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Dispersive wave turbulence is studied numerically for a class
of one-dimensional nonlinear wave equations. Both determinis-
tic and random (white noise in time) forcings are studied. Four
distinct stable spectra are observed—the direct and inverse cas-
cades of weak turbulence (WT) theory, thermal equilibrium, and
a fourth spectrum (MMT; Majda, McLaughlin, Tabak). Each spec-
trum can describe long-time behavior, and each can be only
metastable (with quite diverse lifetimes)—depending on details
of nonlinearity, forcing, and dissipation. Cases of a long-lived
MMT transient state decaying to a state with WT spectra, and
vice-versa, are displayed. In the case of freely decaying turbu-
lence, without forcing, both cascades of weak turbulence are
observed. These WT states constitute the clearest and most strik-
ing numerical observations of WT spectra to date—over four
decades of energy, and three decades of spatial, scales. Numerical
experiments that study details of the composition, coexistence,
and transition between spectra are then discussed, including:
(i) for deterministic forcing, sharp distinctions between focusing
and defocusing nonlinearities, including the role of long wave-
length instabilities, localized coherent structures, and chaotic
behavior; (ii) the role of energy growth in time to monitor the
selection of MMT or WT spectra; (iii) a second manifestation
of the MMT spectrum as it describes a self-similar evolution
of the wave, without temporal averaging; (iv) coherent struc-
tures and the evolution of the direct and inverse cascades; and
(v) nonlocality (in k-space) in the transferral process.

1. Introduction

W aves in nature, such as waves on the surface of the sea
or turbulent waves in the atmosphere, are phenomena

so complex that their description must be statistical. Currently,
statistical descriptions of nonlinear waves are being proposed
and developed that would play the role for waves that statisti-
cal physics plays in mechanics—namely, to provide an efficient
description of macroscopically observable phenomena through
statistical averages. Goals of such theories include (i) the pre-
diction of wave spectra (the average energy density of the waves
as a function of their wavelength), which are relatively easy to
observe in nature; and (ii) the parametrization of small scales
for large scale simulations. It is a difficult problem to assess the
accuracy and validity of these statistical wave theories, primarily
because of mathematical and computational difficulties in the
nonlinear partial differential equations that provide the funda-
mental description of the waves’ evolution.

In this paper, we study a class of nonlinear wave equations
that was introduced in ref. 1 as a simple model for which the
validity of theories of dispersive wave turbulence could be pre-
cisely checked numerically. Here, further numerical experiments
are performed on this model—with the forcing usually restricted
to long wave lengths and with dissipation restricted to short
waves (direct cascade) and very long waves (inverse cascade). At
intermediate spatial scales there is no forcing or dissipation, and
the system is conservative in this “inertial range.” Both stochas-
tic (white-noise) and deterministic (constant in time) forcings
are investigated.

We find four distinct wave spectra within this single model
system—the (i) direct and (ii) inverse cascades of weak turbu-
lence (WT) theory (2), (iii) thermodynamic equilibrium, and
(iv) the new spectra (MMT; Majda, McLaughlin, Tabak) re-

ported in ref. 1. Which spectrum occurs depends on details of
nonlinearity, forcing, and dissipation. Each of these four spectra
can describe the long-time behavior of the system, and each can
be only metastable (with quite diverse lifetimes)—depending
again on details of nonlinearity, forcing, and dissipation. For
example, we observe a metastable WT spectrum decaying to the
MMT spectrum, and conversely, in other regimes we observe an
MMT spectrum decaying to a WT spectrum.

In the case of freely decaying turbulence (after the forcing has
been turned off), we find that WT is the robust slowly decaying
state. In fact, in this freely decaying setting, we observe both the
direct and inverse cascades of WT theory—extremely cleanly for
the direct cascade, over four decades of energy scales and three
decades of spatial scales. These new numerical experiments of
freely decaying states present the most striking observations of
WT spectra to date, and they should cause reevaluation of some
current ideas about the mechanisms behind weak turbulence.

In the case of deterministic forcing, we observe a sharp dis-
tinction in behavior between focusing and defocusing nonlin-
earities. In the focusing case, long-wave instabilities convert the
long-wave forcing into an effective stochastic forcing, which then
causes a steady transfer of excitations to the dissipation scale
and sets up the steady wave spectra—whose front [in momen-
tum (k) space] is described by the MMT spectrum, and the in-
terior (or wake in k-space) described by the WT direct cascade.
This initial conversion of steady forcing to an effective stochas-
tic forcing is accomplished through spatially localized solitary
waves and the associated focusing instabilities. The defocusing
nonlinearity is far less effective in converting the deterministic
forcing to an effective stochastic force. Here the coherent states
are extended radiation states, which are stable and not efficient
as an effective random stirring.

