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An effective kinetic representation of
fluctuation-driven neuronal networks with application
to simple and complex cells in visual cortex
David Cai*†, Louis Tao*‡, Michael Shelley*§, and David W. McLaughlin*§

*Courant Institute of Mathematical Sciences and §Center for Neural Science, New York University, New York, NY 10012

Contributed by David W. McLaughlin, March 24, 2004

A coarse-grained representation of neuronal network dynamics is
developed in terms of kinetic equations, which are derived by a
moment closure, directly from the original large-scale integrate-and-
fire (I&F) network. This powerful kinetic theory captures the full
dynamic range of neuronal networks, from the mean-driven limit (a
limit such as the number of neurons N3�, in which the fluctuations
vanish) to the fluctuation-dominated limit (such as in small N net-
works). Comparison with full numerical simulations of the original I&F
network establishes that the reduced dynamics is very accurate and
numerically efficient over all dynamic ranges. Both analytical insights
and scale-up of numerical representation can be achieved by this
kinetic approach. Here, the theory is illustrated by a study of the
dynamical properties of networks of various architectures, including
excitatory and inhibitory neurons of both simple and complex type,
which exhibit rich dynamic phenomena, such as, transitions to bi-
stability and hysteresis, even in the presence of large fluctuations. The
implication for possible connections between the structure of the
bifurcations and the behavior of complex cells is discussed. Finally, I&F
networks and kinetic theory are used to discuss orientation selectivity
of complex cells for ‘‘ring-model’’ architectures that characterize
changes in the response of neurons located from near ‘‘orientation
pinwheel centers’’ to far from them.

Neuronal networks, whether real cortical networks (1, 2) or
computer models (3, 4), frequently operate in a regime in

which spiking is caused by irregular temporal f luctuations of the
membrane potential. At this ‘‘cortical operating point,’’ the
mean membrane potential (e.g., obtained by averaging over
many voltage traces under the same stimulus condition or by
averaging locally in time), does not reach firing threshold. Thus,
the spiking process is f luctuation-driven.

A theoretical challenge is to construct efficient and effective
representations of such fluctuation-driven networks, which are
needed both to ‘‘scale-up’’ computational models to large enough
regions of the cortex to capture interesting cortical processing (such
as optical illusions related to ‘‘contour completion’’), and to gain
qualitative understanding of the cortical mechanisms underlying
this level of cortical processing. In this article, we develop such a
construction: Starting with large-scale model networks of integrate-
and-fire (I&F) neurons, which are sufficiently detailed for modeling
neuronal computation of large systems but are difficult to scale-up,
we tile the cortex with coarse-grained (CG) patches. Each CG patch
is sufficiently small that the cortical architecture does not change
systematically across it, yet it is sufficiently large to contain many
(hundreds) of neurons. We then derive an effective dynamics to
capture the statistical behavior of the many neurons within each CG
patch in their interaction with other CG patches. This representa-
tion is achieved by a kinetic theory, accomplished by a closure. (For
earlier probabilistic representations, see, e.g., refs. 4–18.) This
powerful approach allows for both computational scale-up and
structural insight into the mechanisms of the cortical network. First,
we develop the method for one CG patch and benchmark the
accuracy and validity of this new kinetic theory by comparing its
predictions with the results of full point-neuron simulations for this
CG patch over all dynamic ranges, from the mean-driven limit (a

limit such as the number of neurons N 3 �, in which the
fluctuations vanish) to the fluctuation-dominated limit (such as in
small N networks).

Further, we illustrate the power of this kinetic theory by using it
to provide qualitative intuition about mechanisms that potentially
underlie the behavior of simple and complex cortical cells in the
primary visual cortex. Classically, neurons in V1 are classified (19)
as ‘‘simple’’ or ‘‘complex.’’ Simple cells respond to visual stimulation
in an essentially linear fashion—for example, responding to sinu-
soidally modulated standing gratings at the fundamental frequency,
with the magnitude of response sensitive to the spatial phase of the
grating pattern. Complex cell responses are nonlinear (with a
significant second harmonic) and are insensitive to phase. The
current interpretation is that the ‘‘simple-complex’’ nature of a
neuron is not an individual cellular property, but rather is a property
of the cortical network (20).

