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Abstract

Nonlinear dispersive wave equations provide excellent examples of infinite dimensional dynamical
systems which possess diverse and fascinating phenomena including solitary waves and wave trains, the
generation and propagation of oscillations, the formation of singularities, the persistence of homoclinic
orbits, the existence of temporally chaotic waves in deterministic systems, dispersive turbulence and the
propagation of spatiotemporal chaos.

Nonlinear dispersive waves occur throughout physical and natural systems whenever dissipation is
weak. Important applications include nonlinear optics and long distance communication devices such as
transoceanic optical fibers, waves in the atmosphere and the ocean, and turbulence in plasmas. Examples
of nonlinear dispersive partial differential equations include the Korteweg de Vries equation, nonlinear
Klein Gordon equations, nonlinear Schrodinger equations, and many others.

In this survey article, we choose a class of nonlinear Schrodinger equations (NLS) as prototypal
examples, and we use members of this class to illustrate the qualitative phenomena described above. Our
viewpoint is one of partial differential equations on the one hand, and infinite dimensional dynamical
systems on the other. In particular, we will emphasize global qualitative information about the solutions
of these nonlinear partial differential equations which can be obtained with the methods and geometric
perspectives of dynamical systems theory.

The article begins with a brief description of the most spectacular success in pde of this dynamical
systems viewpoint — the complete understanding of the remarkable properties of the soliton through the
realization that certain nonlinear wave equations are completely integrable Hamiltonian systems. This
complete integrability follows from a deep connection between certain special nonlinear wave equations
(such as the NLS equation with cubic nonlinearity in one spatial dimension) and the linear spectral theory
of certain differential operators (the “Zakharov-Shabat” or “Dirac” operator in the NLS case). From
this connection the “inverse spectral transform” has been developed and used to represent integrable
nonlinear waves. These representations have provided a full solution of the Cauchy initial value problem
for several types of boundary conditions, a thorough understanding of the remarkable properties of the
soliton, descriptions of quasi-periodic wave trains, and descriptions of the formation and propagation of
oscillations as slowly varying nonlinear wavetrains.

In addition, more recent developments are described, including: (i) the formation of singularities
and their relationship to dispersive turbulence; (ii) weak turbulence theory; (iii) the persistence of peri-
odic, quasi-periodic, and homoclinic solutions, by methods including normal forms for pde’s, Melnikov
measurements, and geometric singular perturbation theory; (iv) temporal and spatiotemporal chaos; (v)
long-time and small dispersion behavior of integrable waves through Riemann-Hilbert spectral methods.
For each topic, the description is necessarily brief; however, references will be selected which should

enable the interested reader to obtain more mathematical detail.
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1 Introduction

Geometric viewpoints have proven to be extremely useful for understanding qualitative behavior of finite
dimensional dynamical systems [153, 85, 191], particularly behavior over long (infinite) durations of time.
We believe that viewpoints which combine geometry and dynamics will prove to be equally useful for un-
derstanding qualitative long-time results for evolutionary partial differential equations (pde’s). Even though
pde’s are infinite dimensional dynamical systems, we also believe that their deep fundamental properties
will not be understood solely through natural extensions of finite dimensional methods to abstract infinite
dimensional settings. Pde, computational, and stochastic methods will be essential in this process.

Our purpose here is to expose graduate students, as well as other researchers in partial differential
equations, to this qualitative and geometric view of partial differential equations through a brief overview
of one specific class of nonlinear wave equations. We will emphasize global qualitative behavior of solutions.
We will try to select references which develop the material in an accessible, even tutorial, manner. Some of
these will contain extensive references to the original work. Here, we will make no effort toward historical
referencing — leaving that to other more detailed review articles. However, some sample general references
include: [178, 190] for nonlinear waves; [120, 156, 56] for introduction to solitons; [181] for nonlinear lattices;
[64, 11] for inverse scattering transform; [158, 161] for periodic inverse spectrum transform; [72] for recent
developments. (see also extensive annotated bibiography [44].) We intend this brief overview to provide an
outline or “study guide” for a graduate course which develops this qualitative viewpoint for the analysis of
nonlinear waves, with the references leading to more detailed study.

This article will illustrate this viewpoint for one class of nonlinear wave equations — nonlinear Schrédinger
(NLS) equations,

(1.1) ig =V2qF (90 g,

o > 0, as well as some of its natural extensions.

This class of equations can be used to illustrate many striking features of nonlinear waves, each of
which has been understood by a combination of methods from scientific computation and from the theory
of pde’s and geometric dynamical systems. These features include solitary waves and solitons; response of
solitons to external perturbations; periodic waves and quasi-periodic wavetrains; the slow modulation of
wavetrains; long-time asymptotics, including a decomposition of the field into solitons and radiation; finite-
time blow up; instabilities and representations of unstable manifolds; chaotic evolution in deterministic pde’s;
spatiotemporal chaos and dispersive turbulence; nonlinear localization in random environments.

