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Simple cells in the striate cortex respond to visual stimuli in an
approximately linear manner, although the LGN input to the
striate cortex, and the cortical network itself, are highly nonlin-
ear. Although simple cells are vital for visual perception, there
has been no satisfactory explanation of how they are produced
in the cortex. To examine this question, we have developed a
large-scale neuronal network model of layer 4Ca in V1 of the
macaque cortex that is based on, and constrained by, realistic
cortical anatomy and physiology. This paper has two aims: (1)
to show that neurons in the model respond like simple cells. (2)
To identify how the model generates this linearized response in
a nonlinear network. Each neuron in the model receives non-
linear excitation from the lateral geniculate nucleus (LGN). The
cells of the model receive strong (nonlinear) lateral inhibition
from other neurons in the model cortex. Mathematical analysis

of the dependence of membrane potential on synaptic conduc-
tances, and computer simulations, reveal that the nonlinearity
of corticocortical inhibition cancels the nonlinear excitatory
input from the LGN. This interaction produces linearized re-
sponses that agree with both extracellular and intracellular
measurements. The model correctly accounts for experimental
results about the time course of simple cell responses and also
generates testable predictions about variation in linearity with
position in the cortex, and the effect on the linearity of signal
summation, caused by unbalancing the relative strengths of
excitation and inhibition pharmacologically or with extrinsic
current.
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Neurons in the primary visual cortex are classified as simple or
complex, depending on how they respond to visual stimuli. If the
response of the cell depends on the stimulus in an approximately
linear fashion, the cell is termed “simple”; otherwise, “complex.”
Specifically, in response to visual stimulation by the temporal
modulation of standing grating patterns, the linear-like behavior
of simple cells includes: (1) a sensitive dependence on the spatial
phase (position) of the grating, (2) very little presence in a
neuron’s response of nonlinear distortion components such as
second (and higher) temporal harmonics. (This is aside from
distortions arising from threshold to firing.) The responses of
complex cells are very different: (1) they are spatial phase
(position)-insensitive, and (2) their responses are predominantly
second harmonic.

The linear dependence on visual stimuli of the simple cell
might be assumed to be a simple consequence of convergence of
excitatory drive from lateral geniculate nucleus (LGN) cells.
However, this ignores the nonlinearities of the LGN cells. For
example, rectification caused by the spike-firing threshold pro-
duces nonlinear distortion of LGN responses for stimulus con-
trast .0.2, that is, even at relatively low contrast (Tolhurst and
Dean, 1990; Shapley, 1994). In the numerical simulations of the

model (see below), this nonlinearity is evident in the responses of
cortical cells with only LGN excitation. Such responses contain
significant nonlinear components. Therefore, it is an open and
important question, how can there be simple cells in the visual
cortex?

Surprisingly, there has been as yet no explanation, based on
known cortical architecture, for the existence of simple cells in
the cerebral cortex. Here we offer an answer to this question by
studying a large-scale neuronal network model of layer 4Ca in
macaque primary visual cortex, V1. Our choice of lateral connec-
tivity within this model is motivated not by Hebbian-based ideas
of activity-driven correlations (Troyer et al., 1998), but by our
interpretation of the anatomical and physiological evidence con-
cerning cortical architecture, which is known better for macaque
V1 than for almost any other cortical area. The crucial distin-
guishing features of the model, derived from biological data, are
that the local lateral connectivity is nonspecific and isotropic, and
that lateral monosynaptic inhibition acts at shorter length scales
than excitation (Fitzpatrick et al., 1985; Lund, 1987; Callaway
and Wiser, 1996; Callaway, 1998). In the model, orientation
preference is conferred on cortical cells from the convergence of
output from many LGN cells (Reid and Alonso, 1995), with that
preference laid out in pinwheel patterns (Bonhoeffer and Grin-
vald, 1991; Blasdel, 1992a,b; Maldonado et al., 1997). In
McLaughlin et al. (2000), we show that orientation selectivity of
cells in such a model of 4Ca is greatly enhanced by lateral
corticocortical interactions. Here we show that: (1) neurons in the
network model can behave like simple cells; (2) cancellation of
nonlinear LGN excitation by corticocortical inhibition causes the
linear-like responses of simple cells in this nonlinear network.
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MATERIALS AND METHODS
Simple cells: experimental classification
Precise characterization of the linear and nonlinear summation of visual
signals of cortical cells was achieved by experiments with drifting and
contrast reversal gratings, such as in Movshon et al. (1978), De Valois et
al. (1982), and Spitzer and Hochstein (1985), in which experimental
techniques that proved useful for studying the linearity of spatial signal
summation in retinal ganglion cells (Enroth-Cugell and Robson, 1966;
Hochstein and Shapley, 1976) and LGN cells (Kaplan and Shapley,
1982), were applied to visual cortex. Figure 1, A and B (De Valois et al.,
1982), shows experimental data, based on extracellular recordings of
spikes, that illustrate linearity of spatial summation in a simple cell
located in macaque V1 (Movshon et al., 1978; Reid et al., 1991). (Note
also that simple cell responses are not necessarily linear in all quantities
of interest, such as stimulus intensity.) Figure 1A shows the response to
contrast reversal stimulation of the cell by a standing pattern at optimal
orientation, spatial, and temporal frequency. (Defined more precisely
below, “contrast reversal” is the temporal modulation of a standing
grating pattern by a sinusoidal modulation of the contrast.) Response to
contrast reversal has proven to be a critical test of linearity in simple cells
(Spitzer and Hochstein, 1985). The response of the simple cell depends
on the spatial phase or position of the standing grating pattern relative to
the midpoint of the receptive field of the neuron with a large-amplitude
response at the fundamental driving frequency at one spatial phase (the
“in-phase” condition) and very little response to “orthogonal phase”
stimulation 90° away. Both responses show little or no generation of the
higher temporal harmonics that might be expected for a nonlinear
system. However, nonlinear harmonic distortion products are apparent in
the responses of cortical complex cells (De Valois et al., 1982), an
example of which is shown in Figure 1B. Note, in particular, the phase
insensitivity and the frequency-doubled (2nd harmonic) response of the
complex cell. It is worth noting that the simple cells in De Valois et al.
(1982) were not assigned to a cell layer and that subsequent experimental
work in recording the activity of neurons across all layers of macaque V1
has found many neurons in layer 4Ca that behave just the same as the
simple cell illustrated in Figure 1A (Ringach et al., 2001).