In ref. 21, we studied a large-scale neuronal model in which
simple and complex cells arise from the architecture of V1. In this
model, a balance between cortico-cortical input and lateral genic-
ulate nucleus (LGN) drive determines whether an individual model
cell is simple or complex. (Complex cells experience strong cortical
excitation, whereas simple cells are dominated by cortical inhibi-
tion.) This numerical model, although it reproduces many qualita-
tive aspects of both intracellular and extracellular measurements of
simple and complex cell responses, has deficiencies, one of which is
that cells are not sufficiently selective for orientation. Our inter-
pretation is that stronger cortical amplification (i.e., cortical gain)
is needed; however, stronger amplification causes the model cortex
to become unstable to synchrony and oscillations, which can lead to
firing rates that are too large. Within the framework of kinetic
theory, we discuss how the transformation of these instabilities to
near-bistability in a strongly fluctuating dynamic regime may pro-
vide a possible resolution.

Many works exist about stochastic representations of neuronal
networks through probability density functions (pdfs), including
refs. 4–18. The direct lineage for this project begins from the
innovative introduction by Knight et al. (22) of pdfs for the purpose
of efficient representations of large-scale neuronal networks; sig-
nificantly developed by the works of Knight and his colleagues (15,
16, 23), and by those of Nykamp and Tranchina (17, 18), and, in
particular, through the pdf representations in ref. 18 which combine
voltage and synaptic dynamics through conductances. The deriva-
tion of the kinetic representation (a second-moment closure)
derived in our work can be viewed as a realization of a prescription
in ref. 5, in which the authors sketch a closure for a current-based
I&F network driven by a stochastic current as a potential alternative

Abbreviations: I&F, integrate-and-fire; CG, coarse-grained; LGN, lateral geniculate nucleus;
pdf, probability density function; AMPA, �-amino-3-hydroxy-5-methyl-4-isoxazolepropi-
onic acid.
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to the specific dimension-reduction approach pursued in that
article.

Methods
Our large-scale model is a detailed numerical representation of a
small area (1 mm2) of input layer 4C� of primary visual cortex (V1)
of macaque monkey, constrained wherever possible by experimen-
tal measurements from anatomy, physiology, and imaging. This
area contains �O(104) conductance-based, I&F neurons, 75%
excitatory and 25% inhibitory, with both simple and complex cells.
The cortical architecture and the LGN drive (which sets cortical
maps such as that of orientation preference with its four pinwheel
centers within the local patch) are summarized in Fig. 1, and the full
model is described in detail in refs. 21, 24, and 25.

The equations of the model have the general structure

d� P
j

dt
� � gL(� P

j � VR) � gPE
j �t��� P

j � VE�

� gPI
j �t��� P

j � VI�, P � E,I, [1]

whose evolution determines the mth spike time, t m
j , of the jth

model neuron, defined by � P
j (t m

j� ) � VT; � P
j (t m

j � �ref) � VR,
where �ref is the refractory period. Here, the membrane poten-
tials of the excitatory (E) [inhibitory (I)] neurons are denoted by
� E

j (� I
j), where the superscript j � ( j1, j2) indexes the spatial

location of the neuron within the cortical layer. gL, gPE, and gPI

are leaky, excitatory, and inhibitory conductances, respectively.
We use normalized, dimensionless potentials with VI � �2�3,
VT � 1, VR � 0, and VE � 14�3 (24).

