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In this article we use one-dimensional nonlinear Sdiwger equationgNLS) to
illustrate chaotic and turbulent behavior of nonlinear dispersive waves. It begins
with a brief summary of properties of NLS with focusing and defocusing nonlin-
earities. In this summary we stress the role of the modulational instability in the
formation of solitary waves and homoclinic orbits, and in the generation of tempo-
ral chaos and of spatiotemporal chaos for the nonlinear waves. Dispersive wave
turbulence for a class of one-dimensional NLS equations is then described in
detail—emphasizing distinctions between focusing and defocusing cases, the role
of spatially localized, coherent structures, and their interaction with resonant waves
in setting up the cycles of energy transfer in dispersive wave turbulence through
direct and inverse cascades. In the article we underline that these simple NLS
models provide precise and demanding tests for the closure theories of dispersive
wave turbulence. In the conclusion we emphasize the importance of effective sto-
chastic representations for the prediction of transport and other macroscopic behav-
ior in such deterministic chaotic nonlinear wave systems.2@0 American In-
stitute of Physicg.S0022-248800)01606-9

[. INTRODUCTION

The description and understanding of turbulence remains one of the most challenging open
problems in classical physics. Turbulent waves are prevalent throughout nature. Examples include
waves on the surface of the ocean and storms in the atmosphere. Turbulent states involve the
interaction of coherent structures with a background of fluctuating waves. This stochastic back-
ground could arise from deterministic instabilities that create spatiotemporal chaos, or from ex-
ternally imposed noise, or both. The goal of theories of turbulence is to predict behavior in such
chaotic systems, where only certain phenomena are possible to quantify; others may be indeter-
minant. One task of turbulence theory is to circumscribe what is unpredictable and what is not.

Turbulent states are so complex that their description must be statistical. Constantly, statistical
descriptions of turbulent waves are being proposed and developed that would play a role for
nonlinear waves similar to that played by statistical physics for mechanics—namely, to provide
macroscopic descriptions of observable phenomena. These theories(iyguétlict wave spectra
and other macroscopic observables, @ndprovide parametrizations of small-scale behavior for
large-scale numerical simulations. The validity of these theories is very difficult to assess, prima-
rily because of mathematical and computational difficulties in the nonlinear partial differential
equationgpdes which provide the fundamental description of the waves’ evolution.

Nonlinear dispersive waves in one spatial dimension are proving to be very useful tools in the
design and validation of theoretical descriptions of wave turbulence. The single spatial dimension
renders the waves nearly amenable to analytical description, and certainly to careful and controlled
numerical simulation. In this article, we will summarize some of these developments, using a class
of one-dimensional nonlinear Sclilinger equation$NLS) as examples.
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NLS equations possess two distinct types of nonlinearity: “focusing” and ‘“defocusing,”
which significantly affect the behavior of the nonlinear wave. Throughout this article, we will
emphasize distinctions in behavior between the focusing and defocusing cases—for completely
integrable waves, for temporally chaotic waves, for spatiotemporal chaotic waves, and for disper-
sive wave turbulence. In the focusing case for NLS, waves can be linearly un&abld). When
perturbed, with one unstable mode, this modulational instability can give rise to temporal chaos
(Sec. I, and with two or more instabilities, it can induce spatiotemporally chaotic wave dynam-
ics (Sec. IV) and dispersive turbulend&ecs. V and IY. NLS equations provide some of the
simplest examples of the interaction of localized coherent structures with a background of sto-
chastic waves. Properties of this interaction will be described throughout the article.

The mathematical methods used in these studies of nonlinear dispersive waves include rigor-
ous and formal analysis of pdes, dynamical systems thgorypdes, geometric singular pertur-
bation theory, stochastic equations, and scientific computation.

In Sec. Il, “Background,” we define a class of NLS equations with focusing and defocusing
nonlinearities, and we describe the “modulational instability” in the focusing case. We also
mention the “completely integrable” NLS equation, and its integration through the “inverse
spectral transform.” For this integrable case, distinctions between focusing and defocusing non-
linearities are again emphasized—with the very special localized waves known as ‘“solitons”
occurring in the focusing case.

In Sec. lll, representations of “homoclinic orbits” are presented for the integrable focusing
case, under spatially periodic boundary conditions, and their role in the generation of temporal
chaos under weakly damped and driven deterministic perturbations is discussed.

In Sec. IV, spatiotemporal chaos is defined and shown to exist for deterministic damped and
driven perturbations of NLS, in the focusing case. We note in passing that there is a great deal of
work on the phenomena of spatiotemporal chaos for the Ginzburg—Landau equation and for the
Kuramoto—Sivashinsky equatidsee a review,and references thergin

In Sec. V,dispersive wave turbulende summarized, within the context of a family of NLS
equations. The weak turbulence theory of dispersive waves is a mathematical theory of the flow of
excitations between spatial scales. It involves beautiful mathematical concepts—including reso-
nant wave—wave interactions, normal forms for Hamiltonian systems, stochastic closures, and
kinetic equations for correlation functions.

In Sec. VI, new numerical experiments on dispersive wave turbulence are described for this
family of NLS equations. The dependence of the turbulent state upon focusing and defocusing
nonlinearities is emphasized, as well as the interaction of coherent structures with resonant radia-
tion in setting up the cycles of energy transfer in dispersive wave turbulence.

While dispersive wave turbulence provides a description of the intrinsic stochastic back-
ground, aneffective stochastic dynamiegll be required to provide a tool for the prediction of
observable behavior. Theories that describe the interaction of coherent structures with a back-
ground of fluctuating wavesthat is, with an “active heat bath”are needed to provide an
algorithm for the prediction of macroscopic transport behavior. These matters of predictability are
discussed in the Conclusion.

The material in Secs. Il, lll, and IV on integrability, instabilities, homoclinic orbits, temporal
chaos, and spatiotemporal chaos has been discussed in detail in the two dri#eys. we
present a condensed version—emphasizing distinctions between focusing and defocusing nonlin-
earities, as well as consequences of the modulational instability and spatially localized coherent
structures. These features in dispersive wave turbulence are highlighted in Sec. VI, which contains
new material only partially announced in Ref. 4. This section, together with the Conclusion on
predictability, looks toward future work.

IIl. BACKGROUND

The classical NLS equation in one spatial dimension is of the form

i9¢=0xx+2(q0)Q, (1
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with the +(—) sign denoting focusingdefocusing nonlinearity. It is a Hamiltonian system,

) oH
'Qt=5—a, 2
with the Hamiltonian
H(q,ﬁ)zf {00y |gal?}dx. 3)

Note that the Hamiltonian is indefinite in the focusing case. The Hamiltohfanprm, and linear
momentum are constants of motion—associated to the symmetries of time, phase, and space
translation, respectively. For focusing nonlinearity, the equation supports localized traveling wave
solutions of the form

QX 6N, 0, ¥, Xe) =\ SECHIA (X— Xo— vt) ]2~ t=20x+ 5] (4)

This wave is(exponentially localized in space, and has many of the characteristics of a “par-
ticle.” The parametersN,v,y,Xq) represent its amplitudénverse-width, velocity, phase, and
spatial location, respectively. This particle-like wave travels at constant velocitnd is very
stable to perturbations of both the initial data and the equation. The stability and properties of this
solitary wave have been established with many numerical experiments in the physical literature,
with formal asymptotics, and with rigorous pde analysis.

But the solitary waves of the one-dimensional cubic NLS equation have far more remarkable
properties than merely linear stability; namely, they emerge from direct collisions with other
solitary wavescompletely unscathed heir velocities and shapes are not altered by the collision.

In fact, the only consequence of the nonlinear collision is a phase shift in their relative locations.
This remarkable stability under collisions makes the solitary waves of one-dimensicial

cubic NLS equation behave as particles under elastic collisions. Solitary waves that satisfy this
elastic collision property are callesblitons to emphasize the particle-like properties of these
nonlinear waves.