There have been some measurements, in the cat visual cortex, of
intracellular responses of simple cells to such stimuli (Ferster et al., 1996;

Jagadeesh et al., 1997). Such data are shown in Figure 1C, which shows
the membrane potential (with spikes filtered) of a cat simple cell re-
sponding to contrast reversal stimulation, for in-phase and orthogonal
phase spatial patterns. When the stimulus grating is in-phase, there is a
large component of the membrane potential that appears to be approx-
imately sinusoidal in time, at the same frequency as the temporal mod-
ulation of the stimulus. When the stimulus grating is moved to the
orthogonal phase position, the modulation of the membrane potential is
small in amplitude, with a very small second harmonic. These results are
consistent with the linearity of an extracellular response of a simple cell.

Computational model
Description. Our model is a large-scale neuronal network of layer 4Ca,
comprised of excitatory and inhibitory integrate-and-fire (I&F) point
neurons. The simulated neurons and the conductance-based interactions
in the model are like those used by many others before us. What
distinguishes this model is its reliance on cortical architecture to specify
the corticocortical connections, and in the choice of connection strengths
that yield responses that match physiological data. The architecture of
the model derives from cortical anatomy (Fitzpatrick et al., 1985; Cal-
laway and Wiser, 1996; Callaway, 1998) and optical imaging experiments.
Optical imaging (Bonhoeffer and Grinvald, 1991; Blasdel, 1992a,b; Mal-
donado et al., 1997) reveals orientation hypercolumns with “pinwheel”
patterns of orientation preference in the superficial layers 2/3 of the
cortex; neurons of like-orientation preference reside along the same
radial spoke of a pinwheel, with the preferred angle sweeping through
180° as the center of the pinwheel is encircled. We assume that there are
pinwheel patterns in layer 4C, parallel to those in layers 2/3. This
assumption is based on the classical concept that there are orientation
columns in V1 cortex (Hubel and Wiesel, 1962). The orientation prefer-
ence map is assumed to be hard-wired into the cortex during develop-
ment, through the orientation preference of each group of LGN cells that
converge onto each cortical cell (Reid and Alonso, 1995).

The model [described in more detail in McLaughlin et al. (2000)] is of
a small patch of cortex (1 mm 2, containing four hypercolumns and four
orientation pinwheels) of input layer 4Ca. It is a conductance-based
model that consists of a two-dimensional lattice of 128 2 coupled I&F
neurons, of which 75% are excitatory and 25% are inhibitory.

Basic equations of the model. Let vE
j (vI

j) be the membrane potentials of
excitatory (inhibitory) neurons. In the model, they evolve by the coupled
system of differential equations,

dv P
j

dt
5 2lv P

j 2 g PE
j ~t!@v P

j 2 VE# 2 g PI
j ~t!@v P

j 2 VI#, (1)

where P 5 E, I and the superscript j 5 (j1 , j2 ) indexes the spatial location
of the neuron within the cortical layer. We specified the cellular biophys-
ical parameters, using commonly accepted values: the capacitance C 5
10 26 F cm 22, the leakage conductance gR 5 50 3 10 26 V21 cm 22, the
leakage reversal potential VR 5 270 mV, the excitatory reversal potential
VE 5 0 mV, and the inhibitory reversal potential VI 5 280 mV. We took
the spiking threshold as 255 mV and the reset potential to be equal to
VR. The membrane potential and reversal potentials were normalized to
set the spiking threshold to unity and the reset potential (and thus VR ) to
zero, so that VE 5 14/3, VI 5 22/3, and generally 22/3 # v E

j , v I
j # 1. The

capacitance does not appear in Equation 1 because all conductances were
redefined to have units of sec 21 by dividing through by C. This was done
to emphasize the time scales inherent in the conductances; For instance
the leakage time-scale is l21 5 20 msec. True conductances are found by
multiplication by C.

Conductances. The time-dependent conductances arise from the input
forcing (through the LGN) and from noise to the layer, as well as from
the cortical network activity of the excitatory and inhibitory populations.
They have the form:

g EE
j ~t! 5 FEE~t! 1 SEEO

k

aj2kO
l

GE~t 2 t l
k!,

g EI
j ~t! 5 f EI

0 ~t! 1 SEIO
k

bj2kO
l

GI~t 2 T l
k!,

with similar expressions for g IE
j and g II

j , and where FPE(t) 5 g lgn
j (t) 1

f PE
0 (t), P 5 E, I. Here tl

k(T l
k) denotes the time of the lth spike of the kth

excitatory (inhibitory) neuron.
The conductances f PP9

0 (t) are stochastic. Unless stated otherwise, their

Figure 1. Simple cell responses to grating contrast reversal. A and B are
from De Valois et al. (1982) (with author’s permission), whereas data in
C are from Jagadeesh et al. (1997) (with author’s permission). A, Macaque
monkey simple cell, spike rate response to contrast reversal of a sine
grating at 2 Hz modulation. Position of the standing wave in the visual
field is specified in degrees of spatial phase in which one spatial cycle of
the grating pattern is 360°. At ;180°, the response goes to zero. B,
Macaque complex cell response to the same contrast reversal stimulus.
The response amplitude shows little variation with spatial phase, and
there are two response peaks per cycle of temporal modulation—this is
the second harmonic or F2 component. C, Intracellular responses of a cat
simple cell to sine wave contrast reversal at 2 Hz, shown over two cycles.
This represents only half a cycle of spatial phase. The temporal modula-
tion waveform is shown below the neural responses. The membrane
potential response is predominantly at the fundamental frequency of
temporal modulation, with very little modulation at the 0° phase.
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means and SDs were taken as f EE
0 5 f IE