Multiple spectra can be present simultaneously, but at differ-
ent spatial scales. We emphasize the role of coherent structures
in energy transfer mechanisms that set up multiple stable spec-
tra. Moreover, we describe experiments that illustrate the very
nonlocal k-space nature of the transferral of energy. Taken to-
gether, these experiments provide considerable insight into the
mechanisms by which nonlinear waves transfer excitations from
the spatial scales of the forcing to the dissipation scales, and the
role of nonlinear coherent excitations and their turn-over times
in these transferral processes.

Over the years, numerical studies of the spectra of turbulent
phenomena have proven difficult, contradictory, and inconclu-
sive. We believe that our numerical study, although restricted to
an idealized class of one-dimensional model equations (1), has
broad implications about the nature of turbulence in general.
In most numerical studies of turbulence, computational limita-
tions severely restrict the decades over which spectra can be
observed, making such numerical observations difficult to inter-
pret and to rely on. As an example of the difficulties in two-
dimensional fluid turbulence, different groups (3–5) in careful
studies observe different and distinct spectra in their numerical
experiments. Similar studies of turbulence for fluids with rota-
tion which are relevant for atmospheric flows were reported in
ref. 6. In each of these studies, the presence of coherent vortices
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alters the observed spectra. These distinct observations are very
reminiscent of the two spectra that we observe in our model with
focusing nonlinearity. In our studies, the distinct time scales as-
sociated with different coherent excitations (and the comparison
of these time scales with natural mixing and turnover times) pro-
duces an interpretation of the mechanisms responsible for the
different spectra—an interpretation that is likely to extend to
more realistic settings of fluid turbulence. In any case, our nu-
merical study indicates that the one-dimensional class of models
introduced in ref. 1 permits precise numerical experiments to-
ward the resolution of issues necessarily left ambiguous in the
simulations of more realistic models of turbulence in two and
three spatial dimensions.

2. Background
Model Nonlinear Wave Equation. A model system was introduced in
ref. 1 for the purpose of testing and clarifying the assumptions
of the theory of weak-turbulence via four-wave resonances. This
model takes the form

iqt = �∂x�αq5 �∂x�−σ
(∣∣�∂x�−σq∣∣2�∂x�−σq); [1]

or equivalently in “k-space”

iq̂t = ω�k�q̂

5
∫

q̂�k1�q̂�k2�q̂∗�k3�
�k1�σ �k2�σ �k3�σ �k�σ

δ�k1 + k2 − k3 − k�dk1 dk2 dk3: [2]

This model depends on two real parameters, α , 0 and σ .
The parameter σ is introduced to control the nonlinearity. For
σ = 0, a standard cubic nonlinearity results. The parameter α
controls the dispersion relation ω�k� = �k�α, which, for α + 1,
leads to resonance quartets in this model; that is, to nontrivial
solutions of

k1 + k2 = k3 + k
ω�k1� +ω�k2� = ω�k3� +ω�k�:

The 5 sign is quite important in determining the properties
of the nonlinear waves of this model equation, with the −�+�
sign representing focusing (defocusing) nonlinearity. The focus-
ing case is the most unstable—with indefinite Hamiltonian, long-
wave instabilities, and solitary waves. In contrast, waves in the
defocusing case behave more linearly—much as radiation in lin-
ear wave equations.

Dispersive Wave Turbulence. The characteristic feature of dispersive
wave turbulence is flux in k-space; that is, the flow of excita-
tions from long spatial scales to short ones (the direct cascade),
or from short spatial scales to long ones (the inverse cascade).
Conceptually, such fluxes could be created by adding forcing and
damping terms to the wave Eq. 2—each of which is restricted
to relevant spatial scales, that is, “localized in k-space.” For ex-
ample, a balance between forcing that is restricted to k ı 0 and
damping restricted to �k� , Kd � 0 could set up a direct cas-
cade. Thus, to provide the flexibility to study both direct and
inverse cascades, we add damping terms to Eq. 2 that are re-
stricted to k ı 0 and to �k� , Kd , as well as forces that are
localized in k space. Throughout the inertial ranges, there is no
forcing nor dissipation, and the free Eq. 2 holds. For some of
the numerical experiments, this force is white noise in time, and
for other experiments, it is deterministic and steady. The dissi-
pation terms are of the form −i0iq̂�k�, where 01 , 0 (restricted
to k ı 0), 02 , 0 (restricted to �k� , Kd), with no dissipation
elsewhere.