A. Integrability of NLS
The 1-D cubic NLS equatiofil) is equivalent to the following linear systetn’

ex=UMg,
5
th:V()\)QD!
where
. (0 q
UM=iNoy+i . 0),
(6)

0 2iNg+qy
F(—2iNg+Qy) 0 '

VN =i[2\%+ 0?*(qq— w?) o3+

and whereo; denotes the Pauli matrixys=diag(1-1). This equivalence follows from the
integrability condition for the overdetermined linear systéh Note that systent5) consists in
two equations for only one unknown As such, it is overdetermined and will possess a solution
iff @ x=x 1. Explicitly calculating this condition, using systef®), shows that the integrability
condition is equivalent to the NLS equatiéb).

The Zakharov—Shabat linear systé® is a “Lax pair for NLS.” %" From it, the nonlinear
Schralinger equatior(1) inherits a “hidden linearity,” which is the key to an explanation of the
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truly remarkable properties of 1-D NLS. This discovery by Zakharov and Shabttte Lax Pair
for NLS was an extremely important step in the history of soliton theory. It showed that the earlier
integration of the Korteweg-de Vries equation by Gardner, Greene, Kruskal, and®Miasanot
a single isolated example; rather, it was a part of a general integration procedure for certain
nonlinear dispersive waves. Moreover, the NLS equation has far richer phenomena than KdV.
Thus, the work of Zakharov and Shabat showed that a nonlinear equation with rich phenomena
arising from instabilities could be integrated through linear spectral methods.

The primary way the “hidden linearity” has been used to study 1-D NLS begins from the

“x flow” of (5):
Lo=\e¢, (7)
where
L=—i d 0 8
~'%0x |\ +q o) ®

This linear “x flow” is viewed as a Sturm-Liouville eigenvalue problem, with eigenvalue pa-
rameter\. The spectral and inverse spectral theory for this differential operator leads to the
complete integration of the NLS equation.

For example, consider the 1-D NLS equatiti) on the whole line o <x<+®), for
smooth rapidly decaying functions &f i.e., in Schwarz clasgActually, in the defocusing case,
|q(x)|—c>0, while in the focusing case, the lindtvanishes. Consider the “Zakharov—Shabat”
operatorL, Eq.(8), as an(unboundedl differential operator orL?(R). Denote its point spectra
[eigenvalues withL?(IR) eigenfunction$ by {\1,\5,....\\}. As the coefficientsy(x,t) of this
differential operator evolve in timé according to the 1-D NLS equatiofi), one expects the
eigenvalues\(t) to change with time. But they do not! A simple calculation using the Lax pair
(5) shows that the eigenvalues are constartt ifthese eigenvalues provid¢ invariants for the
1-D NLS equation(1)—where the numbeN, as determined by the initial data, can be very large
and often exceeds three, the number of classical invariants. Thus, the 1-D NLS equation possesses
some unusual invariants, in addition to the classical ones.

These additional invariants arise after considering the eigenvalues as functionals of the coef-
ficientsq(-,t):

N =N[q(-,1)].

This viewpoint leads one to consider the inverse problem of determgiing) from spectral data

of the differential operatok. Clearly the finite numbeN of eigenvalues will be insufficient data

to determine the functiokq(x,t),Vxe (—o,+=)}, and the eigenvalues will have to be aug-
mented with additional spectral data. But this is a well-known problem in mathematical physics
known as the “inverse scattering problem”—particularly so for the Sdimger operator of
nonrelativistic quantum mechanics, but also for the operfatowhich is a form of the Dirac
operator of relativistic quantum mechanics.

This viewpoint from inverse spectral theory shows that the discrete bound state eigenvalues
{N1,N2,...,An} @and a continuum of reflection coefficiedts(\),V\ € (—,%)} are constants of
motion for 1-D cubic NLS. This infinite collection of constants of motion explains the remarkable
stability and elastic collision properties of solitons: First, one must understand the connection
between spectral data and solitons. A formulaMosolitons exists that establishes that there is a
one-to-one correspondence between the solitons in the spatial profile and the bound state eigen-
values in the spectral data. Theeigenvalues correspond b solitons, with the amplitude and
speed of each fixed by the real and imaginary part of the associated eigenvalue. Moreover, a
reflection coefficientr (\) in the spectral data of the Zakharov and Shabat operator fixes the
amplitude of thex™ radiative component of the nonlinear wave. The temporal behavior of the
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spectral data shows that the speeds and amplitudes of the solitons are invariant in time, and are not
altered by “interactions of the solitons.” And, sinde(\,t)|=|r(\,0)|, no radiation can be
generated by these interactions. In other words, the infinite number of invariants so rigidly con-
strain the solution that the elastic collision properties of 1-D NLSresult!

Such spectral considerations have lead to the complete integration of the NLS ediation
under either “whole-line” or “periodic” spatial boundary conditions—and have provided de-
tailed explanations of the remarkable properties of solutions of this equation. EqBtimna
completely integrable Hamiltonian system

B. Modulational instability

There is an important instability for the NLS equation wititusing nonlinearityknown as
the “modulational instability,” which is responsible for soliton formation, collapse to singular
structures in finite timéin dimensions D>1), unstable tori and homoclinic orbits, and temporal
and spatiotemporal chaos for perturbed NLS equations. Under periodic spatial boundary condi-
tions, specific examples of this instability are easy to describe.

Consider elementary “plane wave solutions” of the NLS equation:

de(x,t;c,y)=cexd —i(2c’t+ )], 9

where €, y) denote two real parameters. Linearizing the NLS equation about this exact solution
yields

q(x,t)=ge(x,t)+ of (x,t)exd —i(2c%t+ y)1;
if = f o+ 2c2f+2¢%F +O(5);
f(x,t)=F(k)expi(kx—w(k)t)];
w?(k) =k’ [k?—4c?].

From this dispersion relatiom(k), the plane wave9) is unstable to fluctuations with wave
numbers B<k?<4c?; while shorter-wavelength fluctuations are neutrally stable according to lin-
ear stability theory. The “quantization condition” that ensures spatial periodicity,

ki=—, j=...—1,04+1,..,

shows that the number of unstable Fourier modes scales linearly with thé sizie periodic
spatial domain. This instability of the plane wai@ to long-wavelength fluctuations is a special
case of a famous instability in nonlinear dispersive wave theory, known as the “Benjamin—Feir
instability” in the context of water wavésand as the “modulational instability” in the context of
plasma physic8.This instability is only present in the case of focusing nonlinearity. Plane wave
solutions of defocusing NLS are neutrally stable.

[lI. HOMOCLINIC ORBITS AND TEMPORAL CHAOS

Under periodic spatial boundary conditions, solutions of the integrable NLS equation reside
on tori (which arise as the level sets of the constants of matiBar focusing nonlinearity, these
tori can be unstable due to the modulational instabiliihe level sets have a “saddle structure”
in functional spacg.In this setting, the spectral transform provides representations of these tori,
and explicit representations of their unstable manifolds and homoclinic ?Bitélext, we de-
scribe these representations.
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Fix a periodic solution of NLS that is quasiperiodictinunstable, and for which the operator

L(q) has a complex double eigenvalueof multiplicity 2. We denote two linearly independent
Zakharov—Shabat eigenfunctions at@) by (¢",¢ ). Thus, a general solution of the Zakharov
Shabat linear systerfb) at (q,v) is given by

d(x,t;vic, ,c_)=c .p " +c_¢ .

We used to define atransformation matrix Goy

N 0 .
G=G()\,v,¢)=N< 0 )\_7)N , (10)
where
b1~y
ELﬁz 511'
Then we defing) and W by
QU= +2(r—7) — 22 (11
P11t adhy
and
W(X,HEN) =GN v; ) (X, N ), 12

where ¢ solves the Zakharov—Shabat linear sysi@mat (q,\). Formulas(11) and(12) are the
Backlund transformations of the potential and eigenfunctions, respectivel{’\Meave the fol-
lowing.

Theorem Ill.1: Define Qx,t) andW(x,t;\) by (11) and (12). Then (i) (X,t) is a solution
of NLS, with spatial period I; (ii) The spectrun‘(I:(Q)):a(I:(q)); (i) Q (x,t) is homoclinic to
a(x,t) in the sense that X,t)—q,_(x,t), exponentially agxp(—o,/t)) as t— +x. Here q,_ is
a “torus translate” of g, o, is the nonvanishing growth rate associated to the complex double
point », and explicit formulas can be developed for the growth rateand for the translation
parametersd.. ; (iv) W(x,t;\) solves the linear system (5) éD,\).