0 5 6 6 6 sec 21, f EI
0 5 f II

0 5 85 6
35 sec 21. These conductances have an exponentially decaying autocor-
relation function with time constant 4 msec. The constant background g0
of the LGN drive glgn is taken as 35 sec 21. The kernels (a, b, P)k represent
the spatial coupling between neurons. Only local cortical interactions (i.e.
on scales ,500 mm) are included in the model, and these are assumed to
be isotropic (Fitzpatrick et al., 1985; Lund, 1987; Callaway and Wiser,
1996; Callaway, 1998), with Gaussian profiles for the kernels (a, b, P)k.
Based on the same anatomical studies, we estimate that the spatial length
scale of excitation exceeds that of inhibition and that excitatory radii are
of order 200 mm and inhibitory radii of order 100 mm.

The cortical temporal kernels Gs(t) model the time course of synaptic
conductance changes in response to arriving spikes from the other
neurons. They are of the form:

Gs 5 cs
c

t5

ts
6 exp~2t/ts!H~t!, s 5 E, I,

where H(t) is the unit step function. The time constants are based on
experimental observations (Koch, 1999; Azouz et al., 1997) (A. Reyes,
personal communication). The time constant for excitation (tE 5 0.6
msec; time to peak is 3 msec) is shorter than that for inhibition (tI 5 1.0
msec; time to peak is 5 msec). In addition, based on recent experimental
findings (Gibson et al., 1999), we add a second, longer time-course of
inhibition (;30 msec in duration).

The behavior of the computational model depends on the choice of the
corticocortical synaptic coupling coefficients: SEE , SEI , SIE , SII. All cor-
tical kernels have been normalized to unit area. Hence, the coupling
coefficients represent the strength of interaction and are treated as
adjustable parameters in the model. In the numerical experiments re-
ported here, the strength matrix (SEE , SEI , SIE , SII ) was set to be (0.8, 9.4,
1.5, 9.4). This matrix means that excitatory neurons excite inhibitory
neurons almost twice as much as they excite other excitatory neurons but
that inhibitory neurons inhibit excitatory neurons and other inhibitory
neurons with equal strength. Also, inhibitory neurons have much stron-
ger coupling to all other cortical neurons than do excitatory neurons. We
explored many strength matrices in many numerical experiments. If the
corticocortical excitation was too strong, oscillations resulted. If the
corticocortical inhibition was too weak, the responses of the cells were
nonlinear and not selective enough. If inhibition was too strong, the
response of the network became too small. The matrix given here
generated simple cells that had the orientation selectivity, and the
magnitude and dynamics of response, seen in physiological experiments
(McLaughlin et al., 2000). This seems contrary to anatomical studies that
show V1 cortex has a preponderance of excitatory synapses (Beaulieu et
al., 1992). However, the biological cortex is filled with orientation-
selective cells that are not only simple, but also complex, as well as cells
whose responses lie between these classifications. It seems likely that
once the sources of this diversity are understood and properly accounted
for, the constraints on coupling strengths to produce simple cells will be
different and the role of corticocortical excitation will be elucidated.

Contrast reversal stimuli. Let I(xW, t) be the space- and time-dependent
intensity of the visual stimulus. A “contrast reversal” stimulus is given by:

I~xW, t! 5 I0@1 1 e sin~vt!cos~kW z xW 2 f!#, (2)

with parameters I0 (intensity), e (contrast), v (temporal frequency), and
f (phase). The parameter kW [ k(cos u, sin u), where k denotes the spatial
frequency and u the orientation of the grating pattern. In the computa-
tional experiments, we used k 5 3 cycles/°.

LGN response to contrast reversal stimuli. The total input into the jth
cortical neuron arrives from N (517) LGN cells:

g lgn
j ~t! 5 O

i51

N H g 0
j 1 E

0

t

dsE dxWGlgn~t 2 s! A~xW i
j 2 xW!I~xW, s!J1

. (3)

Here {R}1 5 R if R . 0; {R}1 5 0 if R # 0; g0
j represents the maintained

(background) activity of the LGN neurons feeding into the jth cortical
neuron, in the absence of visual stimulation. The summed LGN input,
glgn

j (t), into a cortical neuron depends nonlinearly on the visual stimulus
I(xW, t), because of rectification. There may be some additional nonlinear
input from the magnocellular Y cells (Kaplan and Shapley, 1982). We
have not modeled this group of cells because the percentage of such cells
is small (,25%) and because the cortical mechanisms we propose will

tend to linearize the input of Y cells to cortex also, so no new principle
is involved.

The temporal kernel Glgn(t) and spatial kernel A(xW) of an LGN cell are
chosen to agree with experimental measurements (Benardete and
Kaplan, 1999) (R. Shapley and R. C. Reid, unpublished observations).
Their functional forms are:

Glgn~t! 5 c0 t5@exp~2t/t0! 2 c1exp~2t/t1!#,

A~yW! 5 6H a
psa

2 exp@2uyW/sau2# 2
b

psb
2 exp@2uyW/sbu2#J ,

where t0 5 3 msec, t1 5 5 msec, sa 5 0.066°, sb 5 0.093°, a 5 1, and b 5
0.74 where 1 represents an “on-center,” and 2 an “off-center” LGN cell.
The constant c1 is determined so that the kernel G(t) integrates to zero,
as is approximately the case for LGN neurons in the magnocellular
pathway.

