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Chaotic and turbulent behavior of unstable
one-dimensional nonlinear dispersive waves
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In this article we use one-dimensional nonlinear Schro¨dinger equations~NLS! to
illustrate chaotic and turbulent behavior of nonlinear dispersive waves. It begins
with a brief summary of properties of NLS with focusing and defocusing nonlin-
earities. In this summary we stress the role of the modulational instability in the
formation of solitary waves and homoclinic orbits, and in the generation of tempo-
ral chaos and of spatiotemporal chaos for the nonlinear waves. Dispersive wave
turbulence for a class of one-dimensional NLS equations is then described in
detail—emphasizing distinctions between focusing and defocusing cases, the role
of spatially localized, coherent structures, and their interaction with resonant waves
in setting up the cycles of energy transfer in dispersive wave turbulence through
direct and inverse cascades. In the article we underline that these simple NLS
models provide precise and demanding tests for the closure theories of dispersive
wave turbulence. In the conclusion we emphasize the importance of effective sto-
chastic representations for the prediction of transport and other macroscopic behav-
ior in such deterministic chaotic nonlinear wave systems. ©2000 American In-
stitute of Physics.@S0022-2488~00!01606-6#

I. INTRODUCTION

The description and understanding of turbulence remains one of the most challenging
problems in classical physics. Turbulent waves are prevalent throughout nature. Examples
waves on the surface of the ocean and storms in the atmosphere. Turbulent states invo
interaction of coherent structures with a background of fluctuating waves. This stochastic
ground could arise from deterministic instabilities that create spatiotemporal chaos, or fro
ternally imposed noise, or both. The goal of theories of turbulence is to predict behavior in
chaotic systems, where only certain phenomena are possible to quantify; others may be i
minant. One task of turbulence theory is to circumscribe what is unpredictable and what is

Turbulent states are so complex that their description must be statistical. Constantly, sta
descriptions of turbulent waves are being proposed and developed that would play a ro
nonlinear waves similar to that played by statistical physics for mechanics—namely, to pr
macroscopic descriptions of observable phenomena. These theories would~i! predict wave spectra
and other macroscopic observables, and~ii ! provide parametrizations of small-scale behavior
large-scale numerical simulations. The validity of these theories is very difficult to assess, p
rily because of mathematical and computational difficulties in the nonlinear partial differe
equations~pdes! which provide the fundamental description of the waves’ evolution.

Nonlinear dispersive waves in one spatial dimension are proving to be very useful tools
design and validation of theoretical descriptions of wave turbulence. The single spatial dime
renders the waves nearly amenable to analytical description, and certainly to careful and con
numerical simulation. In this article, we will summarize some of these developments, using a
of one-dimensional nonlinear Schro¨dinger equations~NLS! as examples.

a!Electronic mail: cai@cims.nyu.edu
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NLS equations possess two distinct types of nonlinearity: ‘‘focusing’’ and ‘‘defocusin
which significantly affect the behavior of the nonlinear wave. Throughout this article, we
emphasize distinctions in behavior between the focusing and defocusing cases—for com
integrable waves, for temporally chaotic waves, for spatiotemporal chaotic waves, and for d
sive wave turbulence. In the focusing case for NLS, waves can be linearly unstable~Sec. II!. When
perturbed, with one unstable mode, this modulational instability can give rise to temporal
~Sec. III!, and with two or more instabilities, it can induce spatiotemporally chaotic wave dyn
ics ~Sec. IV! and dispersive turbulence~Secs. V and IV!. NLS equations provide some of th
simplest examples of the interaction of localized coherent structures with a background o
chastic waves. Properties of this interaction will be described throughout the article.

The mathematical methods used in these studies of nonlinear dispersive waves include
ous and formal analysis of pdes, dynamical systems theory~for pdes!, geometric singular pertur
bation theory, stochastic equations, and scientific computation.

In Sec. II, ‘‘Background,’’ we define a class of NLS equations with focusing and defocu
nonlinearities, and we describe the ‘‘modulational instability’’ in the focusing case. We
mention the ‘‘completely integrable’’ NLS equation, and its integration through the ‘‘inve
spectral transform.’’ For this integrable case, distinctions between focusing and defocusin
linearities are again emphasized—with the very special localized waves known as ‘‘soli
occurring in the focusing case.

In Sec. III, representations of ‘‘homoclinic orbits’’ are presented for the integrable focu
case, under spatially periodic boundary conditions, and their role in the generation of tem
chaos under weakly damped and driven deterministic perturbations is discussed.

In Sec. IV, spatiotemporal chaos is defined and shown to exist for deterministic dampe
driven perturbations of NLS, in the focusing case. We note in passing that there is a great
work on the phenomena of spatiotemporal chaos for the Ginzburg–Landau equation and
Kuramoto–Sivashinsky equation~see a review,1 and references therein!.

In Sec. V,dispersive wave turbulenceis summarized, within the context of a family of NL
equations. The weak turbulence theory of dispersive waves is a mathematical theory of the
excitations between spatial scales. It involves beautiful mathematical concepts—including
nant wave–wave interactions, normal forms for Hamiltonian systems, stochastic closure
kinetic equations for correlation functions.

In Sec. VI, new numerical experiments on dispersive wave turbulence are described f
family of NLS equations. The dependence of the turbulent state upon focusing and defo
nonlinearities is emphasized, as well as the interaction of coherent structures with resonan
tion in setting up the cycles of energy transfer in dispersive wave turbulence.

While dispersive wave turbulence provides a description of the intrinsic stochastic
ground, aneffective stochastic dynamicswill be required to provide a tool for the prediction o
observable behavior. Theories that describe the interaction of coherent structures with a
ground of fluctuating waves~that is, with an ‘‘active heat bath’’! are needed to provide a
algorithm for the prediction of macroscopic transport behavior. These matters of predictabili
discussed in the Conclusion.

The material in Secs. II, III, and IV on integrability, instabilities, homoclinic orbits, tempo
chaos, and spatiotemporal chaos has been discussed in detail in the two surveys.2,3 Here we
present a condensed version—emphasizing distinctions between focusing and defocusing
earities, as well as consequences of the modulational instability and spatially localized co
structures. These features in dispersive wave turbulence are highlighted in Sec. VI, which co
new material only partially announced in Ref. 4. This section, together with the Conclusio
predictability, looks toward future work.

II. BACKGROUND

The classical NLS equation in one spatial dimension is of the form

iqt5qxx72~qq̄!q, ~1!
 May 2007 to 128.122.164.214. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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with the 1~2! sign denoting focusing~defocusing! nonlinearity. It is a Hamiltonian system,

iqt5
dH

dq̄
, ~2!

with the Hamiltonian

H~q,q̄![E $qxq̄x6uqq̄u2%dx. ~3!

Note that the Hamiltonian is indefinite in the focusing case. The Hamiltonian,L2 norm, and linear
momentum are constants of motion—associated to the symmetries of time, phase, and
translation, respectively. For focusing nonlinearity, the equation supports localized traveling
solutions of the form

q~x,t;l,v,g,x0!5l sech@l~x2x02vt !#e~ i/4![(v224l2)t22vx1g] . ~4!

This wave is~exponentially! localized in space, and has many of the characteristics of a ‘‘
ticle.’’ The parameters (l,v,g,x0) represent its amplitude~inverse-width!, velocity, phase, and
spatial location, respectively. This particle-like wave travels at constant velocityv and is very
stable to perturbations of both the initial data and the equation. The stability and properties
solitary wave have been established with many numerical experiments in the physical lite
with formal asymptotics, and with rigorous pde analysis.

But the solitary waves of the one-dimensional cubic NLS equation have far more remar
properties than merely linear stability; namely, they emerge from direct collisions with o
solitary wavescompletely unscathed. Their velocities and shapes are not altered by the collis
In fact, the only consequence of the nonlinear collision is a phase shift in their relative loca
This remarkable stability under collisions makes the solitary waves of one-dimensional~1-D!
cubic NLS equation behave as particles under elastic collisions. Solitary waves that satis
elastic collision property are calledsolitons, to emphasize the particle-like properties of the
nonlinear waves.

A. Integrability of NLS

The 1-D cubic NLS equation~1! is equivalent to the following linear system:5–7

wx5U (l)w,
~5!

w t5V(l)w,

where

U (l)[ ils31 i S 0 q

7q̄ 0D ,

~6!