The time-dependent conductances arise from the input forcing
(through the LGN), from “noise” to the layer, and from the cortical
network activity of the excitatory and inhibitory populations. They
have the general form:

gEE
j (t) � FEE(t) � �(1 � �j)SEE � SEE

0 	�
k

aj�k�
l

GE�t � tl
k�,

where FEE(t) � �j g lgn
j (t) � f EE

0 (t), and with similar expressions
for g EI

j (t), g IE
j (t), and g II

j (t). SEE denotes the synaptic strength,
aj�k describes the spatial decay of the coupling, and GE(t � tl

k)
denotes the temporal time course. The conductance f PE

0 (t)
denotes random background forcing, and glgn

j (t) denotes the
forcing from the LGN.

The parameter �j � [0, 1] in these equations indicates heuristi-
cally how the distribution of simple and complex cells is set in the
model and characterizes the simple-complex nature of the jth
neuron (with �j � 0 the most complex, �j � 1 the most simple; SEE

0

models weak cortical excitatory couplings for simple cells), by
setting the strength of LGN drive relative to the strength of the
cortico-cortical excitation. The parameter �j is selected randomly
for each neuron, with its distribution determining the distribution
of simple and complex cells within the network (21). (Here, only the
general structure of the model has been summarized; for a detailed
description, see refs. 21, 24, 25.)

Sketch of Derivation of the Kinetic Theory
To reduce this large-scale numerical model, we first partition the
cortical layer with a tiling of CG patches, with each CG patch
sufficiently large to contain hundreds of neurons, yet small
enough that the cortical maps and cortical architecture are
roughly constant throughout that CG patch. Our goal is to
develop an effective description of the dynamics of the neurons
within each CG patch. This description is accomplished by
kinetic equations that govern the evolution of �(�, g; x, t), the
probability density of finding a neuron at time t within the xth
CG patch, with voltage � � (�, � � d�) and conductance g � (g,
g � dg). For computational efficiency and theoretical analysis, it
is of great advantage to further reduce this kinetic theory—a
(2 � 1)-D system in the case of single CG patch. A reduction to
(1 � 1)-D is achieved by a moment closure.

Next, we sketch this kinetic theory and its closure reduction for
a single CG patch. For simplicity, we restrict our description of the
derivation to a purely excitatory network containing only �-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) synapses
and simple cells.

The I&F dynamics for the jth neuron in a CG patch of N
excitatory neurons is:

�
d� j

dt
� ��� j � VR� � g j�t��� j � VE�, [2a]

�
dg j

dt
� �g j 	 f�

l


�t � tj
l� 	

S
N �

l,k
j


�t � tk
l �, [2b]

where � is the ‘‘leakage’’ time constant, � is the time constant of
the AMPA synapse, f is the synaptic strength from the LGN
connections, tj

l is the time of the lth LGN spike, tk
l is the lth spike

time of the kth cortical neuron within the CG patch, and 
(�) is
the Dirac delta function. S represents the cortico-cortical cou-
pling strength. We define the pdf by

���, g; t� � E�1
N�

j�1

N

�
�� � � j�t�	
�g � g j�t�	��, [3]

where the expectation E is taken over all realizations of incoming
Poisson spike trains from the LGN, and over random initial
conditions.

Under the assumptions that (i) N�1  1 and (ii) the summed
spike trains to a neuron from many (N) low-rate cortical spike trains
(assumed to be independent) is Poisson (26), it can be shown

Fig. 1. (a) A schematic illustration of the large-scale model network, indi-
cating the mechanisms by which simple and complex cells are created: simple
cells created by strong LGN input, strong cortical inhibition, together with
randomization of preferred spatial phase of the input (not shown, see ref. 25);
and complex cells created by weak LGN input and stronger cortical excitation.
(b) Optical image of the map of orientation preference, for 1 mm2 of layer 2–3
of macaque V1, containing four pinwheel centers (31, 32). The cells on the
circle are described by our ring model (see Discussion). (c) A schematic illus-
tration of one CG patch located, for example, on a small section of a ring.
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directly from Eq. 2, that �(�, g; t) satisfies the following evolution
equation (see refs. 15 and 17 for similar derivations):

�t� � ���J��, g; t� 	
1
�

�g�g�� 	 �0�t�����, g �
f
�

; t� � ���, g; t��
	 Nm�t�����, g �

S
N�

; t� � ���, g; t��, [4]

where

J��, g; t� � �
1
�

��� � VR� 	 g�� � VE�	 ���, g; t�

is the flux along �, �0(t) is the (temporally modulated) rate for
the Poisson spike train from the LGN, and m(t) is the popula-
tion-averaged firing rate per neuron in the CG patch, deter-
mined by the J-f lux at the threshold to firing:

m�t� � 	
0

�

J��, g; t����VTdg.