The spatial arrangement of LGN cell receptive field centers, xWi
j, is as

segregated on–off subregions (Reid and Alonso, 1995)—here a center
subregion of like-polarity cells with twin flanks of opposite polarity. This
segregation confers an orientation preference on the input to each
cortical cell, and this preference is laid out in pinwheel patterns. Addi-
tionally, the center of the receptive field of each cortical cell (created
through the aggregate LGN input) is randomized. This was done to
account for diversity in the location of this receptive field center and
random variations in the spatial symmetry of the on–off subregions. It
confers a preferred spatial phase on the LGN input of each cortical cell.
From cortical cell to cell this spatial phase preference is distributed
randomly over a broad range, as has been found in recent measurements
(DeAngelis et al., 1999).

When the stimulus is contrast reversal, Equation 3 for the input
conductance simplifies (for t .. t0 ) to:

g lgn
j ~t! 5 O

i51

N

$ g 0
j 1 p i

j sin~v~t 2 tS!!%
1, (4)

where tS , the temporal phase shift caused by the retina and LGN,
depends only on the choice of Glgn(t) and on the temporal grating
frequency v. An individual term in this sum is simply a rectified sinusoid
(if upi

ju . g0
j ), which takes on absolute maxima either at 1⁄4 cycle (pi

j . 0)
or at 3⁄4 cycle (pi

j , 0), with respect to vztS. For convenience, we set tS 5 0.

RESULTS
Contrast reversal
Contrast reversal of a grating pattern is an effective stimulus for
classifying cells as simple or complex. In response to contrast
reversal, the summed LGN drive in the model has (for 100%
contrast modulation) the generic spatial phase and time depen-
dence shown in Figure 2. Notice that (1) for each phase, the
sinusoidal shape is significantly distorted, (2) the absolute max-
ima occur at either 1⁄4 cycle or 3⁄4 cycle, and (3) the orthogonal
phase case (with the lowest peak heights of response) possesses
two absolute maxima per cycle, resulting in a pronounced fre-
quency doubling. This is produced by the rectification in Equa-
tion 4 and occurs in particular when a line of constant luminance
(I 5 I0 in Eq. 2) lies down the middle of a segregated subregion
of on-center (or off-center) LGN cells. In this case, the stimulus
modulation is elevated first on one side of this line, then on the
other, during one temporal period of the stimulus. And so, during
one temporal period, the modulation brings to fire first the
on-cells on one side of this line, then brings to fire the on-cells on
the other side, producing a frequency-doubled aggregate LGN
response.

Unlike their LGN input, cortical neurons in the model behave
like simple cells in the contrast reversal experiment. Figure 3a–c
shows data from an excitatory model neuron located near a
pinwheel center. In Figure 3a both the “in-phase” and “orthogo-
nal phase” membrane potential responses are shown. Here, the
spike and reset mechanism of this neuron has been turned off—
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blocked—so that the waveform of stimulus-modulated potential,
vb , can be seen more easily and compared with the experimental
data (where spikes have been filtered). Thus, the averaged wave-
forms of the membrane potentials in Figure 3a should be com-
pared with those shown in Figure 1C. There is a good degree of
similarity. Extracellular spike counts for this same neuron (spike
and reset now on) are displayed in Figure 3, b and c, as cycle
averaged histograms, and these are comparable to the simple cell
data in Figure 1A.

Figure 3a–c shows that the computational model captures the
linearity seen experimentally in simple cells. The in-phase re-
sponse is predominantly at the fundamental driving frequency.
The spike rate is not modulated at the second harmonic when the
stimulus is at the orthogonal phase, and the membrane potential
shows very little second harmonic (or F2) component in its
orthogonal phase response, consistent with experimental
measurements.

Removing corticocortical interactions in the model
To study the effect of lateral corticocortical interactions in the
model, we shut them off and observed the consequences. Figure
3d–f shows the results of a simulation with all network interac-
tions shut off but with the LGN and noise terms the same as in the
full network simulation shown in Figure 3a–c. For the orthogonal
phase case, notice the large amplitude of the second harmonic in
both the spike rate response and the membrane potential. This
second harmonic response is inherited from the LGN input (as
seen in Fig. 2 in the orthogonal phase LGN stimuli).

The in-phase response of the uncoupled neuron in Figure 3d
has a very large peak spike rate relative to that of the fully
coupled network. This result indicates the presence of very strong
corticocortical inhibition in the fully coupled network.

The responses of an uncoupled model neuron are much larger
than seen in the living cortex, because of the removal of strong
inhibition in the model. Another approach to cortical modeling is
to choose different input and internal noise parameters for the
uncoupled model neurons to fit the background and peak firing
rates of the real cortex. We did this and investigated the responses
of what we called a “feedforward” neuron with much weaker
LGN drive (glgn) and stochastic background (fEE , fEI) than in the
full model. In this case the LGN drive and the means and SDs of
the noise were adjusted downward, as follows: now g0 5 10 sec21,
fEE
0 5 fIE

0 5 6 6 6 sec21, and fEI
0 5 fII

0 5 45 6 25 sec21. The results
of the simulation for the feedforward neuron are shown in Figure
3g–i. Compared with both the responses of the feedforward and
uncoupled neurons, the membrane potential of the fully coupled
neuron has a much smaller F2 component, because of corticocor-
tical interactions.

