quadratic in the spectral
parameterE:

B = E2A0+ E A1+ A2, (27)

where

A2 = − i

4

−σ(|p|2+ |q|2) −2px −2qx

−2σp∗x σ |p|2 σqp∗

−2σq∗x σq∗p σ |q|2

 . (28)

The compatibility of the mixed partial derivatives inx andt requires that the potentials
p andq in the scattering matrixA1 must satisfy the coupled NLS system (2).

Periodic Spectral Theory

Fundamental to the inverse spectral theory is the mapping of the spatial structure of
the complex potentials inA1(x, t) into spectral data via a Lax spectral problem. For
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the coupled NLS with periodic boundary conditions, the third-order Lax problem is
the linear ODE system (23) whose coefficients are periodic. Thus the natural tool for
investigating the spectral properties is Floquet theory.

Consider the Lax spectral problem for fixedt ,

Eψx = L Eψ, (29)

Eψ(x = xo) = Eψo, (30)

with solution

Eψ = M(x; xo) Eψo, (31)

where the fundamental matrix solution is normalized by initial conditions to be the
identity atx = xo:

M x = LM , (32)

M(x = xo) = I . (33)

For potentialsA1(x)with period`, theFloquet multipliersare simply the eigenvalues of
the fundamental matrix solution taken over a single period as given by the characteristic
polynomial

det(M(xo + `; xo)− ρI) = 0. (34)

Alternatively, if the Floquet multipliers are distinct, solutions can be represented as a
linear combination of the three independentFloquet solutions, each of which takes the
form

Eψ(x) = eiµxψ̂(x), (35)

where theFloquet exponentsµ are related to the multipliers by

ρ = eiµ`, (36)

andψ̂(x) has the same basic period`.
Since the eigenvalueE appears within the Lax operator, the dependence of the Floquet

solutions on this spectral parameter defines theFloquet spectrum— values ofE at which
a Floquet solution is bounded, or equivalently,µ(E) is real.

The Floquet spectrum is part of the Floquet multiplier curve: the Riemann surface
constructed from the function elementsρ(E), i.e. a three-sheeted covering of the complex
sphere parametrized by the spectral parameterE. The Floquet spectrum consists of
those values ofE for which the modulus of the multiplier is unity; however, it is the
Floquet multiplier curve as a whole, not merely the spectrum, that we use as our spectral
information.

Three distinguished spectral elementsare identified:

• periodic/antiperiodic points— values ofE such that there is a periodic or anti-periodic
eigenfunction, this corresponds to at least oneµ(E)being an even/odd multiple ofπ /`.
The corresponding Floquet solutions will have the same/twice period of the complex
potentials.
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• branch points— values ofE where two Floquet exponentsµ are real and equal. These
correspond to the endpoints of spectral branches; as well, each pair of branch points
is associated with a Hamiltonian degree-of-freedom of the underlying coupled NLS
wave.
• Floquet double points— values ofE where the difference between two Floquet

exponents4µ is a multiple of 2π /`, so that the multipliersρ are degenerate. This
spectrum is of importance in what follows; in particular, they represent locations
where new branch points can be formed under perturbation. Thus they are critical
to identifying which solutions can saturate the linear instabilities observed in the
preceding sections for the plane wave. In fact, in the plane wave case, we show that
there is a one-to-one correspondence between these double points and the Fourier
modes of the eigenmode basis (forκ ≥ 0 and forκ ≤ 0 separately) and thatunstable
modes are only associated with nonreal double points.

A crucial difference between the Floquet spectrum of the scalar NLS and the coupled
NLS is that for the scalar NLS the periodic/antiperiodic points are identical to the Floquet
double points which contain the geometric information about the instability. This identity
is due to the fact that in the 2× 2 matrix case there is one linear constraint, viz. the sum
of theµ is a multiple of2π

`
, which is enough to fix the secondµ if the first one is known

to be a multiple ofπ /`. In the 3× 3 case there are threeµ but still only one constraint,
so that a periodic/antiperiodic point is no longer a location where the difference of a pair
of µ is a multiple of2π

`
.