The (bracketed) discrete differences in g that appear in Eq. 4
arise from the fact that the time course of g after an incoming
spike is a single exponential (Eq. 2b). (The theory can be readily
generalized to more complicated time courses of conductance.)
For small f and large N, these differences can be approximated
as derivatives, resulting in

�t� � ���J��, g; t� 	
1
�

�g��g � g��t�	� 	 �g
2�g��; [5]

g��t� � �0�t�f 	 m�t�S; �g
2�t� � �0�t�

f2

2�
	 m�t�

S2

2�N
.

[6]

To account for the correlation between conductance and
voltage in fluctuation dynamics, we investigate the evolution of
the marginals and conditional moments:

��g��g;t� � 	
VR

VT

���,g;t�dv, ������;t� � 	
0

�

���, g; t�dg,

[7]

n
�����; t� � 	

0

�

gn��g��; t�dg, n � 1,2,� � �

where �(g��; t) is the conditional pdf, i.e., �(�, g; t) � �(g��;t)�(�)(�; t).
Integration of Eq. 5 over � yields

��t�
�g� � �g��g � g��t�	��g� 	 �g

2�g�
�g��, [8]

which describes the g f luctuations. Under vanishing boundary
conditions at g � 0 and as g3 �, its time-invariant solution can
be approximated by a Gaussian. Fig. 2b shows a comparison of
this Gaussian approximate solution with a numerical simulation
of the original I&F system. Clearly, the reduced Eq. 8 accurately
captures the fluctuations in g.

Integrating Eq. 5 (and g times Eq. 5) with respect to g yields
equations for the marginal �(�) (and the first moment 1

(�)):

�t�
��� � ���U�������	 [9a]

�t1
��� � �

1
�

�1
��� � g��t�� 	 U�����1

��� 	
�2���

����� ����� � VE�����	

	
�� � VE�

�
���

2���, [9b]

where �2(�) � 2
(�) � [1

(�)]2 is the conditional variance and
U(�) � ��1 [(� � VR) � (� � VE)1

(�)]. Eqs. 9a and 9b are not
closed because the equation for the first moment 1

(�) depends on
the second moment 2

(�). Closure is achieved through the as-
sumptions (5): ���2(�) � 0 and �2(�) � �g

2, yielding a closed pair
of (1 � 1)-D kinetic equations for �(�) (�; t) and 1

(�) (�; t):

�t�
��� � ���U�������	 [10a]

�t1
��� � �

1
�

�1
��� � g��t�� 	 U�����1

��� 	
�g

2

����� ����� � VE�����	

[10b]

These kinetic equations are solved for VR � � � VT, under
two-point boundary conditions in �, which are derived from the
fact that the flux J(�, g) across firing threshold VT is equal to the
flux at reset VR, adjusted for a finite refractory period. This
reduction in dimension from (2 � 1)-D to (1 � 1)-D yields a
significant computational savings in addition to the savings
achieved by the pdf representation itself (see below).

This derivation extends to more realistic networks containing
excitatory and inhibitory neurons of both simple and complex types,
with AMPA excitatory synapses, and with coupling between many
CG patches. Results in the next section are for such networks.
Coupling between CG patches is accomplished by replacing Eq. 6
with

g��t; x) � �0(t; x)f 	 S	a�x � x�)m(t; x�)dx�, [11a]

�g
2(t; x) � �0(t; x)

f2

2�
	

S2

2�N 	a2�x � x�)m(t; x�)dx�, [11b]

where x denotes the coarse-grained spatial label and a(x)
described a smoothed network coupling aij.