Mechanisms of linearization
To understand the mechanisms by which the model cortex pro-
duces simple cells, we return to the governing equation for the jth
cortical excitatory cell, and write it as:

dv j

dt
5 2g T

j ~t!v j 1 I D
j ~t!, (5)

where

g T
j ~t! 5 l 1 g lgn

j ~t! 1 g EE
j ~t! 1 g EI

j ~t! (6)

I D
j ~t! 5 ~ g lgn

j ~t! 1 g EE
j ~t!!VE 2 g EI

j ~t!uVIu. (7)

Figure 2. In the model, the conductance received by the jth cortical
neuron from the LGN, g lgn

j (t): From contrast reversal gratings (at pre-
ferred orientation, 100% contrast, optimal spatial and temporal frequen-
cies). Responses to nine different grating spatial phases (f 5 fP

j 1 ip/8,
i 5 0, 1, 2, . . . , 8) are shown. One thick curve is the maximal “in-phase”
case (f 5 fP

j ); and the second thick curve is the minimal “orthogonal
phase” case (f 5 fP

j 1 p/2). For contrast reversal results, the time axis
has been translated so that t 5 0 corresponds to the initial arrival of
excitations in V1 from the LGN. On the right side of the figure, the
different response waveforms have been separated vertically to corre-
spond to the data format of Figure 1.

Figure 3. Responses in the model to in-phase and orthogonal phase, 4
Hz contrast reversal gratings (at 100% contrast, preferred angle and
optimal spatial frequency), for an excitatory neuron near a pinwheel
center. The lef t column (a–c) shows responses for a representative fully
coupled neuron, and the middle column (d–f) when this neuron is uncou-
pled from the network. The right column (g–i) shows responses for a
feedforward uncoupled neuron, for which the background mean and
noise, and the LGN drive, have been adjusted downward to give spike
rates in a normal range. The first row (a, d, g) shows cycle-averaged
membrane potentials, with spike and reset blocked. Cycle-averaged spike
histograms (when spikes are not blocked) are shown below the membrane
potentials [in-phase (b, e, h) and orthogonal phase (c, f, i)]. The cycle
averages were computed over 24 cycles of the stimulus. Dashed horizontal
lines are the background responses.
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Here gT
j is the total conductance and is the inverse of an effective

“integration time” for this neuron. We call ID
j the difference

current, because it is the difference of currents generated by the
excitatory and inhibitory conductances. As the membrane poten-
tial v j was normalized by the difference between resting and
threshold potential, it is dimensionless. Furthermore, having
scaled by the fixed membrane capacitance, both the total conduc-
tance gT and difference current ID have units of sec21. We now
study these two quantities.

The total conductance
The total conductance gT , at in- and orthogonal phases, is shown
in Figure 4, a and b, as a function of time within the cycle of
contrast reversal. This figure is from data for the fully coupled
model neuron of Figure 3a–c. There are two key points to note:
(1) the conductance gT is large, exceeding 400 sec21 under
stimulation. The model is working in this high conductance
regime to achieve known properties of the biological visual cor-
tex: stability, high responsiveness, and relatively high stimulus
selectivity (McLaughlin et al., 2000). Indeed, large conductances
have been measured under visual stimulation in the cat visual
cortex (Borg-Graham et al., 1998; Hirsch et al., 1998). One can
calculate from Equation 5 that the high conductance implies that,
when spikes are blocked, the membrane potential vb

j is well
approximated by:

v b
j < I D

j /g T
j (8)

We find numerically that this equality holds in very good approx-
imation for the cycle averaged quantities, that is,

v# b
j < I# D

j /g# T
j , (9)

where f#(t) 5 N21 (n50
N21 f(t 1 2pn/v). (Henceforth we drop the

overbar, and assume it, unless stated otherwise.) A conclusion
from this analysis is that one can understand the behavior of the
membrane potential by studying the dependence of ID and gT on
the visual stimuli. And (2), as can be seen in Figure 4, the
conductance gT has a waveform in response to contrast reversal
that is highly distorted and, in particular, contains a large F2

component at the orthogonal phase.
Of course the origin of these features lies in the constituent

conductances that make up gT. These conductances also comprise
ID , which we now consider.

The difference current
Plots of the difference current ID , together with its constituent
currents from Equation 7, are shown in Figure 5. ID and its

components are shown at both the in-phase (a) and orthogonal
phase (b) for contrast reversal stimulation. The current contrib-
uted by the LGN drive is graphed in green, the corticocortical
excitatory current is graphed in red, and the corticocortical in-
hibitory current is graphed in blue. From Equation 7 the differ-
ence current ID (graphed in black) is simply the sum of these
three currents.

Again, there are key points to note: (1) Figure 5b shows that
corticocortical currents, whether at in- or orthogonal phase, have
primarily second harmonic distortions, with inhibitory corticocor-
tical currents significantly larger than excitatory. (2) By compar-
ing Figure 5, a and b, it is clear that the corticocortical currents
are mostly insensitive to the spatial phase of the grating. And (3),
it is consequently only the LGN drive that provides the large
modulation at the first harmonic in both gT and ID for the in-phase
stimulus.

It is interesting to compare the components of the conductance
for the contrast reversal experiment at orthogonal spatial phase.
This is displayed in Figure 6. There it can be seen that the
corticocortical inhibitory conductance of the model is the pre-
dominant component. This figure also shows that the inhibitory
conductance is stronger for neurons far from the pinwheel
singularities.

What underlies the absence of modulation of the membrane
potential vb at orthogonal phase? Recall that at orthogonal phase,
the total conductance gT is modulated at F2. This modulation is in
phase with the F2 modulation of the difference current ID , as is
evident in Figure 5b. Then vb ' ID /gT is approximately con-
stant in time because ID and gT are approximately propor-
tional. And the proportionality of ID and gT is partly a conse-
quence of the fact that corticocortical inhibition is the
predominant term in gT.