V(l)[ i @2l21v26~qq̄2v2!#s31S 0 2ilq1qx

7~22ilq̄1q̄x! 0 D ,

and wheres3 denotes the Pauli matrixs3[diag(1,21). This equivalence follows from the
integrability condition for the overdetermined linear system~5!: Note that system~5! consists in
two equations for only one unknownw. As such, it is overdetermined and will possess a solut
iff w t,x5wx,t . Explicitly calculating this condition, using system~5!, shows that the integrability
condition is equivalent to the NLS equation~1!.

The Zakharov–Shabat linear system~5! is a ‘‘Lax pair for NLS.’’ 6,7 From it, the nonlinear
Schrödinger equation~1! inherits a ‘‘hidden linearity,’’ which is the key to an explanation of th
 May 2007 to 128.122.164.214. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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truly remarkable properties of 1-D NLS. This discovery by Zakharov and Shabat7 of the Lax Pair
for NLS was an extremely important step in the history of soliton theory. It showed that the e
integration of the Korteweg-de Vries equation by Gardner, Greene, Kruskal, and Miura5 was not
a single isolated example; rather, it was a part of a general integration procedure for c
nonlinear dispersive waves. Moreover, the NLS equation has far richer phenomena than
Thus, the work of Zakharov and Shabat showed that a nonlinear equation with rich phen
arising from instabilities could be integrated through linear spectral methods.

The primary way the ‘‘hidden linearity’’ has been used to study 1-D NLS begins from
‘‘ x flow’’ of ~5!:

L̂w5lw, ~7!

where

L̂[2 is3

d

dx
2S 0 q

6q̄ 0D . ~8!

This linear ‘‘x flow’’ is viewed as a Sturm–Liouville eigenvalue problem, with eigenvalue
rameterl. The spectral and inverse spectral theory for this differential operator leads t
complete integration of the NLS equation.

For example, consider the 1-D NLS equation~1! on the whole line (2`,x,1`), for
smooth rapidly decaying functions ofx; i.e., in Schwarz class.@Actually, in the defocusing case
uq(x)u→c.0, while in the focusing case, the limitc vanishes.# Consider the ‘‘Zakharov–Shabat’
operatorL̂, Eq. ~8!, as an~unbounded! differential operator onL2(R). Denote its point spectra
@eigenvalues withL2(R) eigenfunctions# by $l1 ,l2 ,...,lN%. As the coefficientsq(x,t) of this
differential operator evolve in timet according to the 1-D NLS equation~1!, one expects the
eigenvaluesl j (t) to change with time. But they do not! A simple calculation using the Lax p
~5! shows that the eigenvalues are constant int. These eigenvalues provideN invariants for the
1-D NLS equation~1!—where the numberN, as determined by the initial data, can be very lar
and often exceeds three, the number of classical invariants. Thus, the 1-D NLS equation po
some unusual invariants, in addition to the classical ones.

These additional invariants arise after considering the eigenvalues as functionals of the
ficientsq(•,t):

l j~ t !5l j@q~•,t !#.

This viewpoint leads one to consider the inverse problem of determiningq(•,t) from spectral data
of the differential operatorL̂. Clearly the finite numberN of eigenvalues will be insufficient dat
to determine the function$q(x,t),;xP(2`,1`)%, and the eigenvalues will have to be au
mented with additional spectral data. But this is a well-known problem in mathematical ph
known as the ‘‘inverse scattering problem’’—particularly so for the Schro¨dinger operator of
nonrelativistic quantum mechanics, but also for the operatorL̂, which is a form of the Dirac
operator of relativistic quantum mechanics.

This viewpoint from inverse spectral theory shows that the discrete bound state eigen
$l1 ,l2 ,...,lN% and a continuum of reflection coefficients$r (l),;lP(2`,`)% are constants of
motion for 1-D cubic NLS. This infinite collection of constants of motion explains the remark
stability and elastic collision properties of solitons: First, one must understand the conn
between spectral data and solitons. A formula forN solitons exists that establishes that there i
one-to-one correspondence between the solitons in the spatial profile and the bound state
values in the spectral data. TheN eigenvalues correspond toN solitons, with the amplitude and
speed of each fixed by the real and imaginary part of the associated eigenvalue. Moreo
reflection coefficientr (l) in the spectral data of the Zakharov and Shabat operator fixes
amplitude of thel th radiative component of the nonlinear wave. The temporal behavior of
 May 2007 to 128.122.164.214. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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spectral data shows that the speeds and amplitudes of the solitons are invariant in time, and
altered by ‘‘interactions of the solitons.’’ And, sinceur (l,t)u5ur (l,0)u, no radiation can be
generated by these interactions. In other words, the infinite number of invariants so rigidly
strain the solution that the elastic collision properties of 1-D NLS~1! result!

Such spectral considerations have lead to the complete integration of the NLS equatio~1!,
under either ‘‘whole-line’’ or ‘‘periodic’’ spatial boundary conditions—and have provided
tailed explanations of the remarkable properties of solutions of this equation. Equation~1! is a
completely integrable Hamiltonian system.

B. Modulational instability

There is an important instability for the NLS equation withfocusing nonlinearity, known as
the ‘‘modulational instability,’’ which is responsible for soliton formation, collapse to singu
structures in finite time~in dimensions D.1!, unstable tori and homoclinic orbits, and tempo
and spatiotemporal chaos for perturbed NLS equations. Under periodic spatial boundary
tions, specific examples of this instability are easy to describe.

Consider elementary ‘‘plane wave solutions’’ of the NLS equation:

qc~x,t;c,g!5c exp@2 i ~2c2t1g!#, ~9!

where (c,g) denote two real parameters. Linearizing the NLS equation about this exact so
yields

q~x,t !5qc~x,t !1d f ~x,t !exp@2 i ~2c2t1g!#;

i f t5 f xx12c2f 12c2 f̄ 1O~d!;

f ~x,t !5 f̂ ~k!exp@ i ~kx2v~k!t !#;

v2~k!5k2@k224c2#.

From this dispersion relationv(k), the plane wave~9! is unstable to fluctuations with wav
numbers 0,k2,4c2; while shorter-wavelength fluctuations are neutrally stable according to
ear stability theory. The ‘‘quantization condition’’ that ensures spatial periodicity,

kj5
2p j

l
, j 5...,21,0,11,...,

shows that the number of unstable Fourier modes scales linearly with the sizel of the periodic
spatial domain. This instability of the plane wave~9! to long-wavelength fluctuations is a speci
case of a famous instability in nonlinear dispersive wave theory, known as the ‘‘Benjamin
instability’’ in the context of water waves8 and as the ‘‘modulational instability’’ in the context o
plasma physics.9 This instability is only present in the case of focusing nonlinearity. Plane w
solutions of defocusing NLS are neutrally stable.

III. HOMOCLINIC ORBITS AND TEMPORAL CHAOS

Under periodic spatial boundary conditions, solutions of the integrable NLS equation r
on tori ~which arise as the level sets of the constants of motion!. For focusing nonlinearity, thes
tori can be unstable due to the modulational instability.~The level sets have a ‘‘saddle structure
in functional space.! In this setting, the spectral transform provides representations of these
and explicit representations of their unstable manifolds and homoclinic orbits.10,11 Next, we de-
scribe these representations.
 May 2007 to 128.122.164.214. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Fix a periodic solution of NLS that is quasiperiodic int, unstable, and for which the operato
L̂(q) has a complex double eigenvaluen of multiplicity 2. We denote two linearly independen
Zakharov–Shabat eigenfunctions at (n,q) by (f1,f2). Thus, a general solution of the Zakharo
Shabat linear system~5! at (q,n) is given by

f~x,t;n;c1 ,c2!5c1f11c2f2.

We usef to define atransformation matrix Gby

G5G~l;n;f![NS l2n 0

0 l2 n̄
DN21, ~10!

where

N[Ff1 2f̄2

f2 f̄1
G .

Then we defineQ andC by

Q~x,t ![q~x,t !12~n2 n̄ !
f1f̄2

f1f̄11f2f̄2

~11!

and

C~x,t;l![G~l;n;f!c~x,t;l!, ~12!

wherec solves the Zakharov–Shabat linear system~5! at (q,l). Formulas~11! and ~12! are the
Bäcklund transformations of the potential and eigenfunctions, respectively. We10,11 have the fol-
lowing.