We note that, because the AMPA timescale � is much smaller
than the leakage timescale �, a further reduction could be achieved
by coarse-graining in time, resulting in an effective dynamics, which
might be useful for analytical insight. (However, it turns out to be
not very accurate quantitatively, as can be seen below.) The case of
� � 0 has been considered in the literature (see, e.g., refs. 13, 17,
23, and 27). Here, as the limit �3 0, recalling that ��g

2 � �0(t)f 2�2 �
m(t)S2�(2N) � O(1), Eq. 10b reduces to 1

(�)(�; t) 
 g�(t) � ��g
2���(�)

�� [(� � VE)�(�)], which on insertion into Eq. 10a yields a closed
equation for �(�) (�; t) only:

��t�
��� � �� � ��1 	 ��t��� � �VR 	 ��t�VE		����

	
��g

2

�
�� � VE�2�������, [12]

where � (t) � g�(t) � ��g
2��. We can show that this Fokker–Planck

equation is consistent with a white-noise limit of the underlying
stochastic processes of conductance. Notice that, as the number
of neurons in the CG patch N3 � and f3 0, then ��g

23 0; thus,
the fluctuations drop out of Eq. 12, and the dynamics reduces to
‘‘mean-driven’’ dynamics (3, 9, 18, 23).
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Results
We now compare this kinetic theory with full numerical simu-
lations of an I&F network. We find that it is surprisingly
accurate, as clearly illustrated in Fig. 2. We emphasize that there
are no adjustable free parameters in these comparisons. Two
additional points are worth noting: (i) At small average input
conductance Ginput � �0f, a regime in which fluctuations dom-
inate, the mean-driven theory (N 3 �, f 3 0) does not at all
capture the population response; (ii) Had we used the diffusion
limit, i.e., Eq. 12, we would not be able to achieve nearly the same
accuracy (see the dash-dotted line in Fig. 2) for physiological
values of �.

We further illustrate the effectiveness of the kinetic dynamics in
describing fluctuation-driven behavior by considering a yet smaller
network of only N � 16 excitatory cells with relatively strong
cortico-cortical connections. For this small N, the network is very
much fluctuation-driven. The dynamics of this excitatory network
exhibits bistability with a sharp transition as the average input
conductance Ginput is increased.¶ Fig. 3 shows the bifurcation
diagram for the firing rate m as a function of Ginput. The theoretical
prediction of the kinetic theory is compared with those of numerical
simulation. The agreement is again extremely good, even for such
a small number of neurons. Again, we note that the mean-driven
theory (dotted line) does not correctly predict the location of
switch-up of the bifurcation diagram.

As expected in refs. 5, 22, and 28, in addition to having accuracy,
the kinetic representation (Eq. 10) is far more efficient computa-
tionally than the full I&F network. The reduction is 2-fold: (i) the
pdf representation yields a great computational savings by elimi-
nating the need of running either for very long times or for many
ensembles of the same I&F network to reduce the statistical error
in computing firing rates; (ii) The reduction from the (2 � 1)-D
systems (Eq. 4) to the (1 � 1)-D PDEs (Eq. 10) provides really

significant savings. For example, to achieve a rate computation
within 1% accuracy for a network of 100 neurons, a reduction of
3–4 orders of magnitude in computation work can be easily
obtained.