This theorem is quite general, constructing homoclinic solutions from a wide class of starting
solutionsq(x,t). Its proof is one of direct verification, following the sine-Gordon mdde®eri-
odicity in x is achieved by choosing the transformation parametew to be a double point.

Several qualitative features of these homoclinic orbits should be empha&iz€(x,t) is
homoclinic to a torus, which itself possesses rather complicated spatial and temporal structure, and
is not just a fixed point(ii) nevertheless, the homoclinic orbit typically has still more complicated
spatial structure than its “target torus(iii) When there are several complex double points, each
with a nonvanishing growth rate, one can iterate thekBand transformations to generate more
complicated homoclinic manifold¢iv) The number of complex double points with nonvanishing
growth rates counts the dimension of the unstable manifold of the critical torus in that two
unstable directions are coordinatized by the complex matiéc_ . Under even symmetry only
one real dimension satisfies the constraint of evenn@ssThese Baklund formulas provide
coordinates for the stable and unstable manifolds of the critical tori; thus, they provide explicit
representations of the critical level sets, which consist in “whiskered tdfi.”

The simplest examples of these homoclinic orbits begins with the spatially uniform plane
waveq., Eq.(9), for which the entire construction can be carried out expli¢tiyRather than
repeat this simple analytical formula, we just show sample homoclinic orbits that result in Figs. 1,
2, and 3.
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FIG. 1. Homoclinic orbit associated with one instability: Center location. Plottéd(ist)|.

In this example the target is always the plane wave; hence, it is always a circle of dimension
one, and in this example we are constructing whiskered circles. On the other hand, in this example
the dimension of the whiskers need not be one, but is determined by the number of purely
imaginary double eigenvalues, which in turn is controlled by the amplitudéthe plane wave
target and by the spatial periotiWhen there are several complex double points, thekBad
transformations must be iterated to produce complete representations of the unstable manifold.

Thus, Bzklund transformations give global representations of the critical level sets. The level
sets in the neighborhood of these of critical ones have fascinating topological stricttifée
plane wave example under even symmetry and with only one instability provides the simplest
case. Here, the dimension of the unstable manifold of the plane wave circle is 2—the dimension
of each homoclinic orbit plus the dimension of the target cigteS. In addition, NLS also
possesses a four-dimensional invariant manifold that contains the unstable mavii{oje- S).

This 4-D manifold can be viewed as the result of “shutting-off” all degrees of freedom except for
the spatial mean and the “first radiation mode.” In this four-dimensional space, the level sets
topologically form a trouser diagram shown in Fig. 4. Note in particular the symmetric pair of
homoclinic orbits and their relationship to the two legs, one of which represefperadio
soliton located at the center of the periodic domair=a0, and the other a soliton located one-half
period away atx=1/2. When all other radiation degrees of freedom are excited, each forms a
small disk(a center for each additional radiation degree of freegdamd the full phase space can

be represented topologicalijocally, near the trousgias the product of the trouser with a count-
able number of disks. More complex examples are described in Ref. 11.

FIG. 2. Homoclinic orbit associated with one instability: Edge locaficin Fig. 1).
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FIG. 3. Homoclinic orbit associated with two instabilities. Fig. 1).

A. Temporal chaos

The existence of instabilities and their associated homoclinic orbits for the integrable NLS
equation indicate that external perturbations could induce chaotic responses in perturbed deter-
ministic NLS equations. Moreover, the trouser topology nearby critical level sets, together with
the correlation of the two legs of the trouser with two distinct spatial locations for a soliton
(“center” and “edge” of the periodic domaip indicates that chaotic behavior under determin-
istic perturbations might involve a “random jumping” of a solitary wave between these two
spatial locations. Our numerical experiméfitsshow that these expectations are realized, and that
these temporally chaotic states are relatively easy to observe.

In Refs. 14 and 2, we considered a damped-driven perturbation of the NLS equation in the
form

i0¢+ Oxxt 2|a]2g= —iaq+ Tt (13

with periodic boundary conditionsy(x+1)=q(x), wherel is the system length, ane and y are
the driving frequency and phase, respectively. The damping coeffigiant the driving strength
I" are small. The initial condition is a periodic extension of the single soliton waveform,

a(x,0)= 7 secti 7x). 14

These numerical experiments are described in detail in the séimejyding (i) the numerical
algorithms and their validation, which is essential when studying long-time temporal integrations
of chaotic behavior of unstable orbit6j) the collection of chaotic diagnostics with which we
post-processed the numerical data; &iiid a detailed discussion of our numerical observations.
Here we only give a brief description of typical observations, for the simplest case where temporal
chaos was observed.

Q
@

FIG. 4. Trouser diagram: One of the legs corresponds to the center lo¢&itipri) and the other to the eddEig. 2). The
right figure is the “end view” of the trouser along the direction of the arréwindexes the level sets.
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We organized our numerical studies iftidurcation experiments which all parameters were
fixed, except for the amplitude of the driving for€e which was increased from experiment to
experiment as a “bifurcation parameter.” Sample results are pictured in Fig. 5. While the details
of the bifurcation sequence are somewhat invoRiélte general pattern may be summarized as
follows. AsT increases, the long-time behavior of the wave undergoes the following sequence of
changes:(i) spatially flat, time independentji) “sech-like” in space, time independentiii)
sech-like in space, but time periodi@y) sech-like in space with a background, quasiperiodic in
time; (v) chaotic in time, with the sech-like excitation jumping from the center to the edge of the
periodic spatial domain, which should be compared with the homoclinic orbits in Figs. 1 and 2.
Standard chaotic diagnostfosere used to identify chaotic behavior—including Poincsetions,
power spectra, Lyapunov exponents, and information dimension. Figure 5 shows four sample
“cross sections”—for time-independent, periodic, quasiperiodic, and chaotic temporal behavior.

This experiment is the simplest that we have found that has chaotic behavior, and it is very
important for our theoretical studies. In it, the chaotic state contains only one spatially localized
coherent structure. At times this solitary wave is located at the center, and at other times at the
edges of the periodic spatial domain. These two locations are the only two allowed under even
boundary conditions. We believe that one source of the chaotic behavior is an irrggotdom?
jumping of the solitary wave between center and edge locaiises Fig. 6. This center—edge
jumping of the solitary wave through homoclinic transitions forms the basis for the simplest
description and model of chaotic behavior in NLS pdes.

B. Persistent homoclinic orbits

The first step toward analytical descriptions of such chaotic behavior is to assess the persis-
tence of homoclinic orbits. These can provide a “skeleton” for chaotic trajectories. That is,
persistent stable and unstable manifolds, and their intersections provide a framework with which
chaotic behavior can be described. Procedures for this description are well known for finite-
dimensional dynamical systerfis'®and have recently been developed for the NLS Bd&ee also
Refs. 18 and 3 for rather detailed overviews of these mathematical arguments.

Here we merely state the persistence thecte@onsider a perturbed NLS equation of the
form

i0y=Cxx+ 2[q0— w?]q+ie[Dg—1], (15)

where the constanb e (3,1), € is a small positive constant, amlis aboundednegative definite
linear operator on the Sobolev sp&¢§p of even, 2r periodic functions. Specific examples of the

dissipation operatob include the discrete Laplacian and a “smoothed Laplacian” given by

Dg=-aq-BBq, (16)
where the operatdB has symbol given by

k2, k<k,

b(k)= 0, k=k
Extending Melnikov analysis and geometric singular perturbation theory to a pde settitfg, we
establish the following.

Theorem III.2: The perturbed NLS equation (15) possesses a symmetric pair of orbits that
are homoclinic to a saddle fixed point, @rovided the parameters lie on a codimension 1 set in
parameter space, which is approximately described by

a=E(w)pB.