After touching upon the pde properties of solutions of NLS in Section 2, we begin the overview in Section
3 with a brief summary of a most spectacular success of the dynamical systems viewpoint for pde’s — the
complete integrability of soliton equations as infinite dimensional Hamiltonian systems. Established through
the deep connection between spectral theory of certain linear differential operators and specific nonlinear

wave equations, this complete integrability unveils and demystifies the mysteries of solitons. It also provides



representations of important classes of nonlinear waves — including N-solitons in interaction and multi-phase
wave trains, as well as the full solution of Cauchy initial value problems. Long-time asymptotic descriptions of
the nonlinear waves, including dispersive spreading, scattering, and a decomposition of the field into solitons
and radiation, follow from these representations, as well as small dispersion (semi-classical) asymptotics.
Under periodic spatial boundary conditions, Floquet theory of the linear differential operators provides a
proof of almost-periodic behavior in time of the general solution to the periodic Cauchy problem. For NLS
with focusing nonlinearity, this work under periodic boundary conditions culminates in the identification
and complete classification of all instabilities, and in the complete representation of their associated unstable
manifolds and homoclinic orbits. Such detailed information is unprecedented for finite dimensional dynamical
systems, let alone for nonlinear pde’s — and indicates the power of the connection between linear spectral
theory and certain nonlinear wave equations.

In Section 4 we consider perturbations of the integrable NLS equation — damped-driven perturbations
under spatially periodic boundary conditions. The instabilities in the integrable focusing case can generate
chaotic behavior when the system is perturbed. First, numerical experiments showing temporal chaos are
summarized, which are then correlated with integrable instabilities. Then the persistence of homoclinic
orbits under perturbations is established with mathematically rigorous analytical arguments. Finally, the
connection of these persistent homoclinic orbits with long complex transients and with symbol dynamics is
briefly summarized.

In Section 5, spatiotemporal chaos is found for these same perturbations by breaking the even spatial
symmetry of the system. The concept of spatiotemporal chaos is defined, characterized in terms of “mutual
information” at two separated spatial locations, and studied numerically. Then, in Section 6, macroscopic
descriptions of the spatiotemporal chaotic state are briefly summarized, including equilibrium statistical
mechanics, weak-turbulence theories, and “effective stochastic dynamics”. Section 6 concludes with sample
effects of random coefficients such as “nonlinear localization” — emphasizing distinctions between the linear
case and those of focusing or defocusing nonlinearities.

In Section 7, we return to the integrable case and describe a powerful analytic method which has recently
been developed to extract asymptotic information from the linear spectral representations of integrable
nonlinear equations — the Riemann-Hilbert method. First, we define the representations developed by this
approach and indicate their use for long-time asymptotics. We then outline the asymptotic method, which
exploits rapidly oscillating kernels in the Riemann-Hilbert integral equations. Finally we describe the success
of this approach by stating a theorem which provides the complete long-time asymptotics of NLS waves.

In Section 8, semiclassical behavior of the NLS wave is described — first by numerical experiments which
illustrate the sharp distinctions between linear, defocusing, and focusing behavior, and then by a formal
modulation theory. We then mention the use of the Riemann-Hilbert approach to obtain “semiclassical”
asymptotic behavior in the defocusing case. The section concludes with a brief description of a beautiful

representation of the resulting modulation equations in terms of Abelian differentials and its use in unifying



other equivalent representations.

In this article we illustrate the potential power of the combination of pde methods with those from
geometric dynamical systems. But we also emphasize the importance of a totally new and unexpected
idea in the creative process of mathematical discovery — in this case the deep connection between linear
spectral theory and certain special nonlinear wave equations. And we emphasize that the full use of such key
new mathematical ideas requires further new analytical developments — in this case the Riemann-Hilbert
representations of inverse spectral theory and their use for asymptotics. Riemann-Hilbert methods realize
the power and breadth of integrable methods for modern analysis of asymptotic limits — for nonlinear waves
and far beyond. This point is elaborated upon in the Conclusion, where we also mention the many open
problems for research, once rigid integrability is relaxed. It is in resolving these that we expect the interplay

between pde and geometric-dynamical systems to play an essential role.

2 Pde Properties

Energy methods can be used to establish the following global existence result[36, 178]:
Theorem 2.1 Consider the Cauchy problem for
igg = V¢ —g(ad)”q, 9=+,
g(t=0) = g€ H'(RY).
1. Assume either a) g >0 and 0 <o <2/(N—=2), orb) g<0and0<o <2/N.

ThenVqo € HY(RN), 3! ¢ € C[R; H' (RY)] which solves the initial value problem for the NLS equation.

2. For g <0 and o =2/N, Vgo € HY(RY), |qo|> < |R|2
= 3! q € C[R; H' (RY)] which solves the initial value problem for the NLS, where R denotes the

solitary wave solution (2.2) of the critical NLS equation.
3. For g <0 and o0 = 2/N, if the energy (2.1) H(qo) < 0, then

(a) 3 a finite time T* such that limyp-

(b) 3 a finite time T** such that limgqpe

q(t)]oo = +00.