Next, and for the remainder of this section, we turn to a neuronal
network containing hundreds of neurons (75% excitatory and 25%
inhibitory) with equal proportions of simple and complex cells.
Here, simple and complex cells are modeled by the following
network architecture: Simple cells are driven externally, in addition
to their inputs from all other cells, whereas complex cells receive
inputs only from all other cells and are not driven externally. The
network is modeled by four coupled kinetic equations of excitatory�
inhibitory simple and complex populations. We emphasize that
here the inhibitory population also fully incorporates fluctuations.
Fig. 4 shows the firing rate diagrams (m vs. Ginput) for the two
excitatory populations, one simple and one complex, as predicted
by our kinetic theory. Also shown is the large-N, mean-driven limit,
whose bifurcation diagram shows a complicated bistable, hysteretic
structure, as the simple and complex neuronal types jump together
between their respective lower and upper branches. This structure
is in marked contrast to the small-N network limit. It is important
to note that for the network with this particular cortical connection
strength, the fluctuations are so strong any apparent sharp bifur-
cation�hysteresis no longer exists in the small-N case.

Fig. 5 shows firing rate m vs. Ginput relations for three different
values of cortico-cortical excitation strength See

cmplx for complex
neurons in a network containing both excitatory and inhibitory
neurons of both simple and complex type. These response diagrams
compare the predictions of the kinetic theory (in the small-� limit)
with those computed by numerical simulations of an I&F network
and display good qualitative agreement: Fig. 5a shows the theoret-
ical results for excitatory neurons, one simple and one complex,
whereas Fig. 5b shows the same results computed by simulation. As
See

cmplx is increased, these response curves change from no bistabil-

¶Omurtag, A., Kaplan, E., Knight, B. & Sirovich, L. (2001) Annual Meeting of the Association
for Research in Vision and Ophthalmology, April 29–May 4, 2001, Fort Lauderdale, FL,
Program No. 3094 (abstr.).

Fig. 2. Comparison of predictions of the kinetic theory (Eq. 10) with those of
full numerical simulation of the I&F network for a single CG patch with N � 300
neurons with the probability of connection between any two cells being 0.25,
all excitatory, simple type (� � 5 ms, � � 20 ms, S � 0.05, f � 0.01). (a and b)
�(�) (�) and �(g) (g), respectively. Solid curves are from I&F simulations and circles
from kinetic theory. (c) The average population firing rates per neuron, m, as
a function of the average input conductance, Ginput for � � 5 ms (dashed) and
� � 0 ms (dash-dotted). (See also refs. 3, 5, and 23.)

Fig. 3. Bifurcation diagrams for the firing rate m versus average input
conductance Ginput, which compare numerical simulation results with the
prediction of the kinetic theory (Eq. 10 in the small �-limit), for a CG patch
containing a small number (N � 16) of excitatory neurons with all-to-all
connections (� � 5 ms, S � 0.45, �ref � 3 ms). Theory (thick dashed line) shows
lower and upper branches in the bistable region, with a sharp transition from
A to B. Simulation results are obtained by slowly ‘‘ramping’’ Ginput, first up,
then down. Arrows indicate the results of the simulations with respect to
ramping Ginput up and down. (Inset) The transition region for the branch
moving up from A to B only, for different realizations of input Poisson spikes.
Dotted line (with a jump at Ginput � 13.5) is the prediction of the mean-driven
theory.

7760 � www.pnas.org�cgi�doi�10.1073�pnas.0401906101 Cai et al.



ity�hysteresis, through critical response, to bistability�hysteresis at
strong See

cmplx.

Discussion
These results suggest to us that, depending on cortical connec-
tion strength, complex cells that are well selective for orientation
may be the result of the network response moving across the
critical region of ‘‘near-bistability.’’ Here, we describe some
further evidence in this direction from a kinetic theory for ‘‘ring
models’’ (16) as one example of the utility of kinetic theory for
insight into possible cortical mechanism.