Plane Wave Example

By way of illustation, the Floquet theory for the simple plane wave solution with equal
amplitudes but equal and opposite wavenumbers (3) is presented:

po = a ei (+kx−ωt); qo = a ei (−kx−ωt). (37)

Although the Lax spectral problem is in general a nonconstant coefficient ODE, in
the plane wave case, considerable simplification occurs in the explicit removal of the
x-dependence via the transformation

Eψ =
1 0 0

0 p∗o 0
0 0 q∗o

eiµxψ̃,

where both the plane wave variations and Floquet exponential behaviors are incorporated.
The vectorψ̃ is independent ofx and is the eigenvector for the constant matrix problemiµ+ 2i

3 E − 1
2a2 − 1

2a2

σ
2 iµ− i k − i

3 E 0
σ
2 0 iµ+ i k − i

3 E

 ψ̃ = E0. (38)

The Floquet spectrumµ(E) is defined through the cubic characteristic polynomial

µ3+
(
−1

3
E2− k2− σ

2
a2

)
µ+ 2

27
E3− 2

3
Ek2+ σ

6
a2E = 0, (39)
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whereby, if the roots are distinct, the corresponding eigenvectors can be expressed in
terms of the eigenvalueµ

ψ̃ =

 −2i
σ

µ−k− 1
3 E

σ

µ+k− 1
3 E

 . (40)

By assembling a 3×3 diagonal matrix of Floquet multipliers(ρ = eiµx) and a change
of basis matrix whose columns are given by the corresponding eigenvectors,

3µ = diag(eiµx), (41)

S = [ψ̃(µ)], (42)

the general solution forEψ can then be written in terms of a matrix of Floquet solutions
and has the representation

Eψ =
1 0 0

0 p∗o 0
0 0 q∗o

S3µEc, (43)

whereEc is an arbitrary vector that provides a linear superposition of the Floquet eigen-
functions.

We can see clearly in this plane wave example that the Floquet multiplierρ(E)
is determined by the spectral parameterE via the characteristic polynomial (39) for
µ(E), the Floquet exponent, and the relationρ = eiµx. Thus for everyE there are, in
general, three function elementsρ(E) which together form a three-sheeted covering of
the complex sphere, i.e. the Floquet multiplier curve. The structure of this curve is given
by a detailed analysis of the characteristic polynomial (39) forµ(E) so as to determine
the following distinguished points:

• Branch points— points whereµ(E) has a double root, so there is a square root type
of singularity in the covering. There are exactly four such points, viz. the roots of the
discriminant of the characteristic polynomial (39):

E2 = −a4− 40σa2k2+ 32k4± a(
√

a2− σ16k2)3

32k2
. (44)

• Floquet double points— points where two values ofρ(E)are the same but the function
elements are different. Under perturbations these points can split into pairs of branch
points and hence they are important in identifying perturbations of the plane wave.
Such points occur when two values ofµ(E) differ by1 = 2πn

`
, n is an integer, for

the same value ofE. These double points occur when

E2 =

{
a4− σ12a212+ 814+ σ40a2k2− 2412k2− 32k4

±(a2+ 4σ12− 16σk2)
√

a4− 16σa2k2+ 1612k2
}

−32k2+ 812
. (45)
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We are not concerned with antiperiodic/periodic points since, in the third order op-
erator case, these do not correspond with the Floquet double points, as they do in the
scalar NLS case with a second order spectral operator. What we are interested in is loca-
tions where new branch points can develop under perturbations, viz. the double points.
Heuristically, a splitting of a double point where two values ofµ(E) differ by1 = 2πn

`

should correspond to a perturbation by an eigenmode proportional toδρ = ei1x. In-
deed, although we do not pursue the details here, there is an explicit mapping by which
each linearized CNLS system eigenmode is constructed from products of the Floquet
eigenvectors, evaluated at a corresponding Floquet double point.

Remark. It is immediately obvious from equations (44) and (45) that the branch points
are the endpoints of the sequence of Floquet double points occurring when12 = 0. If
12 is considered as a continuous real parameter that denotes the (squared) difference
between two values ofµ on the three-sheeted covering at the sameE value, then we can
imagine the double points as a continuous stream flowing out of the branch points and
circulating throughout the three sheets of the branched covering. Near branch points,
the double points will necessarily connect the same two sheets of the curve as their
parent branch point. However at turning points whered E

d(12)
= 0 and d E

d(12)
changes sign,

there will be a sheet change, i.e. the pair of sheets whose separation is given by12 will
necessarily change at such points (two distinct values of12 on either side of the turning
point must represent the difference ofµ values between two distinct pairs of sheets over
the same value of E). In this way we can identify which sheets the double points are
connecting as they flow throughout the curve.