Thus, simple-cell intracellular responses occur in the model
because its corticocortical conductances have significant F2 mod-
ulations that cancel the F2 coming from the input. But why are
such modulations present in the cortex? The reason is that the jth
neuron receives spikes from many other cortical neurons, each of
which is responding individually in a manner sensitive to the
phase of its own LGN drive. This individual phase dependence
arises because each of these cortical neurons is driven by LGN
excitation, and each summed LGN drive will have its own tem-
poral waveform that will be one of those sketched in Figure 2.
The excitation of each LGN cell is maximal at 1/4 or 3/4 temporal
cycle. Because the corticocortical input to the jth neuron is an
average over many such phase-sensitive responses, some of which
peak at 1/4, some at 3/4 cycle, this results in a total corticocortical
conductance, which peaks at both the 1/4 and 3/4 temporal cycle,
and consequently has significant F2 content. In summary, the
corticocortical modulations have large, phase-insensitive, F2 mod-
ulations because the isotropic cortical architecture of the model
allows an averaging over the activity of many cortical neurons,
and thus, indirectly averages over the many preferred spatial
phases of the LGN input [as suggested by the results in DeAngelis
et al. (1999)], which peak at 1/4 and 3/4 cycle. This “phase
averaging” by the network is similar to that used in a model for
complex cells (Chance et al., 1999). It should be emphasized that
although we have invoked phase averaging as the mechanism for
producing frequency-doubled cortical input, this state of cortical
activity arises from the dynamics of the system in a way consistent
with its architecture. It is not imposed a priori.

Figure 4. The total conductance for the in-phase stimulus (a), the or-
thogonal phase stimulus (b), and the blank stimulus (c). The cycle aver-
aged conductance g#T (averaged over 24 cycles) is shown as a thick gray
curve, superimposed on the (less smooth) instantaneous conductance gT
over one cycle (4 Hz contrast reversal stimulus). These are simulations for
the near neuron in the fully-coupled network in Figure 3.
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Drifting grating stimulus
So far, we have analyzed the response of the model to contrast
reversal. We also studied the responses of the model to other
stimuli, in particular drifting sine gratings that have also often
been used to characterize simple and complex cells (Movshon et
al., 1978; Spitzer and Hochstein, 1985; De Valois et al., 1982). As
shown in Figure 7, the spike rate and (blocked) membrane po-
tential of a model neuron are modulated approximately sinusoi-
dally when a sine grating at the optimal orientation is drifted over
the receptive field of the neuron, as seen in real neurons. As also
shown in Figure 7, the total conductance gT is also modulated
sinusoidally at the drift rate of the grating but has a large DC
offset. The modulation arises primarily from the modulation in
the excitatory conductance gE , while the offset arises from the
inhibitory conductance gI , which is essentially unmodulated but
elevated over its background value of 180 sec21. The corticocor-
tical contribution to gE , like gI , is also mostly unmodulated (data
not shown). This is consistent with the cortical excitatory and
inhibitory conductances of the model in response to contrast
reversal, shown in Figure 6. The same phase averaging that
produces spatial phase insensitivity of the inhibitory conductance,
and current, to contrast reversal also causes no modulation (but
an elevated average level) during stimulation with a drifting
grating. This is an important consideration in comparing our
model with “push–pull” models, as discussed below.

Two predictions of the model
There are two predictions that are revealing about the mode of
action of the model. The first prediction concerns a greater
nonlinear temporal modulation expected in corticocortical con-
ductances for neurons farther from pinwheel centers. This is a

Figure 6. Constituent conductances for the near and far neurons illus-
trated in this paper, at the orthogonal spatial phase of contrast reversal.
The LGN input excitation is the lowest thin curve. Near corticocortical
excitation and inhibition are remaining thin curves; far curves are thick.
Note the large inhibitory components of the conductances and that the far
neuron has significantly larger F2 modulation in its inhibitory conduc-
tance than does the near neuron.

Figure 5. Cycle-averaged currents (averaged over 24 cycles) comprising I#D , for an excitatory neuron in the coupled network, in response to in-phase (a)
and orthogonal phase (b) stimulus. Plotted are the LGN ( green), cortical excitatory (red) and cortical inhibitory (blue), and grand total (black) currents. Also
plotted are the mean values of the excitatory (red dotted) and inhibitory noises (blue dotted), and total background current (black dotted line).
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consequence of the lateral coupling having length scales well
below the width of the orientation hypercolumn. The second is a
prediction that the F2 component in the membrane potential of an
individual neuron should get larger when the membrane is hy-
perpolarized with current.

The first prediction is illustrated in Figure 8. These are data
from the same network simulation as in Figure 3 but from a
different model neuron, one located far from a pinwheel center.
These responses should be compared with Figure 3a–c for a
neuron near the pinwheel. There is an overall resemblance in the
spike rate waveforms between the two neurons in the model, but
there is a significant difference in intracellular response: the
neuron in Figure 8 has an evident F2 component in its membrane
potential response at orthogonal phase. The F2 component in this
cortical cell is opposite in sign from the LGN drive. It is caused
by inhibition, which is so strong in this neuron to this stimulus
that it overrides the sources of excitation. The model predicts
there should be strong inhibition in far neurons, as is evident in
Figure 6. In the contrast reversal experiment, only one spatial
grating at one orientation is exciting the cortex. This means only
one spoke of the pinwheel is being driven hard, most especially by
the LGN input near the maximal in-phase case. (Along the spoke
at orthogonal preferred angle, the LGN input is relatively phase-
insensitive and of smaller amplitude.) Each neuron in the model
receives its inhibitory input predominantly from cortical neurons
within a 100 mm radius. Far from the pinwheel center, near the
spoke that is excited maximally by the orientation of the grating
stimulus, this disk of inhibitory input covers many excited neurons

of similar orientation preference. But near the pinwheel center,
where many preferred orientations are represented, the disk then
covers a smaller fraction of neurons well excited by this one
orientation, and so the summed inhibition is relatively weaker.