Theorem III.1: Define Q(x,t) and C(x,t;l) by (11) and (12). Then (i) Q(x,t) is a solution

of NLS, with spatial period l; (ii) The spectrums„L̂(Q)…5s„L̂(q)…; (iii) Q (x,t) is homoclinic to
q(x,t) in the sense that Q(x,t)→qu6

(x,t), exponentially asexp(2snutu) as t→6`. Here qu6
is

a ‘‘torus translate’’ of q, sn is the nonvanishing growth rate associated to the complex do
point n, and explicit formulas can be developed for the growth ratesn and for the translation
parametersu6 ; (iv) C(x,t;l) solves the linear system (5) at(Q,l).

This theorem is quite general, constructing homoclinic solutions from a wide class of st
solutionsq(x,t). Its proof is one of direct verification, following the sine-Gordon model.10 Peri-
odicity in x is achieved by choosing the transformation parameterl5n to be a double point.

Several qualitative features of these homoclinic orbits should be emphasized:~i! Q(x,t) is
homoclinic to a torus, which itself possesses rather complicated spatial and temporal structu
is not just a fixed point;~ii ! nevertheless, the homoclinic orbit typically has still more complica
spatial structure than its ‘‘target torus.’’~iii ! When there are several complex double points, e
with a nonvanishing growth rate, one can iterate the Ba¨cklund transformations to generate mo
complicated homoclinic manifolds.~iv! The number of complex double points with nonvanishi
growth rates counts the dimension of the unstable manifold of the critical torus in that
unstable directions are coordinatized by the complex ratioc1 /c2 . Under even symmetry only
one real dimension satisfies the constraint of evenness.~v! These Ba¨cklund formulas provide
coordinates for the stable and unstable manifolds of the critical tori; thus, they provide ex
representations of the critical level sets, which consist in ‘‘whiskered tori.’’12

The simplest examples of these homoclinic orbits begins with the spatially uniform p
waveqc , Eq. ~9!, for which the entire construction can be carried out explicitly.11,3 Rather than
repeat this simple analytical formula, we just show sample homoclinic orbits that result in Fi
2, and 3.
 May 2007 to 128.122.164.214. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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In this example the target is always the plane wave; hence, it is always a circle of dime
one, and in this example we are constructing whiskered circles. On the other hand, in this ex
the dimension of the whiskers need not be one, but is determined by the number of
imaginary double eigenvalues, which in turn is controlled by the amplitudec of the plane wave
target and by the spatial period.~When there are several complex double points, the Ba¨cklund
transformations must be iterated to produce complete representations of the unstable man!

Thus, Bäcklund transformations give global representations of the critical level sets. The
sets in the neighborhood of these of critical ones have fascinating topological structure.13,11 The
plane wave example under even symmetry and with only one instability provides the sim
case. Here, the dimension of the unstable manifold of the plane wave circle is 2—the dime
of each homoclinic orbit plus the dimension of the target circleq5S. In addition, NLS also
possesses a four-dimensional invariant manifold that contains the unstable manifoldWu(q5S).
This 4-D manifold can be viewed as the result of ‘‘shutting-off’’ all degrees of freedom excep
the spatial mean and the ‘‘first radiation mode.’’ In this four-dimensional space, the leve
topologically form a trouser diagram shown in Fig. 4. Note in particular the symmetric pa
homoclinic orbits and their relationship to the two legs, one of which represents a~periodic!
soliton located at the center of the periodic domain atx50, and the other a soliton located one-ha
period away atx5 l /2. When all other radiation degrees of freedom are excited, each for
small disk~a center for each additional radiation degree of freedom!, and the full phase space ca
be represented topologically~locally, near the trouser! as the product of the trouser with a coun
able number of disks. More complex examples are described in Ref. 11.

FIG. 1. Homoclinic orbit associated with one instability: Center location. Plotted isuq(x,t)u.

FIG. 2. Homoclinic orbit associated with one instability: Edge location~cf. Fig. 1!.
 May 2007 to 128.122.164.214. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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A. Temporal chaos

The existence of instabilities and their associated homoclinic orbits for the integrable
equation indicate that external perturbations could induce chaotic responses in perturbed
ministic NLS equations. Moreover, the trouser topology nearby critical level sets, together
the correlation of the two legs of the trouser with two distinct spatial locations for a so
~‘‘center’’ and ‘‘edge’’ of the periodic domain!, indicates that chaotic behavior under determ
istic perturbations might involve a ‘‘random jumping’’ of a solitary wave between these
spatial locations. Our numerical experiments14,2 show that these expectations are realized, and
these temporally chaotic states are relatively easy to observe.

In Refs. 14 and 2, we considered a damped-driven perturbation of the NLS equation
form

iqt1qxx12uqu2q52 iaq1Gei (vt1g), ~13!

with periodic boundary conditions,q(x1 l )5q(x), wherel is the system length, andv andg are
the driving frequency and phase, respectively. The damping coefficienta and the driving strength
G are small. The initial condition is a periodic extension of the single soliton waveform,

q~x,0!5h sech~hx!. ~14!

These numerical experiments are described in detail in the survey,2 including~i! the numerical
algorithms and their validation, which is essential when studying long-time temporal integra
of chaotic behavior of unstable orbits;~ii ! the collection of chaotic diagnostics with which w
post-processed the numerical data; and~iii ! a detailed discussion of our numerical observatio
Here we only give a brief description of typical observations, for the simplest case where tem
chaos was observed.

FIG. 3. Homoclinic orbit associated with two instabilities~cf. Fig. 1!.

FIG. 4. Trouser diagram: One of the legs corresponds to the center location~Fig. 1! and the other to the edge~Fig. 2!. The
right figure is the ‘‘end view’’ of the trouser along the direction of the arrow.F indexes the level sets.
 May 2007 to 128.122.164.214. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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We organized our numerical studies intobifurcation experimentsin which all parameters were
fixed, except for the amplitude of the driving forceG, which was increased from experiment
experiment as a ‘‘bifurcation parameter.’’ Sample results are pictured in Fig. 5. While the d
of the bifurcation sequence are somewhat involved,2 the general pattern may be summarized
follows. As G increases, the long-time behavior of the wave undergoes the following sequen
changes:~i! spatially flat, time independent;~ii ! ‘‘sech-like’’ in space, time independent;~iii !
sech-like in space, but time periodic;~iv! sech-like in space with a background, quasiperiodic
time; ~v! chaotic in time, with the sech-like excitation jumping from the center to the edge o
periodic spatial domain, which should be compared with the homoclinic orbits in Figs. 1 a
Standard chaotic diagnostics2 were used to identify chaotic behavior—including Poincare´ sections,
power spectra, Lyapunov exponents, and information dimension. Figure 5 shows four s
‘‘cross sections’’—for time-independent, periodic, quasiperiodic, and chaotic temporal beha

This experiment is the simplest that we have found that has chaotic behavior, and it is
important for our theoretical studies. In it, the chaotic state contains only one spatially loca
coherent structure. At times this solitary wave is located at the center, and at other times
edges of the periodic spatial domain. These two locations are the only two allowed unde
boundary conditions. We believe that one source of the chaotic behavior is an irregular~random?!
jumping of the solitary wave between center and edge locations~see Fig. 6!. This center–edge
jumping of the solitary wave through homoclinic transitions forms the basis for the sim
description and model of chaotic behavior in NLS pdes.

B. Persistent homoclinic orbits

The first step toward analytical descriptions of such chaotic behavior is to assess the
tence of homoclinic orbits. These can provide a ‘‘skeleton’’ for chaotic trajectories. Tha
persistent stable and unstable manifolds, and their intersections provide a framework with
chaotic behavior can be described. Procedures for this description are well known for
dimensional dynamical systems,15,16and have recently been developed for the NLS pde.17 See also
Refs. 18 and 3 for rather detailed overviews of these mathematical arguments.

Here we merely state the persistence theorem:17 Consider a perturbed NLS equation of th
form

iqt5qxx12@qq̄2v2#q1 i e@D̂q21#, ~15!

where the constantvP( 1
2,1), e is a small positive constant, andD̂ is a boundednegative definite

linear operator on the Sobolev spaceHe,p
1 of even, 2p periodic functions. Specific examples of th

dissipation operatorD̂ include the discrete Laplacian and a ‘‘smoothed Laplacian’’ given by

D̂q52aq2bB̂q, ~16!

where the operatorB̂ has symbol given by

b~k!5H k2, k,k,

0, k>k.