1-1 Correspondence of Eigenmodes and Double Points

Note that for every eigenmode frequencyκ ≥ 0 (and similarly forκ ≤ 0) there are
precisely four eigenmodes in the complete eigenmode basis given by equation (20) in
terms of the four distinct roots of the dispersion relation (11).

For clarity we assume that the four roots of the dispersion relation (11) are distinct,
although the extension to degenerate roots is straightforward. If we now set12 = κ2 > 0
in equation (45) for the locations of the double points, we obtain precisely four double
points corresponding to the four eigenmodes. At this point the solutions of the linearized
CNLS system could be constructed from products of the eigenvectors of the Lax pair
evaluated at the corresponding spectral double points. However for the purposes of
constructing thenonlocalbehavior of the instabilities via B¨acklund transformations, it
is sufficient to note that under this correspondence, for perturbed plane waves,there are
unstable eigenmodes if and only if there are nonreal double points.

The only exception to this simple state of affairs occurs when12 = κ2 = 0, in which
case the double points become branch points and the system is modulationally unstable
(i.e. possesses a long-wave instability)if and only ifat least two of the branch points are
complex, as was shown by one of us in [40].

• In particular, the defocusing case (σ = −1) has a band of nonreal double points
corresponding to unstable eigenmodes precisely when 4k2 − 2a2 < 12 < 4k2 in
agreement with the relation (17) describing the cross-phase resonance.
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• Note that if 0< 4k2−2a2 then this instability is atintermediatewavenumbers, and the
sideband of unstable eigenmodes that appears in the defocusing instability diagram,
Figure 1, does not not extend to theκ = 0 wavenumber. Thus this instability isnot the
traditional long-wave modulational instability that appears in the focusing equations.
In particular, all the branch points are real in this case and a modulational stability
analysis of long waves would predict modulational stability, even though there are
intermediate wavelength perturbations to which the system is unstable.
• In the section onCommutator Spectral Theorywe show how the integrable nature

of the CNLS system can be used to generate equations with quasi-periodic solutions
which saturate the cross-phase instability of this plane wave example.

Homoclinic Orbits and Bäcklund Transformations

Now that the spectral elements in the integrable theory that correspond to linearized
instabilities have been identified, a B¨acklund transformation can be used to generate the
nonlocal dynamics for the simplest unstable configurations. In particular, for plane waves
of equal amplitude, restricted to a small spatially periodic domain 0< x < 2π , most
of the long-wavelength instabilities will becut off and only a few modes will evolve
to nonlinear amplitudes — this should lead to dynamics with the minimum amount
of complexity. This is an especially likely situation in integrable systems, where the
existence of the infinite hierarchy of conservation laws places a greater restriction on the
allowable dynamics.

Defocusing Case

The defocusing system has only one kind of instability present, as shown in Figure 1:
a cross-phase instability of dimension one for each unstable wavenumber. (Note that
because of the symmetry of the system, eigenmodes come in pairs corresponding to
±κ.) To examine the nonlocal nature of instability, three cases are considered for a
fundamental mode with equal intensity in the two channels,

p = aei (kx−ωt), q = aei (−kx−ωt).

• In the instability diagram Figure 1, let the wave parameters bek
|a| = κ

|a| = 1√
2
,

k = κ = 1, with periodL = 2π . In this case, all four branch points are real, but
two of them double up at the origin, so this wave is marginally unstable to zero
wavenumber disturbances. Locating the discrete set of eigenmode wavenumbers for
these parameters on Figure 1 shows that there are exactly two unstable eigenmodes,
one for each of the first harmonicsκ = ±1, and these correspond to precisely one
complex pair of Floquet double points on the imaginary axis. The second harmonic is
marginally stable (two double points meet at the point over infinity on the Riemann
sphere), and all the higher harmonics are neutrally stable (the corresponding double
points are on the real axis.) Using an imaginary Floquet double point of the single
complex conjugate pair present in the spectrum in a B¨acklund transformation [12],
[35] of the original plane wave, a homoclinic orbit is generated that approaches the
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Fig. 6. Defocusing Homoclinic Orbit of an unstable first harmonic eigenmode atk
|a| = κ

|a| =
1√
2

in the instability diagram (Fig. 1). Notice that the two channels are equally excited by
the instability, indicating the essential cross-phase nature of the instability. The homoclinic
orbit can be spatially translated because of the presence of an arbitrary phase shift in the
perturbation. Using the second member of the Floquet double point conjugate pair in the
Bäcklund transformation results in a phase shift; see Figure 7.