A second prediction concerns changes in the response of a
simple cell after injection of a constant transmembrane current.
The F2 component of the membrane potential of a neuron de-
pends on extrinsic current that polarizes the membrane. Figure 9
shows the membrane potential of the model neuron that was used
in Figure 3, at the orthogonal phase, for five different choices of
a constant holding current Ihold. As this current becomes more
negative, there is an increasing temporal modulation at F2 that is
approximately linear with Ihold. Indeed, the subthreshold poten-
tial is well described by the large conductance approximation v '
ID /gT 1 Ihold/gT. For this neuron, ID /gT is approximately constant
(Fig. 3a), whereas Ihold/gT contributes an F2 term from gT that
grows as Ihold becomes more negative. Similarly, other predictions
of the model could be tested experimentally: for values of the
holding current for which the potential is subthreshold, one could
use linear regression to directly estimate the time-dependent total
conductance gT (Borg-Graham et al., 1998; Hirsch et al., 1998), as
well as its excitatory and inhibitory components (assuming Eqs. 6
and 7). In this way the presence and nature of F2 components
could be checked experimentally. In particular, by using visual
stimuli with different spatial phases, the phase (in)sensitivity of
corticocortical inhibition could be examined.

DISCUSSION
The importance of simple cells
Our work establishes that the linear behavior of simple cells
arises as a consequence of network activity. However, this leads
one to ask why does the biological cortical network seem to have
this linearity as a goal? The generally accepted view is that, for
visual perception, cortical cells must resolve and represent key
spatial properties such as surface brightness and color and the
perceptual spatial organization of a scene that is the basis of

Figure 7. Responses to drifting gratings. This stimulus was a drifting
sinusoidal grating at optimal spatial frequency and orientation, at a drift
rate of 8 Hz and 100% contrast. From lef t to right, the panels shown are
cycle-averaged spike rate, blocked membrane potential, total conduc-
tance, excitatory conductance, and inhibitory conductance.

Figure 8. Responses to in-phase and orthogonal phase, 4 Hz contrast
reversal gratings (at 100% contrast, preferred angle and optimal spatial
frequency), for a neuron far from a pinwheel center. The format for this
figure is the same as for Figure 3. The cycle-averaged membrane potential
is shown, with spike and reset blocked, as in Figure 3, and below it are the
cycle-averaged spike rates for in-phase and orthogonal phase stimuli,
respectively. The cycle averages were computed for 24 cycles.

Figure 9. Membrane potential at different holding currents for a neuron
near a pinwheel center. The five modulated waveforms are membrane
potential responses to sinusoidal contrast reversal in the orthogonal phase
condition. These are averaged response waveforms to 24 cycles of stim-
ulus contrast reversal. The top curve is the potential when there is no
extrinsic current. The curves below that are, from top to bottom, measured
with a constant hyperpolarizing current of 2100, 2200, 2400, 2600
sec 21. The dashed horizontal lines for each curve are average values of the
membrane potential when the uniform background is shown under the
same conditions.

Wielaard et al. • How Simple Cells Are Made J. Neurosci., July 15, 2001, 21(14):5203–5211 5209



form. The existence of simple cells that respond selectively to
spatial phase and monotonically to signed contrast are required
for the representation of such surface properties and perceptual
organization. The large body of work on spatial pattern vision
requires linear spatiotemporal neural mechanisms to explain how
patterns are detected separately and in combination (for review,
see Graham, 1989; Wandell, 1995). Also, theories of color vision
implicitly assume the existence of simple cells whenever they
postulate the necessity of numerical computations of (signed)
edge contrast (for review, see Wandell, 1995). Scene organization
requires computation of depth order that in turn depends on
computation of stereoscopic depth and also of pictorial occlusion.
Both stereo (Anzai et al., 1999a,b) and occlusion (Anderson,
1997) computations require cortical representation of signed edge
contrast. Furthermore, the perception of salient contours also has
been shown to be sensitive to spatial phase and thus contrast sign
(Field et al., 2000). Such neural computations would seem to
require the linearity that only simple cells provide. These con-
siderations lead to the conclusion that visual perception needs
simple cells for basic functions.

Simple and complex cells were first discovered in cat visual
cortex (Hubel and Wiesel, 1962), and their existence confirmed
subsequently in macaque V1(Hubel and Wiesel, 1968;De Valois
et al., 1982). Simple cells have been found in the primary visual
cortex of many other species of mammals: owl monkeys (O’Keefe
et al., 1998), baboons (Kennedy et al., 1985), tree shrews (Kauf-
mann and Somjen, 1979), rats (Burne et al., 1984; Girman et al.,
1999), mice (Drager, 1975), rabbits (Glanzman, 1983), and sheep
(Kennedy et al., 1983). Their ubiquity in the animal kingdom may
be an indicator of their importance.

Neurons in other sensory cortices have linear signal processing
properties that resemble those seen in simple cells of the visual
cortex. Some neurons in the primary auditory cortex have been
characterized as linear transducers of auditory patterns (Kowal-
ski et al., 1996). Similar characterizations in the primary somato-
sensory cortex have also identified linearly summing neurons with
receptive fields similar in many ways to visual simple cells (Di-
Carlo and Johnson, 2000). The same processes that give rise to
the creation of simple cells in visual cortex will be important for
understanding how they may be produced elsewhere by the cor-
tical circuitry.