Extending Melnikov analysis and geometric singular perturbation theory to a pde setting,17

establish the following.
Theorem III.2: The perturbed NLS equation (15) possesses a symmetric pair of orbits

are homoclinic to a saddle fixed point Q, provided the parameters lie on a codimension 1 se
parameter space, which is approximately described by

a5E~v!b.
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FIG. 5. Perturbed solitonic dynamics. From top to bottom:~1! locked state,~2! periodic state,~3! quasiperiodic state, and
~4! temporal chaotic state~which should be contrasted with homoclinic orbits in Figs. 1 and 2!. Plotted here areuq(x,t)u.
The right panels are the corresponding surface cross sections$Req(0,t), Im q(0,t),;t%. Note that for the case of the
quasiperiodic and chaotic dynamics shown here, the values of the drivingG differ only by 0.4%.
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Formulas exist that describe, approximately for smalle, the characteristic properties of thes
homoclinic orbits such as the constant E(v) and a ‘‘take-off’’ angle.

These two homoclinic orbits differ by the location of a transient spatial structure—a so
wave which is located either at the center (x50) or the edge (x5p) of the periodic box. As such
this theorem provides a key step toward the exciting possibility of horseshoes19 and chaotic
symbol dynamics16 for the pde—with the jumping of the solitary wave between the two spa
locations as ‘‘random as a coin toss.’’ Recently, Li20 has made a further step toward such p
behavior by establishing a symbol dynamics for an infinite dimensional geometric mod
perturbed NLS.

Recent extensions and related work about temporal chaos for NLS pdes include the follo
~1! The removal of the assumption of bounded perturbations, so that the theorem now a

to diffusion.21

~2! The existence of very long~but finite! complex transients, which are more robust a
easier to observe than symbol dynamics.22,23

~3! The lack of persistence of NLS homoclinic orbits under complex Ginzburg Lan
perturbations.24

~4! The behavior under conservative perturbations.25–28

~5! The removal of the constraint of even symmetry.27

~6! The realization of chaotic dynamics in wave tanks.29

IV. SPATIOTEMPORAL CHAOS—EXISTENCE

The temporal chaosjust discussed consists of spatially coherent localized waves that d
chaotically in time. As Fig. 5 shows, these waves are very regular in space. Their time se
location x, $q(x,t),;t%, appears to be statistically well correlated to the time series at loca
yÞx, $q(y,t),;t%. On the other hand, waves ofdispersive turbulenceshould behave chaotically
in both space and time. At least the time series$q(x,t),;t% and $q(y,t),;t% should become
statistically independent as the distance fromx to y increases.

Recall that the numerical experiment described in Sec. III was for small spatial domains
only one instability and only one solitary wave. Intuitively, spatial decorrelation might
achieved by increasing the sizel of the spatial domain~because the number of instabilities, an
thus, the number of spatially localized states within the spatial domain, increases with doma
l !. Spatial decorrelation is indeed seen in our numerical experiments for the damped-drive
~13!. An example with only one instability is shown in Fig. 7, while one with two instabilities

FIG. 6. Center–edge jumps of the soliton. The dark line segments are the temporal traces of the maximum ofuq(x,t)u.
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Fig. 8. Clearly, the two figures display drastically different spatial patterns. It is instructiv
compare Fig. 7 with the homoclinic orbits shown in Figs. 1 and 2 and to compare Fig. 8 wit
homoclinic orbit shown in Fig. 3.

A natural question arises: Given a temporally chaotic solution of Eq.~13!, how large a spatial
domain, or how many instabilities, is required for effective decorrelation in space? Before i
tigating such questions further, we need first to formulate a precise definition of the conc
spatiotemporal chaos.

A. Definition of spatiotemporal chaos

There have been many definitions proposed to capture the essence of spatiotemporal1

We prefer a ‘‘working definition’’ that includes two points:~i! A temporally chaotic waveq(x,t),
~ii ! for which the time series$q(x,t),;t% and$q(y,t),;t% become statistically independent as t
distance fromx to y increases.

For a definition, we must make precise the meanings of ‘‘temporal chaos’’ and ‘‘statis
independence.’’ Fortemporal chaoswe will accept any common definition, such as a bound
attractor with positive Lyapunov exponents.

Statistical independenceis often estimated through the decay of the two-point correla
function:

FIG. 7. Temporal chaos in the presence of one linearly unstable mode,l 56.4; the evolution of system~13! with a
50.004,G50.144,v51. The initial conditionq5A1e exp(i2px/l), A50.8, e5231025. Plotted here isuq(x,t)u.

FIG. 8. Spatiotemporal chaos in the presence of two linearly unstable modes,l 59.6, for system~13!. ~For parameters see
Fig. 7.!
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C~x2y![ lim
T→`

1

T E
0

T

@„q~x,t !2^q&…„q̄~y,t !2^q̄&…#dt, ~17!

where^•& denotes the temporal mean, and where we have assumed translational invariance
system. However, the vanishing of the two-point correlation function is only a necessary con
for statistical independence; thus, we prefer to base the definition uponmutual information—
whose vanishing is a necessary and sufficient condition for statistical independence.

For two stochastic variablesU and V, with probability density functionsp(u) and p(v),
respectively, and with joint probability density functionp(u,v), the mutual information between
these two variablesU andV is defined as30

I~U,V!5E du dv p~u,v !log
p~u,v !

p~u!p~v !
. ~18!

In this application of spatiotemporal chaos, the probability distributions will be generate
the chaotic time series:

px~q!: $q~x,t !,;t%,

py~q!: $q~y,t !,;t%,

px,y~q,r !: $@q~x,t !,r ~y,t !#,;t%,

wherer (y,t)5q(y,t). Intuitively, px(q)dq is the fraction of time thatq(x,•)P(q,q1dq), etc.
Thus, we define the mutual information between pointsx andy by

I~x,y!5E du dv px,y~u,v !log
px,y~u,v !

px~u!py~v !
. ~19!

In terms of this mutual information between spatial points, we arrive at our working definitio
follows.

Working definition:A wave q(x,t) is spatiotemporalchaotic if ~1! q(x,t) is a temporally
chaotic orbit~for example, as characterized by bounded, not asymptotically periodic, orbits
positive Lyapunov exponents!; ~2! whose mutual information between two spatial pointsI(x,y)
decays exponentially in space asux2yu→`.

B. Numerical measurements of spatiotemporal chaos for NLS waves

Now we return to chaotic NLS waves~13! and establish by numerical experiments the ex
tence of spatiotemporal chaos.31,32 First, we calculate numerically the spatial correlation funct
C(x) @Eq. ~17!#.

Figure 9 shows the dependence of the correlation functionC(x) on the system length. Fo
L56.4, which corresponds to the one linearly unstable mode, the whole system is correlate
is intuitively consistent with the observations of Fig. 7, since, for most times of the evolution,
one solitary wave is present in the periodic spatial domain. When the system size is increa
that larger numbers of solitary waves are present, Fig. 9 shows that the correlation function r
vanishes. Therefore, the system becomes increasingly decorrelated, indicating an onset
tiotemporal chaos. As shown in the inset of Fig. 9, the correlation at the half-system lengt
function of L displays a clear transition around the valueL th52p/A, above which the second
linearly unstable mode enters~note thatA is the amplitude of the plane wave; see Fig. 7!.

Mutual information can be used to make these results more precise. Figure 10 summari
mutual information as a function of the distancex between any two points in space for both o
and two linearly unstable modes, which corresponds to the cases in Figs. 7 and 8, respectiv
one linearly unstable mode the mutual information remains nonzero across the system, sig
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no sufficient loss of information over the whole system, while it vanishes rapidly for the
linearly unstable mode case. It can be further determined that this decay isexponentialas shown
in the inset of Fig. 10; that is,

I~x!→expS 2
x

j D , for large x, ~20!

with a decay lengthj;0.30. As solitons are phase locked to the external driver, i.e.,V5v, we
anticipate that the driving frequencyv controls this decay length, i.e., the soliton’s frequencyV
determines its spatial width, and hence should detemine its coherence length in space.