Downloaded 15 May 2007 to 128.122.164.214. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



4134 J. Math. Phys., Vol. 41, No. 6, June 2000 D. Cai and D. W. McLaughlin

20
1.0 f’\\
N\
< \\

E 00 i

%

2 \ /
1.0 v/
-20 +

-20 -1.0 0.0 1.0 20
Reqix=t,1)

20

1.0

}' 00

¥

K
-1.0
-2.0 L

-2.0 -1.0 0.0 1.0 20
Regle=tit)

20

1.0

£
-1.0
-20 L L

-2.0 -1.0 0.0 1.0 20
Regtx=0,1)

20

1.0

1 o0
¥
£

£
-1.0

-20 -10 0.0 1.0 20
Reglr=0,0)

FIG. 5. Perturbed solitonic dynamics. From top to bottdin:locked state(2) periodic state(3) quasiperiodic state, and
(4) temporal chaotic stat@vhich should be contrasted with homoclinic orbits in Figs. 1 andPBbtted here argq(x,t)].
The right panels are the corresponding surface cross sedtioag(0,t), Imq(0t),Vt}. Note that for the case of the
quasiperiodic and chaotic dynamics shown here, the values of the diiviiffer only by 0.4%.
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FIG. 6. Center—edge jumps of the soliton. The dark line segments are the temporal traces of the maxiq(om) pf

Formulas exist that describe, approximately for smalithe characteristic properties of these
homoclinic orbits such as the constanfd&) and a “take-off” angle

These two homoclinic orbits differ by the location of a transient spatial structure—a solitary
wave which is located either at the cente0) or the edgeX= =) of the periodic box. As such,
this theorem provides a key step toward the exciting possibility of horseShaed chaotic
symbol dynamic¥® for the pde—with the jumping of the solitary wave between the two spatial
locations as “random as a coin toss.” Recently?dlas made a further step toward such pde
behavior by establishing a symbol dynamics for an infinite dimensional geometric model of
perturbed NLS.

Recent extensions and related work about temporal chaos for NLS pdes include the following:

(1) The removal of the assumption of bounded perturbations, so that the theorem now applies
to diffusion?!

(2) The existence of very longput finite) complex transients, which are more robust and
easier to observe than symbol dynanfics’

(3) The lack of persistence of NLS homoclinic orbits under complex Ginzburg Landau
perturbationg?

(4) The behavior under conservative perturbatitohé®

(5) The removal of the constraint of even symméty.

(6) The realization of chaotic dynamics in wave tafks.

IV. SPATIOTEMPORAL CHAOS—EXISTENCE

The temporal chaogust discussed consists of spatially coherent localized waves that dance
chaotically in time. As Fig. 5 shows, these waves are very regular in space. Their time series at
locationx, {q(x,t),Vt}, appears to be statistically well correlated to the time series at location
y#Xx, {q(y,t),Vt}. On the other hand, waves dispersive turbulencehould behave chaotically
in both space and time. At least the time sedg$x,t),Vt} and{q(y,t),Vt} should become
statistically independent as the distance froro y increases.

Recall that the numerical experiment described in Sec. Il was for small spatial domains, with
only one instability and only one solitary wave. Intuitively, spatial decorrelation might be
achieved by increasing the sitef the spatial domairibecause the number of instabilities, and
thus, the number of spatially localized states within the spatial domain, increases with domain size
I). Spatial decorrelation is indeed seen in our numerical experiments for the damped-driven NLS
(13). An example with only one instability is shown in Fig. 7, while one with two instabilities in
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FIG. 7. Temporal chaos in the presence of one linearly unstable nhed®4; the evolution of systenil3) with «
=0.004,I'=0.144, = 1. The initial conditionq=A+ € exp(2mx/l), A=0.8, e=2x10"°. Plotted here i$q(x,t)|.

Fig. 8. Clearly, the two figures display drastically different spatial patterns. It is instructive to
compare Fig. 7 with the homoclinic orbits shown in Figs. 1 and 2 and to compare Fig. 8 with the
homoclinic orbit shown in Fig. 3.

A natural question arises: Given a temporally chaotic solution of(E8), how large a spatial
domain, or how many instabilities, is required for effective decorrelation in space? Before inves-
tigating such questions further, we need first to formulate a precise definition of the concept of
spatiotemporal chaos.

A. Definition of spatiotemporal chaos

There have been many definitions proposed to capture the essence of spatiotemporal chaos.
We prefer a “working definition” that includes two point§) A temporally chaotic wave(x,t),

(i) for which the time serie§q(x,t),Vt} and{q(y,t),Vt} become statistically independent as the
distance fronx to y increases.

For a definition, we must make precise the meanings of “temporal chaos” and ‘“statistical
independence.” Fotemporal chaosve will accept any common definition, such as a bounded
attractor with positive Lyapunov exponents.

Statistical independencis often estimated through the decay of the two-point correlation
function:

FIG. 8. Spatiotemporal chaos in the presence of two linearly unstable med@s, for system(13). (For parameters see
Fig. 7)
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1 (T
cox-y)=lim T | [@eun —(@n@iy.o - @t a7)

T—oo

where(-) denotes the temporal mean, and where we have assumed translational invariance of the
system. However, the vanishing of the two-point correlation function is only a necessary condition
for statistical independence; thus, we prefer to base the definition opduaal informatior—
whose vanishing is a necessary and sufficient condition for statistical independence.

For two stochastic variables and V, with probability density functiong(u) and p(v),
respectively, and with joint probability density functigfu,v), the mutual information between
these two variablet) andV is defined a¥

p(u,v)

I(U,V)=J du dv p(u,u)logm.

(18)
In this application of spatiotemporal chaos, the probability distributions will be generated by
the chaotic time series:

Px(q): {a(x,1),Vt},
py(a): {aly,t),vt},

Pyy(a,r): {lalx,t),r(y,t)], v},

wherer(y,t)=q(y,t). Intuitively, p,(g)dq is the fraction of time that(x,-) € (g,q+dq), etc.
Thus, we define the mutual information between poinendy by

px,y(uuv)

PPy (o) (19

I(x,y)zf du dv pyy(u,v)log

In terms of this mutual information between spatial points, we arrive at our working definition as
follows.

Working definition:A wave q(x,t) is spatiotemporalchaotic if (1) q(x,t) is a temporally
chaotic orbit(for example, as characterized by bounded, not asymptotically periodic, orbits with
positive Lyapunov exponents(2) whose mutual information between two spatial poih{s,y)
decays exponentially in space [as-y|—c.

B. Numerical measurements of spatiotemporal chaos for NLS waves

Now we return to chaotic NLS waved43) and establish by numerical experiments the exis-
tence of spatiotemporal chad/s> First, we calculate numerically the spatial correlation function
C(x) [Eq. (17)].

Figure 9 shows the dependence of the correlation fund@igx) on the system length. For
L =6.4, which corresponds to the one linearly unstable mode, the whole system is correlated. This
is intuitively consistent with the observations of Fig. 7, since, for most times of the evolution, only
one solitary wave is present in the periodic spatial domain. When the system size is increased so
that larger numbers of solitary waves are present, Fig. 9 shows that the correlation function rapidly
vanishes. Therefore, the system becomes increasingly decorrelated, indicating an onset of spa-
tiotemporal chaos. As shown in the inset of Fig. 9, the correlation at the half-system length as a
function of L displays a clear transition around the valug=2mx/A, above which the second
linearly unstable mode ente(sote thatA is the amplitude of the plane wave; see Fig. 7

Mutual information can be used to make these results more precise. Figure 10 summarizes the
mutual information as a function of the distancdetween any two points in space for both one
and two linearly unstable modes, which corresponds to the cases in Figs. 7 and 8, respectively. For
one linearly unstable mode the mutual information remains nonzero across the system, signifying
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FIG. 9. Dependence of the correlati@fx) on the system sizk. Inset: Transition of2(L/2) aroundLy,=27/A (dashed
line). ForL=6.4, 9.6, see Figs. 7 and 8.

no sufficient loss of information over the whole system, while it vanishes rapidly for the two
linearly unstable mode case. It can be further determined that this deeagadsentialas shown
in the inset of Fig. 10; that is,

I(x)—>exp< —g) for large X, (20

with a decay lengttt~0.30. As solitons are phase locked to the external driver,( e w, we
anticipate that the driving frequenay controls this decay length, i.e., the soliton’s frequefiy
determines its spatial width, and hence should detemine its coherence length in space.