Mechanisms for the production of simple cells
Our computational model of layer 4Ca in macaque V1 is a
nonlinear network of I&F neurons, driven by LGN input, which
is itself nonlinear. Yet, the neurons of the model respond in an
approximately linear manner, which is characteristic of simple
cells, including (1) a sensitive dependence of the responses of the
neurons on spatial phase or position and (2) very little presence of
nonlinear distortion (such as second temporal harmonics) in the
responses of the neurons. Stimulation by contrast reversal of a
standing grating pattern, with the phase of the grating orthogonal
to the preferred phase of the simple cell, constitutes a most
stringent test of this linearity. Although the temporal profile of
the total LGN excitatory drive to each neuron in the network
contains significant second harmonic content, the membrane po-
tential of the output of each cell (as measured intracellularly)
contains little second harmonic distortion.

Given the nonlinearity of the full network and of the LGN
drive, the linear behavior of simple cells is not a simple conse-
quence of feedforward convergence. The active presence of the
corticocortical interactions in the network significantly reduces

the second harmonic content of the membrane potential of the
simple cell, when compared with its temporal waveform in the
absence of network interactions. The work reported here has
identified the two properties of the network model that are
responsible for this linearization of the response: (1) phase aver-
aging of the individual corticocortical inputs to the cell, which
collectively produce a frequency-doubled temporal component
(as used in Chance et al., 1999); (2) strong inhibition, so that
corticocortical inhibitory input tends to cancel the frequency-
doubled excitatory input from the LGN. These two properties
produce the linear responses of simple cells within the model
cortex, and they are likely to be the key network mechanisms that
cause the linear behavior of simple cells in the biological cortex.
Both phase averaging and strong inhibition are caused by the
nature of corticocortical connections in the model.

This model of simple cells as resulting from the cancellation of
nonlinear excitation by strong nonlinear inhibition can account
for many experiments. It explains why there is a large increase in
conductance in a simple cell both at the onset and offset of a
flashing bar in the receptive field of a simple cell (Borg-Graham
et al., 1996, 1998). As the measurements of Borg-Graham et al.
(1996, 1998) indicate, the conductance increase is dominated by
the inhibitory conductance, as in our model, and corticocortical
inhibition is on–off as in the model. The model also provides a
convincing explanation why pharmacological weakening of inhi-
bition would make simple cells appear to be complex (Sillito,
1975; Frégnac and Shulz, 1999; Murthy and Humphrey, 1999),
because weakening the inhibition should prevent it from cancel-
ling the nonlinear component of excitation. The data of Murthy
and Humphrey (1999) are particularly relevant. They stimulate
their simple cells with grating contrast reversal as in our modeling
and observe marked frequency doubling in spike rates of simple
cells when bicuculline is infused.

Our model is very different from previous attempts to explain
cortical linearization in terms of a “push–pull” model (Palmer
and Davis, 1981; Tolhurst and Dean, 1990) that requires direct or
indirect phase-sensitive inhibition from the LGN. Direct inhibi-
tion from LGN to cortical neurons is ruled out by anatomy;
LGN-to-cortex inhibitory synapses do not exist. One might at-
tempt to preserve the push–pull concept by postulating that
disynaptic inhibition from inhibitory neurons in the cortex could
provide phase-sensitive inhibition (as instantiated in the model of
Troyer et al., 1998). But then one would have to explain how
phase-sensitive inhibition is consistent with the anatomy of inhib-
itory interneurons in the cortex: such neurons receive many
synaptic connections from other cortical cells (Lund, 1987), and
there is apparently indiscriminate arborization of axonal branch-
ing within the cortex (Fitzpatrick et al., 1985). Nevertheless,
previous physiological studies have been interpreted to mean that
there is phase-sensitive or push–pull inhibition somehow gener-
ated intracortically (Hirsch et al., 1998; Anderson et al., 2000).
However, much of this evidence has been indirect.

There is recent evidence on this point (Anderson et al., 2000).
From measurements of simple cell responses to drifting gratings,
the authors infer that the temporal modulation of synaptic inhi-
bition in opposition to the modulation of synaptic excitation is
indicative of push–pull interactions between inhibition and exci-
tation. However, scrutiny of the measurements in Anderson et al.
(2000) indicates that there usually is a large phase-insensitive
component of the inhibitory conductance, consistent with the
phase-insensitive inhibition that is observed in the response of
our model to drifting gratings (Fig. 7). Furthermore, the authors

5210 J. Neurosci., July 15, 2001, 21(14):5203–5211 Wielaard et al. • How Simple Cells Are Made



saw modulation of the measured corticocortical inhibition primar-
ily when the cell was above threshold and firing. It is possible that
their measurements of synaptic conductances were made inaccu-
rate by the spiking. Other direct intracellular measurements by
Borg-Graham et al. (1998) indicate that inhibition in simple cells
is more often spatial phase-insensitive than phase-sensitive (or
push–pull), as Borg-Graham et al. (1998) indeed noted. Our
model produces unmodulated cortical inhibition in response to
drifting gratings because neurons are excited by inhibitory neigh-
bors of different spatial phase preference. In this way our model
differs from that of Troyer et al. (1998), whose couplings are
explicitly phase-specific. Perhaps the real cortex has inhibitory
neurons that are neither wholly phase-insensitive as in our model,
nor wholly phase-sensitive as envisioned in push–pull models, but
have phase sensitivity somewhere between all-or-none. However,
to explain the linearization of cortical simple cell responses and
to be consistent with anatomy, our model with spatial-phase-
insensitive cortical inhibition seems closest to the best evidence
available now.
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