These results establish that spatiotemporal chaos exists for NLS waves, with the tra
from temporal chaos to spatiotemporal chaos occurring at the system size at which a
instability arises, provided the constraint of even symmetry is relaxed. Onlytwo instabilities seem
to be required—a somewhat unexpected result, as the prevalent belief in the physical lite
requires very large systems with many unstable modes.1,33–35~See, however, the recent work.36!

FIG. 9. Dependence of the correlationC(x) on the system sizeL. Inset: Transition ofC(L/2) aroundL th52p/A ~dashed
line!. For L56.4, 9.6, see Figs. 7 and 8.

FIG. 10. Mutual informationI(x). Fine line: one linearly unstable mode; Dotted line: two linearly unstable modes as
shown in the inset on the linear-log scale~the straight line is a fit to an exponential form!.
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C. Descriptions of the spatiotemporal chaotic state

Given the existence of a spatiotemporal chaotic state, one seeks ways to describe and
stand it. Clearly such states are so complex that statistical descriptions will be required. S
possibilities exist, including~i! equilibrium statistical mechanics,~ii ! closure theories of dispersiv
wave turbulence, and~iii ! effective stochastic dynamics of coherent states in interaction wi
background of fluctuating waves. Next, we describe this background with the methods
dispersive wave turbulence.

V. DISPERSIVE WAVE TURBULENCE

A spatiotemporal chaotic collection of waves is so complex that it must be described s
tically. Ensembles of chaotic waves form a stochastic state or an ‘‘active heat bath’’ for w
wave spectra, instead of individual wave trajectories, are natural observables. In this sto
state, the fundamental excitations consist in resonant wave–wave interactions, which are de
statistically by the theory of dispersive wave turbulence.

Dispersive wave turbulence is a theory of the flow of wave excitations between spatial s
or fluxes, ink space. It assumes that the active stochastic state is created as a state of ‘‘stati
steady flow ink space’’ as follows: Excitations are being injected into the system at one sp
scale~say a long spatial scale! by an external forcing, and removed by dissipation that is restric
to a second spatial scale~say a short scale!. Resonant wave–wave interactions transport
excitations, setting up a steady flow from the injection to the dissipation regions ofk space. At the
intermediate scales~the ‘‘inertial’’ or ‘‘Kolmogorov’’ scales!, there is no forcing or damping, an
the waves satisfy a conservative Hamiltonian system. These waves reside in a statistical
steady flow ink space and their wave spectra are believed to be universal, i.e., independent
details of forcing and dissipation.

Dispersive wave turbulence seeks equations that govern the temporal evolution of th
point correlation functionsn(k,t),

n~k,t ![^a~k,t !ā~k,t !&,

wherea(k,t) denotes the spatial Fourier transform of the wave profileq(x,t), and^•& denotes an
average—either an ensemble average with respect to initial conditions, a local time avera
both. In principle, averaging does not lead to ‘‘closed’’ evolution equations forn(k,t). That is, the
evolution of the two-point functionsn(k,t) depends upon four-point functions; those for t
four-point functions depend upon six-point functions, resulting in an infinite hierarchy of e
tions for correlation functions.Ad-hocclosures have been developed through approximations
rely upon weak nonlinearity and/or Gaussian random phase assumptions. It is difficult to
the accuracy and validity of these closure schemes, primarily because of mathematical an
putational difficulties in the nonlinear pdes that provide the fundamental description of the w

Resonant radiation waves are the fundamental excitations that comprise the active sto
background. However, in nonlinear wave systems, localized coherent structures often coex
radiation. With focusing nonlinearities these localized coherent structures typically are pr
and it is unnatural to restrict to nonlinearities so weak that the wave system is solely compri
radiation. When both classes of excitations are present, it is a major theoretical challenge to
and validate a description of the rich structure of dispersive wave turbulence.

Here, we attempt to illustrate the richness of dispersive wave turbulence by itself, and
presence of coherent structures, by using a class of one-dimensional nonlinear wave equati
was introduced in Ref. 37. The model is constructed such that the validity of theories of disp
wave turbulence can be precisely checked numerically. This model permits an explicit defi
of each of the concepts just described. It has both focusing and defocusing nonlinearities,
the focusing case, has both types of excitations~localized coherent structures and resonant rad
tion!. With this model, one obtains a very precise and detailed description of dispersive
turbulence.
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A. Background about weak turbulence

If there is only one type of wave present in a nonlinear medium, one can describe the w
the absence of dissipation by a complex amplitudeak satisfying the Hamiltonian system,

i
]ak

]t
5

dH

dāk
. ~21!

We consider Hamiltonians of the form

H5H01H int , ~22!

where

H05E v~k!akāk dk

is the Hamiltonian of the linearized problem,v(k) denotes its dispersion relation, andH int is a
perturbation describing the interaction among those degrees of freedom represented, ink space, by
ak . Generally,H int can be expressed in terms of power series inak and āk .

The dispersion relationv(k) affects the nature of wave interactions and their resulting tur
lence properties. For example, if

v~k!5v~k1!1v~k2!,
~23!

k5k11k2 ,

holds for somek, the wave coupling leads to the resonant interaction of wavesak1
andak2

with
ak11k2

. This situation is calledthree-waveresonance. If~i! Eq. ~23! does not have solutions, an
if ~ii !

v~k1!1v~k2!5v~k3!1v~k4!,
~24!

k11k25k31k4 ,

has nontrivial (k3Þk1 ,k2) solutions, then four-wave resonances are responsible for the
energy transfer between weakly nonlinear dispersive waves. It can be easily shown that, un
above two conditions, a normal form near-identity transformation will place the Hamiltonian~22!
in the form

H5E v~k!akāk dk1E Skk1k2k3
ākāk1

ak2
ak3

d~D4!dk dk1 dk2 dk3 , ~25!

whereD4[k1k12k22k3 . This is the canonical form of a Hamiltonian system with four-wa
resonances. Clearly in this case, the ‘‘particle’’ number,

N5E nk dk5E nv dv, ~26!

is conserved and wherenk[uaku2 andnv[nk dk/dv. In addition, the linear energy can be writte
as

H05E vknk dk5E vnv dv. ~27!
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B. The direct and inverse cascades

These two quantities~26! and ~27! have a direct implication on the flux of energy and wa
‘‘particle’’ number under four-wave resonances withlocal interaction kernels, when the system
forced at some wave numbers and damped at others. This implication can be easily see
global balances of ‘‘particles’’ and energy. Assuming local interaction, we consider an idea
situation in whichN particles are being created per unit time at frequencyv, andN2 and N1

particles are being removed at frequenciesv2 andv1 . In a steady state, conservation of particl
and ~linear! energy leads to

N5N21N1 ,

vN5v2N21v1N1 .

Solving for N2 andN1 , we have

N25
N~v12v!

v12v2
, ~28!

N15
N~v2v2!

v12v2
. ~29!

SinceN2 ,N1.0, v has to lie betweenv2 andv1 . Without loss of generality, we choosev2

,v,v1 . As neitherN2 , N1 nor v2N2 , v1N1 vanish, there are fluxes of particles and ene
in both directions fromv. If v2 is near zero, there will be almost no energy removal at the
frequencies, and the energy will flow upward fromv to v1 , resulting in an upward~direct!
cascade of energy from the low frequencies to the high ones. Ifv1 is very large, Eq.~29! shows
that the number of particles removed atv1 will be very small, and the particles have to flow fro
v to v2 , creating a downward~inverse! cascade of particles. As a consequence, if the dissipa
takes place only at frequencies near zero and at very high values, there is an ‘‘inertial’’ ran
which the energy flows upward from its source to the sink at the high frequencies, whil
particles flow downward from their source to the sink at the low frequencies. As we will
below, these cascades provide an intuitive physical basis for understanding the steady flo
tions in weak-turbulence theories. However, note that nonlinearities often give rise to no
interactions. Because of nonlocality, injection of energy at a particular frequency can c
particles over a wide range of frequencies extremely rapidly compared with the wave–
resonance time scale; similarly, dissipation at a particular scale can remove particles s
neously over a range of scales. Our numerical study seems to indicate that interactions ink space
are more nonlocal in many situations than usually believed.