These results establish that spatiotemporal chaos exists for NLS waves, with the transition
from temporal chaos to spatiotemporal chaos occurring at the system size at which a second
instability arises, provided the constraint of even symmetry is relaxed. @olinstabilities seem
to be required—a somewhat unexpected result, as the prevalent belief in the physical literature
requires very large systems with many unstable mod&s®(See, however, the recent wotk.

1)

x/L

FIG. 10. Mutual informatiorf(x). Fine line: one linearly unstable mode; Dotted line: two linearly unstable modes as also
shown in the inset on the linear-log scéthe straight line is a fit to an exponential form
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C. Descriptions of the spatiotemporal chaotic state

Given the existence of a spatiotemporal chaotic state, one seeks ways to describe and under-
stand it. Clearly such states are so complex that statistical descriptions will be required. Several
possibilities exist, includingi) equilibrium statistical mechanicéi) closure theories of dispersive
wave turbulence, andii) effective stochastic dynamics of coherent states in interaction with a
background of fluctuating waves. Next, we describe this background with the methods from
dispersive wave turbulence.

V. DISPERSIVE WAVE TURBULENCE

A spatiotemporal chaotic collection of waves is so complex that it must be described statis-
tically. Ensembles of chaotic waves form a stochastic state or an “active heat bath” for which
wave spectra, instead of individual wave trajectories, are natural observables. In this stochastic
state, the fundamental excitations consist in resonant wave—wave interactions, which are described
statistically by the theory of dispersive wave turbulence.

Dispersive wave turbulence is a theory of the flow of wave excitations between spatial scales,
or fluxes, ink space. It assumes that the active stochastic state is created as a state of “statistically
steady flow ink space” as follows: Excitations are being injected into the system at one spatial
scale(say a long spatial scagley an external forcing, and removed by dissipation that is restricted
to a second spatial scalsay a short scale Resonant wave—wave interactions transport the
excitations, setting up a steady flow from the injection to the dissipation regidnspce. At the
intermediate scaleghe “inertial” or “Kolmogorov” scales), there is no forcing or damping, and
the waves satisfy a conservative Hamiltonian system. These waves reside in a statistical state of
steady flow ink space and their wave spectra are believed to be universal, i.e., independent of the
details of forcing and dissipation.

Dispersive wave turbulence seeks equations that govern the temporal evolution of the two-
point correlation functionsi(k,t),

n(k,t)=(a(k,t)a(k,t)),

wherea(k,t) denotes the spatial Fourier transform of the wave profflet), and(-) denotes an
average—either an ensemble average with respect to initial conditions, a local time average, or
both. In principle, averaging does not lead to “closed” evolution equationa(st). That is, the
evolution of the two-point functionsi(k,t) depends upon four-point functions; those for the
four-point functions depend upon six-point functions, resulting in an infinite hierarchy of equa-
tions for correlation functionsAd-hocclosures have been developed through approximations that
rely upon weak nonlinearity and/or Gaussian random phase assumptions. It is difficult to assess
the accuracy and validity of these closure schemes, primarily because of mathematical and com-
putational difficulties in the nonlinear pdes that provide the fundamental description of the waves.

Resonant radiation waves are the fundamental excitations that comprise the active stochastic
background. However, in nonlinear wave systems, localized coherent structures often coexist with
radiation. With focusing nonlinearities these localized coherent structures typically are present,
and it is unnatural to restrict to nonlinearities so weak that the wave system is solely comprised of
radiation. When both classes of excitations are present, it is a major theoretical challenge to obtain
and validate a description of the rich structure of dispersive wave turbulence.

Here, we attempt to illustrate the richness of dispersive wave turbulence by itself, and in the
presence of coherent structures, by using a class of one-dimensional nonlinear wave equations that
was introduced in Ref. 37. The model is constructed such that the validity of theories of dispersive
wave turbulence can be precisely checked numerically. This model permits an explicit definition
of each of the concepts just described. It has both focusing and defocusing nonlinearities, and in
the focusing case, has both types of excitatidasalized coherent structures and resonant radia-
tion). With this model, one obtains a very precise and detailed description of dispersive wave
turbulence.
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A. Background about weak turbulence

If there is only one type of wave present in a nonlinear medium, one can describe the wave in
the absence of dissipation by a complex amplitagesatisfying the Hamiltonian system,

_day B 6H 21

R @D
We consider Hamiltonians of the form

H=Hg+Hjy, (22

where

H0=f o(K)aa,dk

is the Hamiltonian of the linearized problera(k) denotes its dispersion relation, ahig, is a
perturbation describing the interaction among those degrees of freedom represektguhdr, by
a,. Generally,H;,; can be expressed in terms of power serieg,jranda, .

The dispersion relatiom (k) affects the nature of wave interactions and their resulting turbu-
lence properties. For example, if

w(K)=o(ky) +o(ky),
(23
k=ky+ky,

holds for somek, the wave coupling leads to the resonant interaction of wayesnday, with
Ay, +k,- This situation is calledhree-waveresonance. Ifi) Eq. (23) does not have solutions, and

if (ii)
w(ky) + o(ky) = w(ks) + o(ky),
(24)
kl+ k2:k3+ k4,
has nontrivial k;#k4,k,) solutions, then four-wave resonances are responsible for the main
energy transfer between weakly nonlinear dispersive waves. It can be easily shown that, under the

above two conditions, a normal form near-identity transformation will place the Hamilt¢2&n
in the form

H= [ wka@dkt | S @idiai,ag 4,k dk di dic, @5

whereA,=k+k;—k,—Kk3. This is the canonical form of a Hamiltonian system with four-wave
resonances. Clearly in this case, the “particle” number,

N=f nkdk=f n,do, (26)

is conserved and wherg=|a,|? andn,=n, dk/dw. In addition, the linear energy can be written
as

HOZJ wknkdk:f wn, dw. (27
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B. The direct and inverse cascades

These two quantitie&26) and(27) have a direct implication on the flux of energy and wave
“particle” number under four-wave resonances witical interaction kernels, when the system is
forced at some wave numbers and damped at others. This implication can be easily seen from
global balances of “particles” and energy. Assuming local interaction, we consider an idealized
situation in whichN particles are being created per unit time at frequeacandN_ and N
particles are being removed at frequenciesandw , . In a steady state, conservation of particles
and(linearn energy leads to

N=N_+N,,
oN=w_N_+w, N, .

Solving forN_ andN, , we have

NN me) (28)
wy—w_

N, o wmoo) (29)
w,—w_

SinceN_ ,N, >0, o has to lie betweew _ and w . . Without loss of generality, we choose_
<w<w,.Asneithe™N_, N, noro_N_, o, N, vanish, there are fluxes of particles and energy

in both directions fromw. If w_ is near zero, there will be almost no energy removal at the low
frequencies, and the energy will flow upward framto w, , resulting in an upwarddirecy
cascade of energy from the low frequencies to the high ones, Iis very large, Eq(29) shows

that the number of particles removedaat will be very small, and the particles have to flow from

w 1o w_, creating a downwar@nverse cascade of particles. As a consequence, if the dissipation
takes place only at frequencies near zero and at very high values, there is an “inertial” range in
which the energy flows upward from its source to the sink at the high frequencies, while the
particles flow downward from their source to the sink at the low frequencies. As we will see
below, these cascades provide an intuitive physical basis for understanding the steady flow solu-
tions in weak-turbulence theories. However, note that nonlinearities often give rise to nonlocal
interactions. Because of nonlocality, injection of energy at a particular frequency can create
particles over a wide range of frequencies extremely rapidly compared with the wave—wave
resonance time scale; similarly, dissipation at a particular scale can remove particles simulta-
neously over a range of scales. Our numerical study seems to indicate that interackiepaoe

are more nonlocal in many situations than usually believed.

C. A simple model problem

Consider the class of one-dimensional waves introduced in Ref. 37:

2
ae=lo7a=14| 10| 19"a), @0
or equivalently in ‘k space,”
.. aklakzgks
lak=w(k)akif Takokgk] Okt ke —ka—k)dky dkz dis, (3D)

where the—(+) sign labels focusingdefocusing nonlinearities. This model depends upon two
real parametersqe>0 and o. The parameter is introduced to control the nonlinearity. The
parameterx controls the dispersion relation

Downloaded 15 May 2007 to 128.122.164.214. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



4142 J. Math. Phys., Vol. 41, No. 6, June 2000 D. Cai and D. W. McLaughlin

w(k)=[k|*,

which, for <1, has resonant quartets in this one-dimensional model.