We use our large-scale I&F model of input layer 4C� (21, 24, 25),
to motivate a family of idealized I&F ‘‘ring models,’’ indexed by the
radius of the ring measured from a pinwheel center. As discussed
above these I&F networks consist of 75%�25% excitatory�
inhibitory neurons with the coupling range of inhibitory neurons
shorter than that of excitatory neurons. The simple cells are all
driven by the LGN, but with weak cortico-cortical excitation,
whereas the complex cells, which receive no LGN drive, have
stronger cortico-cortical excitation. This simple�complex architec-
ture is shown schematically in Fig. 1a. These ring models are
idealizations of the large-scale network, with the I&F neurons
restricted to reside on a circle centered on an orientation pinwheel
center (see the white circle in Fig. 1b) (16, 17, 29). In the models,
the cortico-cortical coupling strengths are Gaussians falling off with
distance between the neurons—cortical distance in the case of the

large-scale model and angular distance in the ring models. The
radius of the ring is used to convert the cortical coupling lengths of
neurons in the large-scale model to coupling lengths in the angle �
along the ring, with broad coupling lengths in � for rings of small
radii (whose neurons reside close to the pinwheel center), and
narrow lengths in � for rings of large radii (whose neurons reside far
from the pinwheel center).

We drive these models with drifting gratings set at an angle of
orientation �. Fig. 6 shows orientation tuning curves [firing rate

Fig. 4. Bifurcation diagrams for excitatory firing rate m versus average input
conductance Ginput predicted by the kinetic theory for a network, 1�2 of which
are simple and 1�2 of which are complex, and 3�4 (1�4) of which are excitatory
(inhibitory). The large figure displays the large-N limit, and the inset is the
finite (N � 75) fluctuation-driven result; in each case, firing curves are shown
for both simple (dotted or dash-dotted) and complex excitatory (dash or solid)
cells. Note the complicated structure of the mean-driven (N3 �) case, which
results from an interplay between the bifurcations of the simple and complex
cells. In more detail: at point A, simple cells reach firing threshold in terms of
Ginp, and begin to fire. With increasing Ginp, the firing curve follows A3 D3
B. At the same time, because of the increasing input from the simple cells, the
complex cells reach firing threshold at point B� in terms of Ginp and abruptly
jump from zero firing rate to point C�. Because of this jump, the firing rate of
simple cells jumps from B to C. If Ginp is decreased, the firing curve of complex
cells follows C� 3 D� and shut off at D�, whereas the simple cells follow the
corresponding firing curve, starting from C and revisiting D. With Ginp further
decreasing, the simple cells trace the firing curve AD backward to point A and
then shut off. The complex cells exhibit a hysteretic loop D�B�C�D�, associated
with the hysteretic loop DBCD for the simple cells. (Inset) The much simplified
firing-rate diagram for the finite population, fluctuation-driven kinetic the-
ory for the network at this particular cortico-cortical connection strength.

Fig. 5. Bifurcation diagrams. Excitatory firing rate m versus average input
conductance Ginput for a neuronal network with random connectivity, con-
taining 400 I&F neurons, 1�2 of which are simple and 1�2 of which are
complex, and 3�4 (1�4) of which are excitatory (inhibitory) with the proba-
bility of connection between any two cells being 0.25. (a) Prediction of our
kinetic theory. (b) Results from numerical simulation of the I&F network. The
figures show results for simple (light lines) and complex (heavy lines) excita-
tory neurons, for three increasing values of the coupling strengths, See

cmplx, of
cortico-cortical excitation for complex type. The theoretical results in a show
a steepening of the curves as See

cmplx is increased, from monotonic, through
critical, to bistable. The corresponding simulation results (b) show the same
behavior with the bistability being manifested in the hysteresis (with transi-
tions indicated by arrows).