C. A simple model problem

Consider the class of one-dimensional waves introduced in Ref. 37:

iqt5u]xuaq6u]xu2sS U u]xu2sqU2

u]xu2sqD , ~30!

or equivalently in ‘‘k space,’’

i ȧk5v~k!ak 6E ak1
ak2

āk3

uk1k2k3kus
d~k11k22k32k!dk1 dk2 dk3 , ~31!

where the2~1! sign labels focusing~defocusing! nonlinearities. This model depends upon tw
real parameters,a.0 and s. The parameters is introduced to control the nonlinearity. Th
parametera controls the dispersion relation
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v~k!5ukua,

which, for a,1, has resonant quartets in this one-dimensional model.
Note that, fora>1, resonance conditions~24! have only trivial (k15k3 ork15k4) solutions.

Obviously,a52 ands50 constitute the usual NLS equation, which has no nontrivial four-w
resonances in one dimension. We usea,1, and usuallya5 1

2.
Weak turbulence theory is a statistical description of weakly nonlinear dispersive wav

terms of a closed, kinetic equation for certain two-point spectral functions. Starting with Eq~31!
in k space, one obtains

nt~k,t !56E 2 Im~ak1
ak2

āk3
āk!

uk1k2k3kus
d~k11k22k32k!dk1 dk2 dk3 , ~32!

for the two-point functionn(k,t)5^ak(t)āk(t)&. Under a Gaussian random phase approximat
and the assumption that

]

]t
^ak1

ak2
āk3

āk&.0,

justified by an asymptotics of multiscale times, one obtains theclosure condition,

Im^ak1
ak2

āk3
āk&.62pd~v11v22v32v!

n2n3nk1n1n3nk2n1n2nk2n1n2n3

uk1k2k3kus
.

Using this condition, one can close Eq.~32! to arrive at

nt54pE n1n2n3nk

uk1k2k3ku2s S 1

nk
1

1

n3
2

1

n2
2

1

n1
D d~v11v22v32v!d~k11k22k32k!dk1 dk2 dk3 ,

~33!

which is the weak-turbulence kinetic equation forn(k,t). It is important to note that both the
defocusingand thefocusingnonlinearity lead to the same kinetic equation~33!. Weak turbulence
does not discriminate between modulationally stable and unstable waves.

D. The wave spectra

The angular averaged kinetic equation~33!37 possesses time independent~stable! solutions of
the weak turbulence that describe steady-state spectra:

n~k!5c, equipartition of particle number; ~34!

n~k!5
c

v~k!
, equipartition of energy; ~35!

n~k!5cuku8s/321, direct cascade; ~36!

n~k!5cuku8s/3211(a/3), inverse cascade. ~37!

The first two ‘‘equilibrium spectra’’ can immediately be shown to satisfy~33!. In fact, each is a
special case of the general solution

n~k!5
c

v~k!1m
,
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where the constantm denotes the ‘‘chemical potential.’’ The interpretation of these first two ste
states as ‘‘equipartition of particles’’ and ‘‘equipartition of energy’’ comes from the invariant~26!
and ~27!.

The other two spectra of the ‘‘direct’’ and ‘‘inverse’’ cascades were obtained by Zakha38

as special solutions of the kinetic equation. His beautiful argument uses a conformal trans
tion, and is motivated and described in Ref. 37 for model~30!.

In the numerical experiments reported in Refs. 37 and 4, another spectrum was also ob
For Eq.~30! at a5 1

2, this spectrum is

n~k!5cuku2s25/4, MMT. ~38!

As shown in Ref. 37, the MMT spectrum is not a solution of the weak-turbulence equa
~33!. Rather, it satisfies an alternative closure~referred to as the MMT closure!, which was
heuristically proposed in Ref. 37.

VI. NUMERICAL RESULTS ON DISPERSIVE WAVE TURBULENCE

We simulate the full dynamics of system~30! using a pseudospectral method in combinat
with an integrating factor method.~For details, see Ref. 37!. For the time dynamics, we use
fourth-order adaptive step size Runge–Kutta integrator. For most runs, the total number of
is 213, and the system sizeL;400.

In the following, we will describe some results of our numerical experiments. We will use
convention that the unit for the wave numberk is 2p/L: thusk is labeled by integers.

A. Four spectra

We begin in afreely decayingsetting, in which both the direct and inverse weak-turbule
~WT! cascades are observed. These specific studies are all initialized from the same identic
~for both defocusing and focusing nonlinearities and for variouss’s anda’s!, which is constructed
as follows: First, a sufficiently stirred state is created from the evolution of smooth initial
under a random forcing at long wavelengths. Then, to study freely decaying turbulence, w
this state as initial data, with the force set at 0 and with damping of the form2 iG jak , j 51,2,
with G1 on large spatial scalesuku;1, G2 on small spatial scalesuku.Kd ~Kd52600 for most
experiments! and no damping in between. WhenG1!G2 , the state gradually relaxes to thedirect
WT cascade.

As shown in Fig. 11~b!, this WT spectrum is observed overfour decades of energy, andthree
decades of spatial scales. This result4 constitutes the clearest and most striking numerical ob
vation of weak turbulence spectra to date. Alternatively, whenG1@G2 ~stronger dissipation on
large spatial scales!, the state relaxes to theinverseWT cascade, as clearly shown in Fig. 11~c!.
We emphasize that throughout these studies of freely decaying turbulence, the states, a
decaying, decrease very slowly in theL2 norm, and remain nonlinear throughout the time cou
of the numerical experiments.

For focusing nonlinearity, in addition to the two WT spectra, there is athird spectrum emerg-
ing under relaxation dynamics@see Fig. 11a#—a thermodynamic equilibrium of equipartition o
energy:n(k);v(k)21;k21/2. Unlike the defocusing case, focusing nonlinearity can destab
long waves when their amplitude is sufficiently large, and create~through the modulational insta
bility ! spatially localized coherent structures, whose statistical behavior can be captured
‘‘most probable state description,’’ which predicts that these states live in thermodynamic
librium. Similar scenarios have been observed in the case of perturbed NLS equations.31 In the
context of nondissipative NLS equations, a recent equilibrium statistical theory for most pro
states successfully predicts coherent structures and energy equipartition.39,40

We now turn to afourth spectrum~MMT !, which is shown in Fig. 12 for the defocusin
nonlinearity. This steady state is achieved by random forcing~Gaussian white noise in time! on
low k, with strong damping at highuku.Kd . Our numerical experiments demonstrate that, w
defocusing nonlinearity, a state with MMT spectrum can be very long lived. Moreover, in s
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focusing cases, the MMT spectrum can persist for a very long time—as long as;33105 time
units ~not shown!. The MMT spectra reported in Ref. 37 were in this weakly nonlinear regim

Finally, we present a case of thedefocusingnonlinearity, in which~numerically! the MMT
spectrum describes statistical steady states. Figure 13 shows an example in which the def
dynamics initially exhibits a WT direct cascade, but eventually becomes the MMT spectrum
transition from the WT direct cascade to the MMT spectrum provides our strongest num
evidence that the MMT can describe a stable statistically steady state.~Alternatively, for much
weaker damping in the highk dissipative range, we note that a WT direct cascade describe
statistical steady state.!

FIG. 11. ~a! Thermodynamical equilibriumunder relaxation dynamics~focusing nonlinearity,a5
1
2, s50.25!. The short

dashed line has the slope of energy equipartition,n(k);v(k)21. ~b! Direct cascadeWT spectrum under relaxation

dynamics~defocusing nonlinearity,a5
1
2, s520.125!. The slope of the dotted line is the prediction of the WT theory

the direct cascade.~c! Inverse cascadeWT spectrum under relaxation dynamics~defocusing nonlinearity,a5
1
2, s50!.

The slope of the dot–dashed line is the prediction of WT theory for the inverse cascade. For comparison, the pred
the WT direct cascade is also shown~dashed line!. Note that, for clarity, spectra~b! and~c! have been shifted down by a
factor of 10 and 100, respectively.

FIG. 12. MMT spectrumof driven-damped dynamics~defocusing nonlinearity witha5
1
2, s50!. The system is driven by

a random force atuku52 and is damped atuku51 anduku.2600. The slope of the dotted line is the prediction of the MM
closure and, for comparison, the dashed line has the direct WT cascade slope.
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Having established the existence of four distinct stable spectra, we next examine mo
tailed behavior such as distinctions between the focusing and defocusing cases, and the
localized coherent structures in dispersive wave turbulence.