plane wave as time goes to positive and negative infinity; see Figure 6. If the conjugate
double point of the pair is used in the B¨acklund transformation, then the same orbit is
obtained, only spatially translated (see Fig. 7), corresponding to the fact that there is
an asymptotically stable eigenmode (thus unstable in negative time) which produces a
spatial perturbation in|p| and|q| that is merely a phase shift of the previous unstable
eigenmode.
• Two other cases are considered of an unstable first harmonic in the defocusing case,

illustrating the deformation of the homoclinic orbits as the wavenumbers are varied.
Figure 8 shows the evolution of smaller scales atk

|a| = κ
|a| = .4, with k = κ = 1 and

|a| = 10
4 on a period ofL = 2π ; the smaller scales are indicative of the broadening

of the unstable band of wavenumbers.
• Figure 9 shows the evolution of longer scales atk

|a| = κ
|a| = .8, with k = κ = 1 and

|a| = 10
8 on a period ofL = 2π ; the longer scales are indicative of the decrease in the

width of the unstable band of wavenumbers.
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Fig. 7. Defocusing Homoclinic Orbit with phase shift, corresponding to the same instability
appearing in Figure 6.
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Fig. 8. Defocusing Homoclinic Orbit of an unstable first harmonic eigenmode atk
|a| =

κ

|a| = .4 in the instability diagram. Notice the increase in fine-scale structure.

All the solutions generated by the B¨acklund transformation illustrate that each un-
stable manifold of the plane wave contains a homoclinic orbit: The solutions asymptote
back to the plane wave along the direction of a stable eigenmode.

Moreover, the disturbance has the same maximum magnitude in the two channels,
indicative of the cross-phase mechanism of the instability in which both channels are
equally excited.

The orbits in a finite-dimensional function space neighbourhood of the first of the
homoclinic orbits considered above, corresponding to orbits in the saddle of two crossed
homoclinic orbits (as in the phase plane of the unforced Duffing equation), are generated
later using thestationary equationsof the integrable hierarchy.

Focusing Case with Equal Intensities in the Fundamental Mode

The focusing system with equal intensities in the fundamental mode,

p = aei (kx−ωt), q = aei (−kx−ωt),

is considered for two different sets of wave parameters, in order to illustrate the different
regions of instability described in Figure 3.
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Fig. 9. Defocusing Homoclinic Orbit of an unstable first harmonic eigenmode atk
|a| =

κ

|a| = .8 in the instability diagram. Notice the increase in large-scale structure.
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Fig. 10. Self-Phase Focusing Homoclinic Orbit I from an unstable first harmonic eigenmode
(k/|a| = .5, κ/|a| = ±.5) in the self-phaseW2

u region of Figure 3. Notice that most of the
oscillations are trapped in the p-channel. The Floquet double point corresponding to the
unstable first harmonic eigenmode generating this homoclinic orbit is at−.498+ 1.89i in
Figure 16. Compare with Figure 11.

Fig. 11. Self-Phase Focusing Homoclinic Orbit II from the other unstable first harmonic
eigenmode (k/|a| = .5,κ/|a| = ±.5) in the self-phaseW2

u region of Figure 3. Notice that the
instability is mostly confined to the q-channel. The Floquet double point corresponding to
the unstable first harmonic eigenmode saturated by this homoclinic orbit is at.498+ 1.89i
in Figure 16. Compare with Figure 10.

• The focusing system witha = 2 andk = 1 and periodL = 2π is considered. The
first harmonic (k|a| = κ

|a| = 1
2) lies in self-phaseW2

u region of Figure 3 and generates
two unstable eigenmodes due to the classical self-phase Benjamin-Feir long-wave
instability.Individual perturbations of this type can produce very little energy transfer
between the two channels, indicating the self-phase nature of the instability.Of course
a composition of the two different instabilities in the pair could be chosen to reveal
the coupling of the equations. See Figure 10, in which the effects of the modulational
instability are mostly confined to thep channel of the coupled system. In Figure 11
the oscillations arising from the instability are primarily restricted to theq channel.

The second harmonic is, as always when the amplitudes of the two channels are
equal, marginally stable.

The third harmonick
|a| = 1

2 and κ
|a| = 3

2 lies in cross-phaseW1
u sideband of Figure3

and has exactly one unstable eigenmode due to the cross-phase resonance.Energy is
necessarily transferred between the two channels, indicating the essential cross-phase
nature of the instability.See Figure 12.