Fig. 6. Orientation tuning curves for a ring model containing excitatory and
inhibitory neurons of both simple (dashed) and complex (solid) type, com-
puted from numerical simulations of an I&F network. (a) A mean-driven state
with negligible fluctuations. Note the characteristics of a mean-driven, high-
conductance state: abnormally high firing rates in the complex cell, together
with the very low firing rates of the simple cell; the sharp transition in the
firing rate of the complex cell as a function of �; and the strong synchrony in
the firing patterns of the complex cells (as shown in the raster plot inset). (b)
A fluctuation-driven state. Note the more reasonable firing rates, their more
gradual behavior as a function of �, and the absence of synchrony in the firing
patterns of the complex cells (again shown in the raster plot inset).
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m(�)] for simple (dashed) and complex (solid) cells in two different
ring models, both far from the pinwheel center, but one with weak
fluctuations (Fig. 6a) and the other with stronger fluctuations (Fig.
6b) (achieved by removing slow N-methyl-D-aspartate (NMDA)
excitatory synapses from the network while keeping the cortico-
cortical coupling strength the same.) Note the tuning curves shown
in Fig. 6a display the characteristics of a mean-driven, high-
conductance (30) state with weak fluctuations being driven across
the bifurcation point—characteristics identified through use of the
kinetic representations: very high firing rates of the complex cell,
together with the very low firing rates of the simple cell; very sharp
transitions (in �) in the firing rate of the complex cell; and a strong
synchrony in the firing patterns of the complex cells (as shown in the
raster plot inset). On the other hand, the tuning curves of Fig. 6b
display the characteristics of a fluctuation-driven state: more rea-
sonable firing rates; a more gradual behavior as a function of �; and
the lack of synchrony in the firing patterns of the complex cells
(again shown in the raster plot inset).

Fig. 7 shows results for two ring models [one with a small radius
(Fig. 7 a and d), which is near the pinwheel center, and one with a
larger radius (Fig. 7 b and e), which is far from the pinwheel center];
together with results for the full large-scale 1 mm2 network (Fig. 7
c and f). Fig. 7 a–c shows orientation tuning curves, i.e., m(�),
whereas Fig. 7 d–f shows response diagrams (firing rate m vs. the
strength of the conductance drive). The samples shown are complex
cells. In the response diagrams, heavy bold curves show behavior as
the driving strength is increased, whereas regular curves depict
responses as driving strength is decreased. The dashed lines in Fig.
7 a and b depicts the results from the kinetic theory extended to the
ring model with excitatory, inhibitory, simple, and complex neu-
rons. In this extension, the kinetic equations for the coarse-grained
patches are coupled according to Eq. 11, with the angular variable
� replacing the spatial variable x as the labeling of the CG patches
in the ring model.

Note that (i) each of these three networks is operating in a
fluctuation-driven regime; (ii) for the ring of small radius (Fig. 7d),
the firing rates rise gradually with increasing driving strength; (iii)
the opposite is true for the ring of large radius, which has a much
steeper dependence of firing rate on driving strength (Fig. 7e). This
behavior, together with that of the orientation-tuning curves (Fig.
7 a and b), provides a strong indication that those complex cells that
are quite selective for orientation might result from operating at or
near a critical transition. We (21) have yet to construct a large-scale
network that operates realistically in this regime, primarily because,
as the regime is approached, instabilities in the network appear and
cause synchronization of the neurons that is reminiscent of the
mean-driven state with small fluctuations.

The kinetic theory described here clearly provides theoretical
insight into possible cortical mechanisms in fluctuation-dominated

systems. It also provides an efficient and remarkably accurate
computational method for numerical studies of very-large-scale
neuronal networks. More detailed studies, using this kinetic theory,
of large-scale networks of simple and complex cells will be pub-
lished elsewhere.
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Fig. 7. Comparison of the firing rate behavior under drifting grating stimuli
of three neuronal networks, two ring models and a large-scale I&F 1 mm2

model (21). Each model contains 75% (25%) excitatory (inhibitory) neurons
and simple and complex cells. For sample complex neurons, a–c show orien-
tation-tuning curves (firing rate m(�), where � denotes the orientation of the
drifting grating), comparing the results of the full I&F networks (solid line)
with those of the kinetic theory (dashed line); whereas d–f show response
diagrams (m(�) vs. the driving strength). In these response diagrams, heavy
bold curves show behavior during ‘‘switch-up’’ of the driving strength, and
regular curves depict responses to ‘‘switch-down.’’ (a and d) A ring model of
small radius (with neurons near the pinwheel center). (b and e) A ring model
of large radius (far from pinwheel center). (c and f ) A neuron from the
large-scale model that is far from any pinwheel center.
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