B. Deterministic forcing

With steady~time-independent! forcing, the system is completely deterministic and any t
bulence that is observed is a form of spatiotemporal chaos in a deterministic system. In this
we observe clear distinctions between focusing and defocusing nonlinearities.

When the system is driven by steady~time-independent! forcing on lowuku ’s, thedefocusing
dynamics has a spectrum shown in Fig. 14~a!, which exhibits a statistically steady state with th
coexistence of a direct WT spectrum on highk’s and a resonance spectrum on lowk’s. These
Hamiltonian resonances permeate from lowk through intermediatek’s and create a ‘‘stochastic
layer’’ on higherk’s. Waves in this stochastic layer in turn pump energy to highk’s and induce
sufficient decoherence of those highk waves to result in a WT direct cascade. In contrast,
focusingnonlinearity with steady driving at a moderate amplitude, the motion of long wa
becomes chaotic due to modulational instability, which quickly generates a wave turbu
inertial range starting from very lowk’s. In this focusing case, initially the MMT spectrum
observed over the entire initial range. However, it is a transient and the WT direct ca
spectrum gradually invades from lowk’s, while the range of the MMT spectrum shrinks towa
high k’s and eventually disappears, leaving the WT spectrum over the entire inertial range. F
14~b! shows an intermediate stage of this transition, in which both spectra coexist.

Distinctions between the focusing and defocusing nonlinearities are also apparent
space–time profiles of the turbulent waves. As shown in Fig. 15, coherent structures that a
localized in space dominate the spatial profile in the focusing case, in contrast with the defo
case, where the turbulent waves ride on the long-wavelength ‘‘global’’ radiation modes, whic
driven by the low-k deterministic force~Fig. 16!.

If we trace the phase,f(x,t)5Arg q(x,t), of the waveq(x,t), the dynamics of focusing
nonlinearity exhibits far more chaotic phase evolution than that of defocusing nonlineari
shown in Figs. 17 and 18. Plotted is the functionf(x,t) evenly sampled in time. Figure 18 show
that, for the defocusing case, the phase of the wave is more or less ‘‘locked’’~at f;p in the

FIG. 13. MMT ~thick line! state as the statistically steady state in thedefocusingdynamics~a5
1
2, s50!, driven by a

random force, which evolves from a transient WT direct cascade. The WT direct cascade is indicated by the shor
line and, for clarity, is shifted up by a factor of 10, as indicated by the fine line. The dotted line has the MMT exp
and the dashed line has the WT direct cascade exponent.
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figure! to the external forcing, with a small random spattering around the locking phase.~Note that
p and 2p should be identified!. In contrast, Fig. 17 displays an efficient randomization of
phase over the entire interval@2p,p# for the focusing nonlinearity.

The efficiency of chaoticization as illustrated in the phase of the wave has strong implica
for the validity of weak turbulence. Recall that the essence of weak-turbulence theories is th
distribution of turbulent waves are nearly Gaussian, which leads to mean-field closures for k
equations. Strong phase randomization as in the focusing case naturally indicates Gauss
dom phase approximation, and, thus, indicates the validity of a weak-turbulence descript
wave turbulence. Our numerical study confirms this argument: Gaussianity is well satisfied f
focusing nonlinearity, as shown in Fig. 19 for allak—this underlies the observation of the wea
turbulence direct cascade over the entire inertial range in Fig. 14~b!. Note that for a Gaussian
distribution of a complex variable, thenth moment,mn , is related tom2 by mn5cnm2

pn, where
c452, p452, c656, andp653. In the focusing case, our numerical values for the expon
agree with these theoretical values within 2% and those for thec4,6 within 5%—indicating a high

FIG. 14. Steady deterministic force. ~a! Coexistence of a WT direct cascade with Hamiltonian resonances in a statist

steady state, for thedefocusingdynamics~a5
1
2, s50!, driven by a steady force on 2<uku<4. ~b! Invasion of a WT direct

cascade into the MMT transient regime, for thefocusingnonlinearity~a5
1
2, s50!, driven by a steady force on 2<uku

<3. The initial data for these cases is smooth, composed of a simple sum ofAi sech„Ai(x2xi)…, 1< i<3, the locationxi

being arbitrarily chosen. Note that spectrum~b! has been shifted up by a factor of 102 for clarity.

FIG. 15. Focusing nonlinearity: Localized coherent structures in the evolution of system~30! under a time-independen

deterministic forcing on 2<uku<3 and a constant dampingG2 for k.Kd , a5
1
2, s50. Plotted here isuq(x,t)u. Only a

small portion of the total systemL5410 is shown.
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degree of Gaussianity since the deviation fromc4,6 is a more stringent test for Gaussianity.
contrast, for the case of the defocusing nonlinearity under a deterministic forcing, as shown
20, there is more than 10% deviation fromp6 and nearly 100% deviation fromc6 , indicating a
large deviation from Gaussianity. As expected, this non-Gaussianity gives rise to a no
resonance spectrum over a largek range in Fig. 14~a!. Interestingly, Fig. 20 shows that only fo
small n(k) is there a roughly approximate Gaussian region, which precisely corresponds
region in highk’s in Fig. 14~a!, where a weak-turbulence direct cascade is observed.

Thus, one distinction between the focusing and defocusing cases is the manner and effi
by which the deterministic force at smallk is converted into an ‘‘effective random stirring’’ of th
intermediate spatial scales. In the focusing case, this conversion is very efficient, relies
modulation instability, involves only relatively smallk modes, with completely random phase
On the other hand, in the deterministic defocusing case, the absence of the modulational ins
forces the conversion to be less efficient, and to take place through a larger range ofk modes
~presumably through a breakdown of KAM tori!, with limited phase randomization.

We mention that, although the defocusing case in Fig. 14 has stronger nonlinearity th
focusing case in Fig. 14—e.g., theL2 norm,N, for the defocusing case isN;27 whileN;7 for
the focusing case, the focusing nonlinearity exhibits a far larger inertial range. For the defoc
nonlinearity, a sufficient strong nonlinearity is required for a possible chaoticization of w

FIG. 16. Defocusing nonlinearity: Turbulent waves riding on coherent long-wavelength modes in the evolution of

~30! under a time-independent deterministic forcing on 2<uku<4 and a constant dampingG2 for k.Kd , a5
1
2, s50.

Plotted here isuq(x,t)u. Only a small portion of the total systemL5410 is shown.

FIG. 17. Chaotic phase distribution for thefocusingnonlinearity under deterministic drive.
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motions. Recall that, however, weak-turbulence theories are often justified on the ground o
nonlinearity. This obviously raises the question of how to identify a validity regime of w
turbulence for the defocusing nonlinearity under deterministic forcing.

C. The cycles of dispersive wave turbulence

The next numerical experiment illustrates, for the focusing case, the cycle of energy tr
in the statistical steady state of dispersive wave turbulence—a cycle that involves the inter
of coherent structures and resonant waves as they form the equilibrium, inverse and dire
cascades simultaneously. As described above, modulation instability in focusing dynamics in
spatially coherent ‘‘solitonic’’ excitations at random spatial locations to form a thermal equ
rium bath~Fig. 21!. The formation of these excitations can actively transfer energy into highks via
their focusing processes in space, where the order of magnitude of wave numberks is determined
by the spatial scale at which these localized waves saturate. This energy injection process
ated with the creation of the localized excitations is a relatively fast process, while the dec

FIG. 18. Phase distribution for thedefocusingnonlinearity under deterministic drive.

FIG. 19. Gaussianity for thefocusingnonlinearity under a deterministic drive. The best fit for the sixth moment~crosses!
as a function of the second moment ism656.30m2

2.95 ~white line! and for the fourth moment~dots! is m452.05m2
1.98

~dashed line!. Note thatm25n(k) and the relationsm656 m2
3 andm452 m2

2 hold for Gaussian distribution.
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these coherent structures is slow. At moderate forcing amplitudes, the saturation process o
intermediate spatial scales, andks resides in the middle of the inertial range; however, at la
forcing amplitudes, the saturation process occurs at very short wavelengths, andks resides within
the dissipation range. In the latter case, some radiation is dissipated and some generates,
resonant quartet interactions, an inverse cascade toward long wavelengths—where the m
tional instability acts to create self-focusing coherent structures and complete the cycle.
former case~of moderate forcing amplitudes!, the saturating states in the center of the iner

FIG. 20. Deviation from Gaussianity for thedefocusingnonlinearity under deterministic drive. The best fit~dashed line!
for the nearly power law tail for the sixth moment~crosses! as a function of the second moment ism6511.9m2

2.62 and the
best fit ~dot–dashed line! for the fourth moment~dots! is m452.54m2

1.84. Note thatm25n(k) and the relationsm6

56 m2
3 andm452 m2

2 hold for Gaussian distributions.