Note that, fora=1, resonance conditior{i24) have only trivial k;=ksork;=k,) solutions.
Obviously,a=2 ando=0 constitute the usual NLS equation, which has no nontrivial four-wave
resonances in one dimension. We use 1, and usuallye= 3.

Weak turbulence theory is a statistical description of weakly nonlinear dispersive waves in
terms of a closed, kinetic equation for certain two-point spectral functions. Starting witt3Eq.
in k space, one obtains

2 Im(ay ay,ax,ax)
nt(k,t):if o 5(k1+k2_k3_k)dkldk2dk3, (32)
| kakaoksK|

for the two-point functiom(k,t) =(a.(t)a,(t)). Under a Gaussian random phase approximation,
and the assumption that

J _
gt ( aklakzak3ak> =0,
justified by an asymptotics of multiscale times, one obtainsctbsure condition

NoN3NE+ N N3gNE—NiNoNK—N1NoN3

|m<aklak25k3ak> =+278(w1+ wy— w3— o)

[kykoksk|”
Using this condition, one can close E2) to arrive at
Y L1 L S S YO S(Ky+ Ky— ka— K)dk, dk, dk
nt—WWn—kn—sn—zn—l (w1+ = w3— ) 5(ky+Ky—kg—k)dk; dk; dks,

(33

which is the weak-turbulence kinetic equation fuk,t). It is important to note that both the
defocusingand thefocusingnonlinearity lead to the same kinetic equati@3). Weak turbulence
does not discriminate between modulationally stable and unstable waves.

D. The wave spectra

The angular averaged kinetic equati@®3)>’ possesses time independéstable solutions of
the weak turbulence that describe steady-state spectra:

n(k)=c, equipartition of particle number; (34
C . .y
n(k)=m, equipartition of energy; (35)
n(k)=c|k|®"*"1, direct cascade; (36)
n(k)=c|k|8*~ 1+ inverse cascade. (37)

The first two “equilibrium spectra” can immediately be shown to satisg). In fact, each is a
special case of the general solution

B Cc
n(k)——w(kHM,
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where the constant denotes the “chemical potential.” The interpretation of these first two steady
states as “equipartition of particles” and “equipartition of energy” comes from the invat2é)t
and(27).

The other two spectra of the “direct” and “inverse” cascades were obtained by Zak¥arov
as special solutions of the kinetic equation. His beautiful argument uses a conformal transforma-
tion, and is motivated and described in Ref. 37 for ma@é).

In the numerical experiments reported in Refs. 37 and 4, another spectrum was also observed.
For Eq.(30) at =3, this spectrum is

n(k)=c|k|?*~%4 MMT. (39

As shown in Ref. 37, the MMT spectrum is not a solution of the weak-turbulence equations
(33). Rather, it satisfies an alternative closureferred to as the MMT closurewhich was
heuristically proposed in Ref. 37.

VI. NUMERICAL RESULTS ON DISPERSIVE WAVE TURBULENCE

We simulate the full dynamics of systef80) using a pseudospectral method in combination
with an integrating factor methodFor details, see Ref. 37For the time dynamics, we use a
fourth-order adaptive step size Runge—Kautta integrator. For most runs, the total number of modes
is 213, and the system sizZe~400.

In the following, we will describe some results of our numerical experiments. We will use the
convention that the unit for the wave numbers 2#7/L: thusk is labeled by integers.

A. Four spectra

We begin in afreely decayingsetting, in which both the direct and inverse weak-turbulence
(WT) cascades are observed. These specific studies are all initialized from the same identical state
(for both defocusing and focusing nonlinearities and for vari@ssand «’'s), which is constructed
as follows: First, a sufficiently stirred state is created from the evolution of smooth initial data
under a random forcing at long wavelengths. Then, to study freely decaying turbulence, we use
this state as initial data, with the force set at 0 and with damping of the feriya,, j=1,2,
with T'; on large spatial scalgk|~1, I', on small spatial scalelk|>Ky (K4=2600 for most
experimentsand no damping in between. Wh&R<TI,, the state gradually relaxes to tbeect
WT cascade.

As shown in Fig. 1(b), this WT spectrum is observed ovieur decades of energy, artldree
decades of spatial scales. This rebuattnstitutes the clearest and most striking numerical obser-
vation of weak turbulence spectra to date. Alternatively, whee-I", (stronger dissipation on
large spatial scalg¢sthe state relaxes to theverseWT cascade, as clearly shown in Fig.(@1
We emphasize that throughout these studies of freely decaying turbulence, the states, although
decaying, decrease very slowly in thé norm, and remain nonlinear throughout the time course
of the numerical experiments.

For focusing nonlinearity, in addition to the two WT spectra, therettsra spectrum emerg-
ing under relaxation dynamidsee Fig. 11—a thermodynamic equilibrium of equipartition of
energy:n(k)~w(k) "*~k~Y2 Unlike the defocusing case, focusing nonlinearity can destablize
long waves when their amplitude is sufficiently large, and cré&am®ugh the modulational insta-
bility) spatially localized coherent structures, whose statistical behavior can be captured by a
“most probable state description,” which predicts that these states live in thermodynamic equi-
librium. Similar scenarios have been observed in the case of perturbed NLS eqdhtiorike
context of nondissipative NLS equations, a recent equilibrium statistical theory for most probable
states successfully predicts coherent structures and energy equipattffion.

We now turn to afourth spectrum(MMT), which is shown in Fig. 12 for the defocusing
nonlinearity. This steady state is achieved by random for¢@aussian white noise in timen
low k, with strong damping at higtk|>K. Our numerical experiments demonstrate that, with
defocusing nonlinearity, a state with MMT spectrum can be very long lived. Moreover, in some
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FIG. 11. (a) Thermodynamical equilibriurander relaxation dynamidgocusing nonlinearityx = % 0=0.295. The short
dashed line has the slope of energy equipartitiotk) ~ w(k) ~*. (b) Direct cascadeWT spectrum under relaxation

dynamics(defocusing nonlinearityg = % o=—0.125. The slope of the dotted line is the prediction of the WT theory for

the direct cascaddc) Inverse cascad®/T spectrum under relaxation dynami@efocusing nonlinearityq = % o=0).

The slope of the dot—dashed line is the prediction of WT theory for the inverse cascade. For comparison, the prediction of
the WT direct cascade is also showtashed ling Note that, for clarity, spectréb) and(c) have been shifted down by a

factor of 10 and 100, respectively.

focusing cases, the MMT spectrum can persist for a very long time—as lorg3as10° time

units (not shown. The MMT spectra reported in Ref. 37 were in this weakly nonlinear regime.
Finally, we present a case of tliefocusingnonlinearity, in which(numerically the MMT

spectrum describes statistical steady states. Figure 13 shows an example in which the defocusing

dynamics initially exhibits a WT direct cascade, but eventually becomes the MMT spectrum. This

transition from the WT direct cascade to the MMT spectrum provides our strongest numerical

evidence that the MMT can describe a stable statistically steady &fdternatively, for much

weaker damping in the higk dissipative range, we note that a WT direct cascade describes the

statistical steady staje.

L L L

1

10° 10 10° 10

k
FIG. 12. MMT spectrunof driven-damped dynamigslefocusing nonlinearity witlw = % o=0). The system is driven by

a random force gk|=2 and is damped dk|=1 and|k|>2600. The slope of the dotted line is the prediction of the MMT
closure and, for comparison, the dashed line has the direct WT cascade slope.
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FIG. 13. MMT (thick line) state as the statistically steady state in defocusingdynamics(a= % o=0), driven by a
random force, which evolves from a transient WT direct cascade. The WT direct cascade is indicated by the short dashed
line and, for clarity, is shifted up by a factor of 10, as indicated by the fine line. The dotted line has the MMT exponent

and the dashed line has the WT direct cascade exponent.

Having established the existence of four distinct stable spectra, we next examine more de-
tailed behavior such as distinctions between the focusing and defocusing cases, and the role of

localized coherent structures in dispersive wave turbulence.