Two Types of Spectra. The spectra of dispersive wave turbulence
are described through two point correlation functions,

n�k; t� A 〈
q̂�k; t�q̂∗�k; t�〉; [3]

where in our numerical study �· · ·� denotes time average. The
general goal of theories of dispersive wave turbulence is to ob-
tain a closed equation for the correlation functions n�k; t�.

The classical closure, known as WT theory (2), is summarized
in ref. 1, together with its steady state spectra for Eq. 2:

n�k� = c equipartition of particle number [4]

n�k� = 1
ω�k� equipartition of energy [5]

n�k� = �k�8σ/3−1 direct cascade [6]

n�k� = �k�8σ/3−1+�α/3�inverse cascade: [7]

These statistically steady state (SSS) spectra are time-
independent solutions of the kinetic equations of weak tur-
bulence. Their associated fluxes in k-space will have the correct
signs for both direct and inverse cascades for only a limited
range of the parameters: σ + �3−4α�/8 or σ , 3/8. As param-
eters cross these ranges, WT theory would indicate detectable
changes in observed behavior.

In the numerical experiments reported in ref. 1 the spectra
predicted by WT theory were not observed. Rather, the ob-
served spectra had exponents different from those predicted by
WT theory. Moreover, these observed spectra agreed with the
predictions of an alternative closure (MMT) that was heuristi-
cally proposed in ref. 1. For Eq. 1 at α = 1/2, this spectrum is

n�k� = �k�2σ−5/4 direct cascade: [8]

Numerical Algorithm. We simulate the full dynamics of our sys-
tem by using a pseudospectral method in combination with an
integrated factor method (for details, see ref. 1). For the time
dynamics, we use a 4th-order adaptive stepsize Runge–Kutta in-
tegrator. For most runs, the total number of modes is 213, and
the system size L 7 400. The largest number of modes we use
to selectively verify our results is 216.

In the following, we will describe the details of our numerical
experiments. We will use the convention that the unit for the
wavenumber k is 2π/L, thus k is labeled by integers.

3. Results
Four Spectra. We begin in a freely decaying setting, in which both
the direct and inverse WT cascades are observed. First, we cre-
ate a sufficiently stirred state that evolves from a smooth initial
data under a random forcing at long wavelengths. This state is
then used as initial conditions for our weakly decaying studies,
for both defocusing and focusing nonlinearities and for various
σ and α values. Then, to study freely decaying WT, we set the
force at 0 and add damping 01 on large spatial scales �k� 7 1
and 02 on small spatial scales �k� , Kd . (Kd = 2600 for most
experiments.) When 01 � 02, the state gradually relaxes to the
direct WT cascade. As shown in Fig. 1b, this WT spectrum oc-
curs over four decades of energy, and three decades of spatial
scales. Alternatively, when 01 � 02, i.e., stronger dissipation
on large spatial scales, the state relaxes to the inverse WT cas-
cade, as clearly shown in Fig. 1c. Theoretically, the spectrum
of WT direct cascade is independent of α, a fact confirmed (not
shown) in our freely decaying numerical simulations. We empha-
size that throughout these studies of freely decaying turbulence,
the states remain nonlinear.

As described in Two Types of Spectra, for the theoretical WT
spectra to be physically meaningful, the direction of their fluxes
in k-space should be consistent with those of the direct and

Cai et al. PNAS | December 7, 1999 | vol. 96 | no. 25 | 14217

A
PP

LI
ED

M
AT

H
EM

AT
IC

S



Fig. 1. (a) Thermodynamical equilibrium under relaxation dynamics (focusing non-
linearity, α = 1/2, σ = 0:25). The short dashed line has the slope of energy equipar-
tition, n(k) 7 ω(k)−1 (Eq. 3). (b) Direct cascade WT spectrum under relaxation dy-
namics (defocusing nonlinearity, α = 1/2, σ = −0:125). The slope of the dotted
line is the prediction of the WT theory for direct cascade. (c) Inverse cascade WT
spectrum under relaxation dynamics (defocusing nonlinearity, α = 1/2, σ = 0). The
slope of the dot-dashed line is the prediction of WT theory for inverse cascade. For
comparison, the prediction of WT direct cascade is also shown (dashed line). Note
that, for clarity, spectra b and c have been shifted down by a factor of 10 and
100, respectively.