The fourth and higher harmonics are all stable.
The low harmonics correspond to Floquet spectral data as shown in Figure 16.
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Fig. 12. Cross-Phase Focusing Homoclinic Orbit of the unstable third harmonic (k/|a| = .5
and κ/|a| = ±1.5) in the cross-phaseW1

u sideband of Figure 3. Notice that energy is
necessarily transferred between the two channels, indicating the cross-phase nature of the
instability excited by this harmonic. The Floquet double point corresponding to the unstable
third harmonic eigenmode saturated by this homoclinic orbit is at 1.51i in Figure 16.
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Fig. 13. Cross-Phase Focusing Homoclinic Orbit (large-scale disturbance) of an unstable
first harmonic (k/|a| = .2 andκ/|a| = ±.2) from the cross-phaseW2

u region of Figure 3;
see also Figure 14 for the second unstable mode that produces a smaller scale disturbance.

• The focusing system witha = 5 andk = 1 and periodL = 2π is considered. In this
case the first harmonick|a| = κ

|a| = .2 is in the cross-phaseW2
u region of Figure 3.

There are two unstable cross-phase modes. Both modes equally excite the two channels
but one mode (Fig. 13) produces a larger, broader disturbance than the other mode
(Fig. 14). The third harmonicκ|a| = .6 lies in the cross-phaseW1

u region and has one
unstable cross-phase mode that equally excites the two channels (Fig. 15).

Focusing Case with Unequal Intensities in the Fundamental Mode

The focusing case is considered for two different fundamental modes with unequal
intensity division,

p = aei (kx−ωt), q = bei (−kx−ωt),

for which |a|2 = 10|b|2, in order to illustrate the regions of instability in Figure 4.

• In order to select modes in a vertical slice of the instability diagram wherek
|a| = .6,

with modes in the self-phaseW2
u region, the self-phaseW1

u region, and the cross-phase
W1

u sideband, we choose|a| = 5
3, |b| = 5

3
√

10
, L = 6π, andk = 1. Thus, in Figure 4,

this case corresponds tok|a| = .6 and the n-th harmonic isκ|a| = .2n. The first harmonic
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Fig. 14. Cross-Phase Focusing Homoclinic Orbit (small scale disturbance) of an unstable
first harmonic (k/|a| = .2 andκ/|a| = ±.2) from the cross-phaseW2

u region of Figure 3;
see also Figure 13 for the other unstable first harmonic eigenmode.
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Fig. 15. Cross-Phase Focusing Homoclinic Orbit of the unstable third harmonic (k/|a| = .2
andκ/|a| = ±.6) from the cross-phaseW1

u region of Figure 3.

is in the narrow doubly unstable self-phaseW2
u band near thek/|a| axis and has two

independent unstable modes; the resulting homoclinic orbits are shown in Figures 17
and 18. The second, third, and fourth harmonics are all in the wider unstable self-phase
W1

u band that remains in the scalar limit when|b| → 0 and each harmonic generates
one instability. The third harmonic instability is shown in Figure 19. The fifth harmonic
is neutrally stable and the sixth harmonic is marginally stable. The seventh harmonic
lies in the narrow cross-phaseW1

u instability sideband that disappears in the scalar
limit, and it has one instability associated with it, as shown in Figure 20.

All higher harmonics are neutrally stable.
• To select modes in a vertical slice of the instability diagram passing through the

transition or mixed regions, we choosea = 10
3 andb =

√
10
3 , L = 6π , andk = 1.

Thus, in Figure 4, this case corresponds tok
|a| = .3 and the n-th harmonic isκ|a| = .1n.

The first harmonic has a two-dimensional instability in the mixedW2
u central region;

see Figures 21 and 22. Both the third harmonic (Fig. 23) and the seventh harmonic
(Fig. 24) are in the transitionW1

u region between the cross-phase sideband and the
self-phase central band ofW1

u , and each generates one unstable transitional type of
cross-phase instability. Harmonics twelve and above are stable.
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Fig. 16. The Floquet spectrum of the focusing plane wave with equal intensities (a = b = 2,
k = 1, andL = 2π ), labeled by the associated eigenmodes from the linearized equations.
The branch points correspond to the spatially independent fundamental mode. The four
modes of a harmonic with wavenumberκ correspond to quartets of double points in the
spectrum (note that the modes ofκ and−κ correspond to the same quartet). A complex
conjugate pair of double points indicates an unstable mode and one asymptotically stable
mode. A real pair of double points indicates neutral stability. The first harmonic has two
independent self-phase instabilities for each ofκ = ±1, although the perturbations of
κ = −1 are merely phase-shifted versions of those ofκ = +1. The second harmonic has
two double points on the real axis corresponding to neutrally stable modes, and a second
pair of double points have coalesced along the real axis at±∞ corresponding to marginally
stable modes. This pair of double points reappears along the imaginary axis to produce
the pure cross-phase instability of the third harmonic. The modes of the fourth and higher
harmonics are all neutrally stable, and are associated with real double points.