B. Deterministic forcing

With steady(time-independentforcing, the system is completely deterministic and any tur-
bulence that is observed is a form of spatiotemporal chaos in a deterministic system. In this setting
we observe clear distinctions between focusing and defocusing nonlinearities.

When the system is driven by steadine-independentforcing on low|k|’s, the defocusing
dynamics has a spectrum shown in Fig(adwhich exhibits a statistically steady state with the
coexistence of a direct WT spectrum on hikls and a resonance spectrum on |&g. These
Hamiltonian resonances permeate from lkwhrough intermediaté’s and create a “stochastic
layer” on higherk’s. Waves in this stochastic layer in turn pump energy to kigghand induce
sufficient decoherence of those highwaves to result in a WT direct cascade. In contrast, for
focusing nonlinearity with steady driving at a moderate amplitude, the motion of long waves
becomes chaotic due to modulational instability, which quickly generates a wave turbulence
inertial range starting from very low’s. In this focusing case, initially the MMT spectrum is

observed over the entire initial range. However, it is a transient and the WT direct cascade
spectrum gradually invades from lokis, while the range of the MMT spectrum shrinks toward
highk’s and eventually disappears, leaving the WT spectrum over the entire inertial range. Figure
14(b) shows an intermediate stage of this transition, in which both spectra coexist.

Distinctions between the focusing and defocusing nonlinearities are also apparent in the
space—time profiles of the turbulent waves. As shown in Fig. 15, coherent structures that are very
localized in space dominate the spatial profile in the focusing case, in contrast with the defocusing
case, where the turbulent waves ride on the long-wavelength “global” radiation modes, which are
driven by the lowk deterministic forcgFig. 16).

If we trace the phasep(x,t) =Argq(x,t), of the waveq(x,t), the dynamics of focusing
nonlinearity exhibits far more chaotic phase evolution than that of defocusing nonlinearity, as
shown in Figs. 17 and 18. Plotted is the functig(x,t) evenly sampled in time. Figure 18 shows

that, for the defocusing case, the phase of the wave is more or less “lodietds~ 7 in the
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L 1 L

10’ 10° 10

FIG. 14. Steady deterministic forcéa) Coexistence of a WT direct cascade with Hamiltonian resonances in a statistically
steady state, for theefocusinglynamics(a= % o=0), driven by a steady force on<2|k|<4. (b) Invasion of a WT direct

cascade into the MMT transient regime, for floeusingnonlinearity (a= % o=0), driven by a steady force on<2|k|
<3. The initial data for these cases is smooth, composed of a simple sapsethA;(x—x;)), 1<i=<3, the locatiorx;
being arbitrarily chosen. Note that spectriim) has been shifted up by a factor of?1f@r clarity.

figure) to the external forcing, with a small random spattering around the locking piiNte. that
7 and — 7 should be identified In contrast, Fig. 17 displays an efficient randomization of the
phase over the entire intervigh- 7, 7] for the focusing nonlinearity.

The efficiency of chaoticization as illustrated in the phase of the wave has strong implications
for the validity of weak turbulence. Recall that the essence of weak-turbulence theories is that the
distribution of turbulent waves are nearly Gaussian, which leads to mean-field closures for kinetic
equations. Strong phase randomization as in the focusing case naturally indicates Gaussian ran-
dom phase approximation, and, thus, indicates the validity of a weak-turbulence description of
wave turbulence. Our numerical study confirms this argument: Gaussianity is well satisfied for the
focusing nonlinearity, as shown in Fig. 19 for all—this underlies the observation of the weak-
turbulence direct cascade over the entire inertial range in Fig).1Klote that for a Gaussian
distribution of a complex variable, th&&h moment,m,, is related tom, by mn=cnm2”, where
C4=2, ps=2, cg=6, andpg=3. In the focusing case, our numerical values for the exponents
agree with these theoretical values within 2% and those foc fevithin 5% —indicating a high

4
4‘\500"'\0 _40 ~20 "

FIG. 15. Focusing nonlinearity: Localized coherent structures in the evolution of sy3@®mnder a time-independent

deterministic forcing on &|k|<3 and a constant dampirg, for k>Kg, a= % o=0. Plotted here i$q(x,t)|. Only a
small portion of the total systein=410 is shown.
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FIG. 16. Defocusing nonlinearity: Turbulent waves riding on coherent long-wavelength modes in the evolution of system

(30) under a time-independent deterministic forcing os|R|<4 and a constant dampirg, for k>Kg, a= % o=0.
Plotted here igq(x,t)|. Only a small portion of the total systen=410 is shown.

degree of Gaussianity since the deviation fropy is a more stringent test for Gaussianity. In
contrast, for the case of the defocusing nonlinearity under a deterministic forcing, as shown in Fig.
20, there is more than 10% deviation frqgg and nearly 100% deviation fromyg, indicating a

large deviation from Gaussianity. As expected, this non-Gaussianity gives rise to a non-WT
resonance spectrum over a lafgeange in Fig. 14a). Interestingly, Fig. 20 shows that only for
small n(k) is there a roughly approximate Gaussian region, which precisely corresponds to the
region in highk’s in Fig. 14a), where a weak-turbulence direct cascade is observed.

Thus, one distinction between the focusing and defocusing cases is the manner and efficiency
by which the deterministic force at sméllis converted into an “effective random stirring” of the
intermediate spatial scales. In the focusing case, this conversion is very efficient, relies on the
modulation instability, involves only relatively smail modes, with completely random phases.

On the other hand, in the deterministic defocusing case, the absence of the modulational instability
forces the conversion to be less efficient, and to take place through a larger rakgaaafes
(presumably through a breakdown of KAM thrivith limited phase randomization.

We mention that, although the defocusing case in Fig. 14 has stronger nonlinearity than the
focusing case in Fig. 14—e.g., thé norm, N, for the defocusing case K~ 27 whileN~7 for
the focusing case, the focusing nonlinearity exhibits a far larger inertial range. For the defocusing
nonlinearity, a sufficient strong nonlinearity is required for a possible chaoticization of wave

-4 . 1

FIG. 17. Chaotic phase distribution for tf@cusingnonlinearity under deterministic drive.
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FIG. 18. Phase distribution for trdefocusingnonlinearity under deterministic drive.

motions. Recall that, however, weak-turbulence theories are often justified on the ground of weak
nonlinearity. This obviously raises the question of how to identify a validity regime of weak
turbulence for the defocusing nonlinearity under deterministic forcing.

C. The cycles of dispersive wave turbulence

The next numerical experiment illustrates, for the focusing case, the cycle of energy transfer
in the statistical steady state of dispersive wave turbulence—a cycle that involves the interaction
of coherent structures and resonant waves as they form the equilibrium, inverse and direct WT
cascades simultaneously. As described above, modulation instability in focusing dynamics induces
spatially coherent “solitonic” excitations at random spatial locations to form a thermal equilib-
rium bath(Fig. 21). The formation of these excitations can actively transfer energy intokqigta
their focusing processes in space, where the order of magnitude of wave nunidbeetermined
by the spatial scale at which these localized waves saturate. This energy injection process associ-
ated with the creation of the localized excitations is a relatively fast process, while the decay of

10" 3 > 162 10°
n{k}

FIG. 19. Gaussianity for thecusingnonlinearity under a deterministic drive. The best fit for the sixth morfenosses
as a function of the second momentrig=6.30m2% (white line) and for the fourth momendots is m,=2.05m}*
(dashed ling Note thatm,=n(k) and the relationsng=6 mg andm,=2 mg hold for Gaussian distribution.
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the dissipation range. In the latter case, some radiation is dissipated and some generates, through
resonant quartet interactions, an inverse cascade toward long wavelengths—where the modula-
tional instability acts to create self-focusing coherent structures and complete the cycle. In the

these coherent structures is slow. At moderate forcing amplitudes, the saturation process occurs at
former case(of moderate forcing amplitudgsthe saturating states in the center of the inertial

intermediate spatial scales, akgresides in the middle of the inertial range; however, at large
forcing amplitudes, the saturation process occurs at very short wavelengths, r@sttes within

FIG. 20. Deviation from Gaussianity for thraefocusinghonlinearity under deterministic drive. The best(filashed ling

for the nearly power law tail for the sixth momefarossesas a function of the second momentig

best fit (dot
6 m

0, focusing nonlinearity

1

FIG. 21. Formation of the coherent structures, their saturation, and the generation of the inverse ¢adicllesn be
profile of |q(x,t)|. (=3, &

observed in the decay process of those localized structures into long-wavelength radeatitted here is the space—time
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1

10

FIG. 22. (a) Coexistence of thermodynamical equilibrium and timeerseWT cascade, for théocusingnonlinearity («

= % o=0), driven by a steady force dik|=1. The flat part of the spectrufdot—dashed lineshows thermodynamical
equilibrium. (b) Coexistence of thénverseand direct WT cascades. The dottgdashed line has the exponent of the
inverse(direc) WT cascade.

range generate, again through resonant quartet interactions, both thetdineet shorter scalgs
and the inversdtoward longer scalgscascades. Dissipation terminates the flux toward shorter
scales, and the modulational instability terminates the (idixhe inverse cascagiéoward longer
scales. And again, the cycle continues.