inverse cascades. For α = 1/2, the predicted value for this bi-
furcation is σ = 1/8, with one physical regime σ + 1/8. We
have studied this potential bifurcation numerically with relax-
ation dynamics over the range −1/4 + σ + 1/4. For σ + 1/8,
our numerical results show (for 02 � 01) that the freely decay-
ing states have the WT direct cascade spectra. For σ , 1/8, the
relaxation does not lead to any clear power law for n�k�. This
transition is not sharp as σ crosses 1/8.

For focusing nonlinearity, in addition to the two WT spectra
described above, there is a third spectrum emerging under
relaxation dynamics (see Fig. 1a)—thermodynamic equilibrium
spectrum, i.e., n�k� 7 ω�k�−1 7 k−1/2. Unlike the defocusing
case, focusing nonlinearity can destablize long waves when the
amplitude of these waves is sufficiently large. This well known
“modulational instability” creates spatially localized coherent
structures, whose statistical behavior can be captured by a
“most probable state description” that predicts these states live
in thermodynamic equilibrium. A similar scenario is observed
in the case of a driven-damped nonlinear Schrödinger equa-
tion, where modulational instability leads to spatiotemporal
chaos (7). In this context of non-dissipative Schrödinger equa-
tions, a recent equilibrium statistical theory for most probable
states successfully predicts the coherent structure as well as
energy equipartition (8).

We now turn to a fourth spectrum (MMT), which is shown
in Fig. 2 for the defocusing nonlinearity. This steady state is
achieved by random forcing (Gaussian white noise in time) on
low k, with strong damping at high �k� , Kd . This experiment
demonstrates that, with defocusing nonlinearity, a state with
MMT spectrum can be very long-lived.

Having established the existence of four distinct stable spec-
tra, we turn to more detailed descriptions—such as their simul-
taneous existence, transition between them, and the role of co-
herent structures in these processes.

Deterministic Forcing. When the system is driven by a steady forc-
ing on low �k� modes, the defocusing dynamics has spectrum

Fig. 2. MMT spectrum of driven-damped dynamics (defocusing nonlinearity with
α = 1/2, σ = 0). The system is driven by a random force at �k� = 2 and is damped
at �k� = 1 and �k� , 2600. The slope of the dotted line is the prediction of the
MMT closure and, for comparison, the dashed line has the direct WT cascade slope.

shown in Fig. 3a, which exhibits a statistically steady state with
the coexistence of direct WT spectrum on high k modes and
a resonance spectrum on low k modes. These Hamiltonian
resonances—which are reminiscent of the “pre-Kolmogorov”
spectrum observed in the numerical studies of the kinetic equa-
tion (9)—permeate from low k through intermediate k modes
and create a “stochastic layer” on higher k modes. Waves on
this stochastic layer in turn pump energy to high k modes and
induce sufficient decoherence of those high k modes, resulting
in a WT direct cascade. In contrast, for focusing nonlinearity
with deterministic driving at a moderate amplitude, the motion
of long waves becomes chaotic because of modulational insta-
bility, which quickly generates a wave turbulence inertial range

Fig. 3. Steady deterministic force. (a) Coexistence of a WT direct cascade with
Hamiltonian resonances in an SSS, for the defocusing dynamics (α = 1/2, σ = 0),
driven by a steady force on 2 � �k� � 4. (b) Invasion of WT direct cascade into the
MMT transient regime, for the focusing nonlinearity (α = 1/2, σ = 0), driven by a
steady force on 2 � �k� � 3. The initial data for these cases is smooth, composed
of a simple sum of Aisech(Ai (x − xi )), 1 � i � 3, the location xi being arbitrarily
chosen. Note that spectrum b has been shifted up by a factor of 102 for clarity.
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Fig. 4. Temporal growth of L2 norm [N(t)]. a, b, and c correspond to the three
spectra in the Inset. The location and the length of the line segment indicate the
time and the time window used in averages to obtain the corresponding spectrum.
(Inset) Transition (a → c) from the MMT regime to the WT direct cascade in the
focusing dynamics (α = 1/2, σ = 0) driven by a random force on 2 � �k� � 3. The
slope of the dotted (dashed) line is the prediction of the MMT (WT) closure.

starting from very low k modes. In this focusing case, initially
the MMT spectrum is observed over the entire initial range.
However, it is a transient and the WT direct cascade spectrum
gradually invades from low k modes while the range of the
MMT spectrum shrinks toward high k modes and eventually
disappears, leaving the WT spectrum over the entire inertial
range. Fig. 3b shows an intermediate stage of this transient, in
which both spectra coexist. Next, we will discuss such transitions
from the MMT to WT, and vice versa.