Commutator Spectral Theory

The homoclinic orbits to the plane wave solutions of the CNLS system that were con-
structed using B¨acklund transformations indicate the presence of crossed homoclinic
saddles in the phase space of the coupled system. The structure of these saddles is qual-
itatively similar to that of the critical point in the phase plane of the unforced Duffing
oscillator. To generate the near-homoclinic orbits of the coupled system and clarify the
saddle structure of part of the phase space, it is necessary to generate a class of quasi-
periodic solutions known as N-phase waves and restrict them to the simplest spatially
periodic subclass that contains the homoclinic orbit. Such quasi-periodic solutions obey
stationary equationsof the CNLS hierarchy of integrable flows. The correct stationary
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Fig. 17. Self-Phase Focusing Homoclinic Orbit, with unequal intensities in the plane waves
of the two channels, for one of the first harmonic unstable modes in the self-phaseW2

u region
of Figure 4. Notice that most of the oscillations generated by the instability are trapped in the
q-channel, even though the background plane wave in the q-channel is smaller in absolute
magnitude than in the p-channel. Compare with Figure 18.
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Fig. 18. Self-Phase Focusing Homoclinic Orbit, with unequal intensities in the plane waves
of the two channels, for the other first harmonic unstable mode in the self-phaseW2

u region of
Figure 4. Notice that most of the oscillatory behavior is trapped in the p-channel. Compare
with Figure 17.

equations can be identified via the spectral data of the unstable plane wave, in partic-
ular the location of the branch points and the double points of the associated unstable
eigenmodes on the Floquet curve. The stationary equations also have an invariant curve,
which for periodic potentials must have branch points matching those in the Floquet
spectrum of the potentials.

In order to construct such quasi-periodic solutions, it is convenient to restate the Lax
pair in matrix form, and hence construct the stationary equations. A fuller discussion of
the stationary equations of the CNLS is contained in [41].

The CNLS system is equivalent to the compatibility of the following commutator Lax
pair:

Qx = [L ,Q] and Qt = [B,Q]. (46)

Just as the special soliton solutions of the focusing NLS equation are associated with
the reflectionless eigensolutions,the fundamental solutions of the quasi-periodic NLS
are generated through special matricesQ whose representations are polynomials in the
scattering eigenvalue E— these are more commonly referred to asN-phase waves. The
0-phase waves are simply the exponential plane waves.
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Fig. 19. Self-Phase Focusing Homoclinic Orbit, with unequal intensities in the plane waves
of the two channels, for the third harmonic instability in the self-phaseW1

u region of Figure 4.
Notice that self-phase oscillations are trapped in the p-channel. Moreover, there is no mode
which traps oscillatory behavior in the q-channel for this harmonic.
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Fig. 20. Cross-Phase Focusing Homoclinic Orbit, with unequal intensities in the plane
waves of the two channels, for the seventh harmonic instability in the cross-phaseW1

u
sideband of Figure 4. Notice that energy is equally shared between the two channels. This
indicates the cross-phase nature of the instability in this harmonic.

Our present working hypothesis is that theN-phase waves for the coupled NLS
equations provide the natural resolution for the breakdown of the nonlinear WKB analysis
of the birefringent fiber system.