Figure 22a) shows an excellent example of the coexistence of a thermodynamical equilibrium
state of these coherent structures and the inverse cascade induced by their slow radiation of long
coherent waves. For spectrua), we havek>1000. We note that, fdt higher thark,, the usual
WT direct cascade should be expected, since the coherent excitations do not have a strong influ-
ence on energy transfer at spatial scales much smaller than their coherence length. Rigure 22
demonstrates this phenomenon, where we have tuned the dynamics to a regime such that only very
few long waves are unstable. These inject energykgte100, resulting in an inverse cascade for
k<ks and a direct cascade f&>k,. [To help in the interpretation of these equilibrium spectra,
we note that, in general, the distribution for the thermodynamical equilibrium és1f(), where
w is chemical potential. We are able to specify the valug.afi our experiments by controlling
the forcing strength. The thermodynamical equilibrium distribution of those unstable long modes

k in Fig. 22 corresponds to the limit in which> w(k), whereas, spectrum in Fig. 11 corre-
sponds to the case @f=0, i.e.,n(k)~w(k) 1]

The formation and decay of coherent excitations in thermal equilibrium, together with the
resonance wave interaction of the direct and inverse cascades, form a complete cycle of energy
transfer in the statistical steady state—in contrast from standard descriptions in plasma turbulence,
which primarily utilize collapse with higlk- dissipatiorf** Notice that the location of the spatial
scalekg at which the coherent structures saturate depends upon the strength of the nonlinearity
(which can be controlled by the strength of amplitude of the external forcifigis saturation
wave numbekg can reside either within the inertial range or within the dissipation scales. When
it resides within the inertial range, both the direct and inverse cascades are present. Figure 23
illustrates schematically the energy transfer cycle in these two situations. In a freely decaying
situation, the cycle changes dynamically. As the turbulence decays, the saturatiok, snalees
from the highk dissipation scale of strong nonlinearity, through the intermediate inertial range
where both cascades appear, to the lowjection range itself, where only a weak turbulence
direct cascade remains. Finally we point out that, even when driven extremely strongly, e.g., a
value so strong that the total norm is increased by a factor ofuih respect to the cases shown
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Coherent Structures

(Energy Equipartition) kls
vt a——
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Forcing range Inverse Cascade Dissipation range
k- space
Coherent Structures
(Energy Equipartition) ky
— |
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Forcing range Inverse Cascade Direct Cascade  Dissipation range
k- space

FIG. 23. The cycle of energy transfer in dispersive wave turbulef@aéhe saturation scalk of the spatially localized
coherent structures is in the dissipation range—Coexistence of energy equipartition and the WT inverse (taStaele.
saturation scal&g of the spatially localized coherent structures is in the middle of the inertial range—Coexistence of the
WT inverse cascade and direct cascade.

in Fig. 22, thedefocusingdynamics does not possess this energy transfer cycle simply because it
does not have long wave instabilities, dodalizedexcitations.

D. Summary

As shown above, there are rich spectra of the dispersive wave turbulence within the single
model (30)—the direct and inverse cascades of weak-turbulence theory, thermodynamic equilib-
rium, and the MMT spectrum. The weak turbulence spectra are intrinsic properties of free waves,
while the MMT spectrum is associated with a damped-driven situation. It seems that the MMT
spectrum usually arises in the force dominating regime, wave front propagation of focusing waves
in k space’ or as a steady-state matching to driving and dissipation. Although the WT cascade
spectra and thermodynamic equilibrium spectra can be encapsulated by a single theoretical frame-
work, namely, weak-turbulence theory, in order to fully understand this MMT spectrum, it seems
that we need more insight into matching asymptotics between the inertial range and forcing/
dissipation ranges. In other words, understanding the full dynamics of wave turbulence will re-
quire a weak-turbulence theory which takes into account fully the noninertial effects of forcing
and damping. In addition to the confirmation of wave turbulence spectra, we have also demon-
strated that the interplay among these wave turbulence spectra in the focusing case is controlled by
spatially localized, coherent structures—in the focusing case, the instability of long waves creates
spatially randomly distributed, coherent structures, which inject energy into thekhiggion and
establish an energy transfer cycle within wave turbulence, thus, giving rise to the coexistence of
multiple turbulence spectra in a statistically steady state.

VIl. CONCLUSION—EFFECTIVE STOCHASTIC DYNAMICS AND PREDICTION

States of spatiotemporal chaos exist. In the settindigfersive wave turbulendbese states
can be comprised of spatially localized coherent structures in interaction with the fluctuating
radiation waves of the “active heat bath.” These deterministic wave systems act as if they were
stochastic. While a basic and fundamental description ofuhéversal P properties of the active
nonlinear heat bath is important, for applications it is even more important to develop equations
that predict macroscopic transport of observable quantities. In the chaotic deterministic systems of
dispersive wave turbulence, one seeks effective stochastic equations with which to quantify the
behavior of coherent structures and other macroscopic observables.
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Fundamental issues and questions immediately arise: Which properties and observables can
be predicted? Do properties exist for which prediction is impossible in principle? Is it possible to
describe these deterministic systems of spatiotemporal chaos by an effective stochastic dynamics?
Can an effective stochastic dynamics be realized in principle and in practice? If so, how can the
equations of effective stochastic dynamics be constructed and verified? Such issues are just be-
ginning to be addressed in the literature.

The first fundamental issue is the existence and realizability of an effective stochastic dynam-
ics. This issue was initially studied by ZalesRyn the setting of spatiotemporal chaos for the
Kuramoto—Sivashinsky nonlinear wave equation. Earlier, Yaktmtd proposed, using very heu-
ristic renormalization arguments, that the longest waves in this deterministic spatiotemporal cha-
otic system could be described by a stochastically forced Burgers’ equation with a renormalized
diffusion coefficient. Zalesky designed and performed some numerical experiments on the original
deterministic Kuramoto—Sivashinsky equation, which provided positive evidence that such an
effective stochastic dynamics could indeed exist. Later, in the setting of a damped-driven NLS
equation, wé*? refined these numerical studies, making them more detailed and precise. Our
work confirmed Zalesky’s original conclusions; moreover, it established that the existence of an
effective stochastic dynamics demands only temporal chaos and does not require spatiotemporal
chaos. Furthermore, our numerical results are consistent with the notion that spatiotemporal chaos
with increasing large domain®r the number of modéscan give rise to Gaussianity of the
effective stochastic forcing—in this limit, thus, a universal description of effective stochastic force
may be available for macroscopic dynamics.

Very recently, in their mathematical study of idealized models for stochastic climate predic-
tion, Majda, Timofeyev, and Vanden Eijnd€rdeveloped an effective stochastic dynamics for a
single climate variabl&), and tested its predictions against the original Hamiltonian syététh
57 degrees of freedomHere the effective stochastic dynamics provided successful prediction in
the presence of the “active heat bath.”

Effective stochastic dynamics appears indeed to be realizable. However, procedures for the
construction of stochastic dynamics for the original system are not well understood and need to be
further developed. Fundamental issues of predictability emerging out of these developments await
to be addressed and clarified. Such topics will be active areas of research for the next decade.
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