Transition Between the MMT and WT Spectrum. This transition from
the MMT to WT direct cascade spectrum is also observed for fo-
cusing nonlinearity under random forcing. In the focusing case,
we can correlate each stage of expansion of the WT spectrum
and contraction of the MMT spectrum with the growth of L2

norm, as shown in Fig. 4. When driving is large, the growth of
norm is fast and the total averaged norm is large in the final
steady state. With increasing norm, the nonlinearity increases
and the time scale for wave interaction becomes short. A case
of relatively strong nonlinearity is shown in the Inset of Fig. 4,
which depicts three stages of coexistence of the two spectra.
Here, the WT direct cascade finally establishes itself as an SSS
whose norm fluctuates in time about a constant mean. When
the drive becomes weak, the resulting nonlinearity can lead to a
very large time scale for nonlinear turn-over and an extremely
slow growth of L2 norm. In this regime, the MMT spectrum can
persist for a very long time—for some focusing cases, as long
as 7 105 time units (not shown). The MMT spectra reported in
ref. 1 were in this weakly nonlinear regime.

Now we turn to a case of the defocusing nonlinearity, in which
(numerically) the MMT spectrum describes statistically steady
states. Fig. 5 shows an example in which the defocusing dynam-
ics initially exhibits a WT direct cascade, and eventually becomes
the MMT spectrum. This transition from the WT direct cas-
cade to the MMT spectrum provides our strongest numerical
evidence that the MMT can describe a stable SSS. (Alterna-
tively, for much weaker damping in high k dissipative range, we
note that a WT direct cascade describes the SSS).

Wave Front in k-Space. In addition to the interesting interplay be-
tween the WT and MMT spectra in the time averaged, statis-

Fig. 5. MMT (thick line) state as the SSS in the defocusing dynamics (α = 1/2,
σ = 0), driven by a random force, which evolves from a transient WT direct cas-
cade. The WT direct cascade is indicated by the short dashed line and, for clarity,
is shifted up by a factor of 10 as indicated by the fine line. The dotted line has the
MMT exponent and the dashed line has the WT direct cascade exponent.

tical sense, we now show that, even without averaging, both of
these spectra also appear in k-space wave motion. Fig. 6 depicts
the solution, n�k; t� = q̂�k; t�q̂∗�k; t�, evolving from a smooth
initial data (without time average) for the focusing nonlinear-
ity with steady forcing. Surprisingly, the envelope of the wave
fronts in the k-space has a power law form with the MMT ex-
ponent, as clearly seen in Fig. 6, while the wake of the wave in
the k-space displays the exponent of the WT direct cascade (not
shown). Thus, the MMT spectrum can arise in at least two dis-
tinct manners: (i) the statistical response to driving and damp-
ing and (ii) the fast dynamics of the wave front propagation in
k-space. The latter wave front propagation in k-space can be
traced (not shown) to a self-similar formation of localized co-
herent structures in x-space, and is not observed for defocusing
nonlinearity.