As we have seen, the defocusing CNLS system has a plane wave solution with double
points corresponding to linear instabilities with frequencies in the band 4k2−2a2 < κ2 <

4k2. These complex double points occur in conjugate pairs. We will present a simple
class of N-phase waves which result from the perturbation that excites the unstable
modes of the first harmonic of a plane wave solution of the defocusing CNLS system.
The plane wave is chosen to have exactly two complex double points in its spectrum
associated with exactly one unstable mode in the first harmonic, all other eigenmodes
being stable, thus reducing the complexity of the dynamics. The choice of parameters
is precisely the same as for the defocusing plane wave solution generated in Figures 6
and 7 in the section onBäcklund Transformations and Homoclinic Orbits. This particular
plane wave has four real branch points, two of which have come together over the origin
of the E plane. This choice was not accidental, but was made for technical reasons,
since the stationary equations that we construct have an additional degree of freedom
corresponding to a double point at the origin, in addition to the required four branch
points and the two complex double points of the instability. By placing the branch points
at the same location as the unwanted double point, this extra degree of freedom produces
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Fig. 21. Focusing Homoclinic Orbit, with unequal intensities in the plane waves of the
two channels, for a first harmonic instability in the mixedW2

u region of Figure 4. Notice
the self-phase behavior of the oscillations which occur predominately in the q-channel.
Compare with Figure 22.
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Fig. 22. Focusing Homoclinic Orbit, with unequal intensities in the plane waves of the two
channels, for the other first harmonic instability in the mixedW2

u region of Figure 4. Notice
the transitional nature of the relative energy transfer between the two channels: There is
a cross-phase excitation of both channels, but the initially larger in magnitude p-channel
tends to dominate. Also the oscillations are small in scale, similar to the third harmonic
that lies in the transitionalW1

u region of the cross-phase sideband (Fig. 23). Compare with
Figure 21.
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Fig. 23. Focusing Homoclinic Orbit, with unequal intensities in the plane waves of the two
channels, for the third harmonic instability in the transitionalW1

u region of the cross-phase
sideband in Figure 4. Notice that energy is necessarily transferred between the two channels
and that the oscillations are small in scale. This indicates the transitional cross-phase nature
of the instability in this harmonic.
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Fig. 24. Focusing Homoclinic Orbit, with unequal intensities in the plane waves of the
two channels, for the seventh harmonic instability in the transitionalW1

u region of the
cross-phase sideband in Figure 4. Notice that energy is necessarily transferred between the
two channels. This indicates the transitional cross-phase nature of the instability in this
harmonic.

effects of smaller order than the instability excited by small perturbations, since the
double points of the unstable mode and the branch points are separated by O(1).

It is an open problem to find stationary equations whose invariant curve is precisely
equivalent to any given set of spectral data. The construction of angle-like variables that
linearize the flow of an arbitrary set of stationary equations via the Abel-Jacobi map on
the Jacobian of the invariant spectral curve (representing the action variables) has been
carried out for a certain class of solutions by Adams et al. [3], [4].

N-Phase Waves

If we assume thatQ = Q0 + Q1E−1 + Q2E−2 + Q3E−3 + · · ·, then the x-flow of
equation (46) produces the following recursion relations for the entriesqn

i j of Qn:

(off-block entries)

qn+1
12 = i ∂qn

12−
i

2
p(qn

22− qn
11)−

i

2
qqn

32,

qn+1
13 = i ∂qn

13−
i

2
q(qn

33− qn
11)−

i

2
pqn

23,

qn+1
21 = −i ∂qn

21−
i

2
r (qn

22− qn
11)−

i

2
sqn

23,

qn+1
31 = −i ∂qn

31−
i

2
s(qn

33− qn
11)−

i

2
rqn

32,

(block entries)

qn+1
11 = −qn+1

22 − qn+1
33 ,

qn+1
22 = 1

2
∂−1(−pqn+1

21 + rqn+1
12 )+ iα,

qn+1
33 = 1

2
∂−1(−qqn+1

31 + sqn+1
13 )+ i δ,



324 M. G. Forest, D. W. McLaughlin, D. J. Muraki, and O. C. Wright

qn+1
23 = 1

2
∂−1(−qqn+1

21 + rqn+1
13 )+ iβ,

qn+1
32 = 1

2
∂−1(−pqn+1

31 + sqn+1
12 )+ i γ,

wherer = −σp∗ ands= −σq∗, andα, β, γ , andδ are constants of integration.
If Q is truncated and forced to be a finite Laurent expansion inE, then this forces the

potentialsp andq to satisfy additional constraints that define the multiphase wave. These
additional constraints are called thestationary equationsand are, in general, integro-
differential equations. For a systematic development of the construction of stationary
equations for the CNLS system, see Wright [41]. The crucial point is that the charac-
teristic polynomial ofQ has the samebranch pointsas the Floquet multiplier curve
of the periodic potentials, so we can identify the N-phase wave resulting from a given
perturbation by checking the location of its branch points in the limit where the solution
degenerates to the plane wave. A simple N-phase wave that has the correct branch point
structure, modulo the technical difficulty of an extra double point at the origin, to match
the perturbation of the defocusing plane wave with exactly one unstable harmonic, is
given by a quadratic ansatz inE−1:

Q = Q0+Q1E−1+Q2E−2.