FIG. 21. Formation of the coherent structures, their saturation, and the generation of the inverse cascades~which can be
observed in the decay process of those localized structures into long-wavelength radiation!. Plotted here is the space–tim

profile of uq(x,t)u. ~a5
1
2, s50, focusing nonlinearity!.
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range generate, again through resonant quartet interactions, both the direct~toward shorter scales!
and the inverse~toward longer scales! cascades. Dissipation terminates the flux toward sho
scales, and the modulational instability terminates the flux~of the inverse cascade! toward longer
scales. And again, the cycle continues.

Figure 22~a! shows an excellent example of the coexistence of a thermodynamical equilib
state of these coherent structures and the inverse cascade induced by their slow radiation
coherent waves. For spectrum~a!, we haveks.1000. We note that, fork higher thanks , the usual
WT direct cascade should be expected, since the coherent excitations do not have a stron
ence on energy transfer at spatial scales much smaller than their coherence length. Figur~b!
demonstrates this phenomenon, where we have tuned the dynamics to a regime such that o
few long waves are unstable. These inject energy intoks;100, resulting in an inverse cascade f
k,ks and a direct cascade fork.ks . @To help in the interpretation of these equilibrium spect
we note that, in general, the distribution for the thermodynamical equilibrium is 1/(v1m), where
m is chemical potential. We are able to specify the value ofm in our experiments by controlling
the forcing strength. The thermodynamical equilibrium distribution of those unstable long m
k̃ in Fig. 22 corresponds to the limit in whichm@v( k̃), whereas, spectruma in Fig. 11 corre-
sponds to the case ofm50, i.e.,n(k);v(k)21.#

The formation and decay of coherent excitations in thermal equilibrium, together with
resonance wave interaction of the direct and inverse cascades, form a complete cycle of
transfer in the statistical steady state—in contrast from standard descriptions in plasma turb
which primarily utilize collapse with high-k dissipation.41 Notice that the location of the spatia
scaleks at which the coherent structures saturate depends upon the strength of the nonli
~which can be controlled by the strength of amplitude of the external forcing!. This saturation
wave numberks can reside either within the inertial range or within the dissipation scales. W
it resides within the inertial range, both the direct and inverse cascades are present. Fig
illustrates schematically the energy transfer cycle in these two situations. In a freely dec
situation, the cycle changes dynamically. As the turbulence decays, the saturation scaleks moves
from the high-k dissipation scale of strong nonlinearity, through the intermediate inertial ra
where both cascades appear, to the low-k injection range itself, where only a weak turbulen
direct cascade remains. Finally we point out that, even when driven extremely strongly, e
value so strong that the total norm is increased by a factor of 102 with respect to the cases show

FIG. 22. ~a! Coexistence of thermodynamical equilibrium and theinverseWT cascade, for thefocusingnonlinearity~a

5
1
2, s50!, driven by a steady force onuku51. The flat part of the spectrum~dot–dashed line! shows thermodynamica

equilibrium. ~b! Coexistence of theinverseand direct WT cascades. The dotted~dashed! line has the exponent of the
inverse~direct! WT cascade.
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in Fig. 22, thedefocusingdynamics does not possess this energy transfer cycle simply beca
does not have long wave instabilities, andlocalizedexcitations.

D. Summary

As shown above, there are rich spectra of the dispersive wave turbulence within the
model ~30!—the direct and inverse cascades of weak-turbulence theory, thermodynamic e
rium, and the MMT spectrum. The weak turbulence spectra are intrinsic properties of free w
while the MMT spectrum is associated with a damped-driven situation. It seems that the
spectrum usually arises in the force dominating regime, wave front propagation of focusing
in k space,4 or as a steady-state matching to driving and dissipation. Although the WT cas
spectra and thermodynamic equilibrium spectra can be encapsulated by a single theoretica
work, namely, weak-turbulence theory, in order to fully understand this MMT spectrum, it s
that we need more insight into matching asymptotics between the inertial range and fo
dissipation ranges. In other words, understanding the full dynamics of wave turbulence w
quire a weak-turbulence theory which takes into account fully the noninertial effects of fo
and damping. In addition to the confirmation of wave turbulence spectra, we have also d
strated that the interplay among these wave turbulence spectra in the focusing case is contr
spatially localized, coherent structures—in the focusing case, the instability of long waves c
spatially randomly distributed, coherent structures, which inject energy into the high-k region and
establish an energy transfer cycle within wave turbulence, thus, giving rise to the coexiste
multiple turbulence spectra in a statistically steady state.

VII. CONCLUSION—EFFECTIVE STOCHASTIC DYNAMICS AND PREDICTION

States of spatiotemporal chaos exist. In the setting ofdispersive wave turbulencethese states
can be comprised of spatially localized coherent structures in interaction with the fluctu
radiation waves of the ‘‘active heat bath.’’ These deterministic wave systems act as if they
stochastic. While a basic and fundamental description of the~universal ?! properties of the active
nonlinear heat bath is important, for applications it is even more important to develop equ
that predict macroscopic transport of observable quantities. In the chaotic deterministic syst
dispersive wave turbulence, one seeks effective stochastic equations with which to quant
behavior of coherent structures and other macroscopic observables.

FIG. 23. The cycle of energy transfer in dispersive wave turbulence.~a! The saturation scaleks of the spatially localized
coherent structures is in the dissipation range—Coexistence of energy equipartition and the WT inverse cascade~b! The
saturation scaleks of the spatially localized coherent structures is in the middle of the inertial range—Coexistence
WT inverse cascade and direct cascade.
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Fundamental issues and questions immediately arise: Which properties and observab
be predicted? Do properties exist for which prediction is impossible in principle? Is it possib
describe these deterministic systems of spatiotemporal chaos by an effective stochastic dyn
Can an effective stochastic dynamics be realized in principle and in practice? If so, how c
equations of effective stochastic dynamics be constructed and verified? Such issues are
ginning to be addressed in the literature.

The first fundamental issue is the existence and realizability of an effective stochastic d
ics. This issue was initially studied by Zalesky33 in the setting of spatiotemporal chaos for th
Kuramoto–Sivashinsky nonlinear wave equation. Earlier, Yakhot34 had proposed, using very heu
ristic renormalization arguments, that the longest waves in this deterministic spatiotempora
otic system could be described by a stochastically forced Burgers’ equation with a renorm
diffusion coefficient. Zalesky designed and performed some numerical experiments on the o
deterministic Kuramoto–Sivashinsky equation, which provided positive evidence that su
effective stochastic dynamics could indeed exist. Later, in the setting of a damped-driven
equation, we31,32 refined these numerical studies, making them more detailed and precise
work confirmed Zalesky’s original conclusions; moreover, it established that the existence
effective stochastic dynamics demands only temporal chaos and does not require spatiote
chaos. Furthermore, our numerical results are consistent with the notion that spatiotempora
with increasing large domains~or the number of modes! can give rise to Gaussianity of th
effective stochastic forcing—in this limit, thus, a universal description of effective stochastic
may be available for macroscopic dynamics.

Very recently, in their mathematical study of idealized models for stochastic climate pr
tion, Majda, Timofeyev, and Vanden Eijnden42 developed an effective stochastic dynamics fo
single climate variableU, and tested its predictions against the original Hamiltonian system~with
57 degrees of freedom!. Here the effective stochastic dynamics provided successful predictio
the presence of the ‘‘active heat bath.’’

Effective stochastic dynamics appears indeed to be realizable. However, procedures
construction of stochastic dynamics for the original system are not well understood and nee
further developed. Fundamental issues of predictability emerging out of these development
to be addressed and clarified. Such topics will be active areas of research for the next dec
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