Fig. 6. Wave motion in k-space. Solutions for the focusing nonlinearity (α = 1/2,
σ = 0), driven by a steady force on 1 � �k� � 2 evolving from a smooth initial
data. Note that no time average is used here. Each curve represents n(k; t) =
q̂(k; t)q̂∗(k; t) at a different time (not necessarily evenly sampled in time). The large
k envelope exhibits the MMT exponent (dotted line).
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Coherent Structures and Resonant Waves in Energy Transfer—Coexistence
of Equilibrium, Inverse, and Direct Cascades. The next numerical ex-
periment illustrates the cycle of energy transfer in the SSS—a
cycle that involves interaction of coherent structures and reso-
nant waves as they form the equilibrium, inverse and direct WT
cascades simultaneously. As described above, modulation insta-
bility in our focusing dynamics induces spatially coherent “soli-
tonic” excitations at random spatial locations to form a thermal
equilibrium bath. The formation of these excitations can actively
transfer energy into high ks via their focusing processes in space,
where the wavenumber ks is determined by the spatial scale of
these localized waves. This energy injection process associated
with the creation of the localized excitations is a relatively fast
process, while the decay of these coherent structures is slow,
and gradually transfers energy back from the scale of ks to low
k via the radiation of long waves. The long wave radiation con-
sists of relatively coherent waves, which can participate in wave
resonant interactions. Thus, we expect this radiation to form
a WT inverse cascade. This is indeed the case. Fig. 7a shows
an excellent example of the coexistence of a thermodynamical
equilibrium state of these coherent structures and the inverse
cascade induced by their slow radiation of long coherent waves.
For spectrum a, we have ks , 1000. We note that, for k even
higher than ks, the usual WT direct cascade should be expected,
since the coherent excitations do not have strong influence on
energy transfer at spatial scales much smaller than their coher-
ence length. Fig. 7b demonstrates this phenomenon, where we
have tuned the dynamics to a regime such that only very few long
waves are unstable. These inject energy into ks 7 100, resulting
an inverse cascade for k + ks and a direct cascade for k , ks.
(To help in the interpretation of these equilibrium spectra, we
note that, in general, the distribution for the thermodynamical
equilibrium is 1/�ω+µ�, where µ is chemical potential. We are
able to tune the value of µ in our experiments by controlling
the forcing strength. The thermodynamical equilibrium distribu-
tion of those unstable long mode k̃ in Fig. 7 corresponds to the
limit in which µ� ω�k̃�.) We emphasize that the formation and
decay of coherent excitations in thermal equilibrium, together
with the resonance wave interaction of the direct and inverse
cascades induced by the coherent excitations, form a complete

Fig. 7. (a) Coexistence of thermodynamical equilibrium and the inverse WT cas-
cade, for the focusing nonlinearity (α = 1/2, σ = 0), driven by a steady force on
�k� = 1. The flat part of the spectrum (dot-dashed line) shows thermodynamical
equilibrium. (b) Coexistence of the inverse and direct WT cascades. The dotted
(dashed) line has the exponent of inverse (direct) WT cascade.

cycle of energy transfer in SSS—in contrast from standard de-
scriptions in plasma turbulence, which only utilize collapse with
high k dissipation (10, 11). Finally, we point out that, even when
driven extremely strongly, e.g., a value so strong that the total
norm is increased by a factor of 102 with respected to the cases
shown in Fig. 7, the defocusing dynamics does not possess this
energy transfer cycle simply because it does not have long wave
instabilities, and localized excitations.

Nonlocality. Finally, we address the locality of resonant energy
transfer in k-space, a property that underlies many prevalent
intuitions about the energy transfer mechanisms of turbulence.
Fig. 8 shows a case in which a WT direct cascade spectrum
is observed for an intermediate k range. The system is forced
at �k� = 1 only, while the broad range 2 � �k� � 10 is strongly
damped. The system reaches an SSS eventually, whose spectrum
is depicted in Fig. 8. Strikingly, in this state, the power in the
range 10 + �k� + 2600 does not decay and is sustained by the
�k� = 1 forcing alone, despite the little power and large dissipa-
tion in the range 1 + �k� � 10. In light of this broad “blocking”
dissipation, one may conclude that the flux in k space is highly
nonlocal, although our system satisfies the locality requirement
as defined in the usual sense of WT theories (2). This example
illustrates that locality sometimes can be a subtle issue, at least
for energy transfer from the pumping regime.

4. Conclusion
Taken together, these numerical experiments seem to indicate
that, when there is a large “flow-rate” from the injection scales
to the dissipation scales, the turbulent state is often described by
the MMT spectrum—with fronts and leading edges in k-space
profiles, and/or with growing norms. On the other hand, when
there is relatively little “flow” from forcing to dissipation scales,
the state is often described by WT—as in freely decaying tur-
bulence with slowly decaying energy, and in steady states with
constant mean energy. It also seems that the WT spectrum is an
intrinsic property of the free wave system, whereas the MMT
spectrum is associated with the entire driven-damped system.
These indications are somewhat counter to the current intuition
about dispersive wave turbulence, and certainly merit further
investigation.

Fig. 8. Nonlocality. The WT direct cascade spectrum for focusing nonlinearity with
α = 1/2 and σ = 0 is sustained by forcing at �k� = 1, despite strong damping in
2 � �k� � 10. The dashed line has the slope of WT direct cascade.
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