WhenQ is given by the above ansatz, certain integro-differential constraints must
be satisfied by the solution of the CNLS system. These constraints define the N-phase
wave, given that the perturbed plane wave must also satisfy the constraints to first order
in the perturbation. The constraints can be given as

0 = −2pxx + 4i (1+ α)px + 6αp+ p(|p|2+ |q|2)
− 2i (1+ α)q

∫ x

pq∗dx, (47)

0 = −2qxx − 4i (1+ α)qx + 6αq + q(|p|2+ |q|2)+ 2i (1+ α)p
∫ x

qp∗dx,

in which the parameterα = 1
4(1−

√
13). Of course the t-flow constraints (which we

do not write out explicitly) are compatible with the x-flow constraints if and only if the
solution is a solution of the CNLS system.

Finally, given the linear perturbationp = p0(1+ p̃) andq = q0(1+ q̃) where

p̃ = f+ei κx + f ∗−e−i κx,

q̃ = g+ei κx + g∗−e−i κx,

there are two independent unstable perturbationsv1 andv2 with κ = 1. One mode is a

pure growth mode in positive time withÄ = i
√
−7+ 2

√
13 and the second is a pure

decay mode in positive time withÄ = −i
√
−7+ 2

√
13.
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Fig. 25. Evolutionary dynamics in the nonlocal manifold near the plane wave instability
— insidethe homoclinic orbit (p-channel).
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Fig. 26. Evolutionary dynamics in the nonlocal manifold near the plane wave instability
— insidethe homoclinic orbit (q-channel).
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Fig. 27. Evolutionary dynamics in the nonlocal manifold near the plane wave instability
— insidethe homoclinic orbit (p-channel).
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Fig. 28. Evolutionary dynamics in the nonlocal manifold near the plane wave instability
— insidethe homoclinic orbit (q-channel).
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Fig. 29. Evolutionary dynamics in the nonlocal manifold near the plane wave instability
— outsidethe homoclinic orbit (p-channel).
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Fig. 30. Evolutionary dynamics in the linearized manifold near the plane wave instability
— outsidethe homoclinic orbit (q-channel).



328 M. G. Forest, D. W. McLaughlin, D. J. Muraki, and O. C. Wright

0

10

20

30

40

50

60

70

1
2

3
4

5
6

0.8

1

1.2

1.4

1.6

t

x

|p
|

Fig. 31. Evolutionary dynamics in the nonlocal manifold near the plane wave instability
— outsidethe homoclinic orbit (p-channel).
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Fig. 32. Evolutionary dynamics in the nonlocal manifold near the plane wave instability
— outsidethe homoclinic orbit (q-channel).
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The integrals of the coupled pair of stationary equations can be eliminated and the
resulting set of differential equations numerically integrated along space and time charac-
teristics using the standard Runge-Kutta fourth order scheme. The presence of a crossed
homoclinic saddle in the phase space of the CNLS system (qualitatively similar to that
of the unforced Duffing oscillator), can be seen by perturbing the critical solution first
by±(v1 + v2), resulting in orbits corresponding to the interiors of the two homoclinic
loops, as shown in Figures 25, 26, 27, and 28. Orbits on the exterior of the saddle can
be produced by perturbations of the type±(v1 − v2), as shown in Figures 29, 30, 31,
and 32.

Conclusion

The intermediate wavelength nature of the defocusing instability agrees qualitatively with
the instability observed by Rothenberg [33] experimentally and in numerical simulations
of the buildup of modulational instability in nonintegrable CNLS fields.

In particular, the cross-phase nature of the new instability and its saturation in the
neighbourhood of crossed homoclinic saddles in both the focusing and defocusing CNLS
equations is clearly distinguished from the long-wave, self-phase instability of the focus-
ing equation. Genuine nonlinear and nonlocal trajectories homoclinic to unstable plane
waves are constructed and visualized using B¨acklund transformations and the stationary
equations of the integrable CNLS equations. In addition, an important correspondence
between unstable linear eigenmodes and the Floquet spectral data of the integrable Lax
pair for the CNLS system is established, similar to results of Forest and Lee [18] for the
scalar NLS equation. Several developments of the scalar NLS theory remain open for
the CNLS system.
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