Similar results hold for a larger, more general class of NLS equations and boundary conditions. Here the
Sobolev space H'(RY), consisting of functions which are square integrable with square integrable first

derivatives, is natural because of the energy invariant of NLS,

— 2 9 2(c+1) | N
(21) HG) = [ [[9aP + o] ave,

which can be used to provide global control. Recently, solutions with “rough data” have also become

important — for example, for statistical solutions (see below). For recent existence results for data rougher

than H', see [19, 21, 26, 27].



It is clear from this existence theorem that the sign of nonlinearity is important, with g = —1(+1) called
focusing (defocusing) nonlinearity, respectively. In the defocusing case, the energy (2.1) is positive definite
and can be used for global control of the existence estimates. In the focusing case, the energy (2.1) is
indefinite, and need not provide sufficient control if the nonlinearity is too strong, i.e., o > 2/N. In this
case, the focusing nonlinearity can cause the solution to blow-up in finite time. To see this, consider the
following differential inequality which follows from the focusing NLS equation:

2
o2V (@) <4H(q), o 22/N,

where the variance V is defined by the functional

VG = [ [ 1] da,

and where ¢ = ¢(%,t) denotes any solution in H'[RM] for which the variance V(g) is well defined. This
differential inequality immediately shows that, for initial data with negative energy [H (¢;») < 0], the positive
definite variance must become negative in finite time. Clearly, this contradiction implies a breakdown in the
solution. Sobolev arguments then show that the solution blows-up by leaving H', and L, in finite time.
Such matters are discussed with mathematical rigor in references [79, 36, 178].

This blow-up can be understood intuitively, as follows: The focusing nonlinear medium acts as a lens
which focuses more and more strongly, the more intense and focused the wave; hence, a catastrophic blow-up
of intensity of the wave results, accompanied by the collapse of its spatial extent. In applications such as
the propagation of a laser beam, this produces the striking effect of extremely intense, very sharply focused,
spots of light. (These spots of light are called “filaments” in the nonlinear optics literature, and the laser
beam is said “to filament.”)

The NLS equation (1.1) is a conservative wave equation. In addition to the energy (2.1), the L? norm

I(g) = / g dVa

and linear momentum

5 qVa—aqVq

are also invariants — associated to the symmetries of time translation, phase translation, and space transla-

tion. In addition, (1.1) admits the important Galilean and scaling symmetries: If g(x,t) denotes a solution,

so does

Q(z,t;v) = qlx — vt t)exp (i[ 2 — 2vx]),
Qla,t;0) = A/7q(Az, N*0).
The NLS equation is classified as a dispersive nonlinear wave equation [190] because its linearization

about ¢ = 0,
iq = Ag,



has Fourier solutions of the form
Aexp {i[k - Z +w(k)t]}, VkeRY,

with real dispersion relation
w(k) = .
Thus, different Fourier components travel at different speeds — leading to dispersive spreading, algebraic

(in t) decay, and the concept of a group velocity, which for this linear equation is given by
Top(K) = Viw = 2k.

Focusing nonlinearity acts against this dispersive spreading mechanism, can completely overwhelm spread-
ing and produce singularities in finite time, or it can exactly balance the spreading mechanism and produce
persistent solitary waves which are localized in space. Which of these alternatives occurs depends upon
details of the competition between nonlinearity and dispersion. For example, consider the case of cubic
nonlinearity,

igr = Aq+2(qq) q,

for which solitary waves exist of the form
q(,t) = exp (—it) R(|7),
where R(r) is defined as the positive solution of

(2.2) AR+ (2R*-1) R=0,

In dimension N =1, these localized waves are stable, while for dimension N > 2 they are unstable; in fact,
severely unstable to blow-up in finite time.
When combined with Galilean invariance, a four parameter representation of solitary waves results, which

in dimension 1 takes the form

(2.3) q(z,t; A\, v,v,29) = Asech[A(x — xg — vt)] exp [i <(v2 — ANt — 20z + ’y)} .

This wave is (exponentially) localized in space, and has many of the characteristics of a “particle”. The
parameters (A, v, 7, o) represent its amplitude [inverse-width], velocity, phase, and spatial location, respec-
tively. This particle-like wave travels at constant velocity v and is very stable to perturbations of both the
initial data and the equation. The stability and properties of this solitary wave have been established with
many numerical experiments in the physical literature, with formal asymptotics [101], and with rigorous pde

analysis [83, 84, 187].



Figure 1: Left panel: solitons emerge out of an initial wave packet; Right panel: collision of two solitons.

These solitary waves are the most striking and important component of the solution of the NLS equation
— as is clearly seen in numerical simulations. Emerging from generic Cauchy data (which vanishes sufficiently
rapidly as || — oo) are a finite number of solitary waves (see Fig. 1), traveling to both the left and right,
ordered by the magnitude of their velocities — together with a finite number of “nonlinear bound states”
of these solitary waves. In addition, an algebraically decaying (in ¢) component is present which resembles
dispersive radiation of the linear Schrédinger equation. These solitary waves are remarkably robust. They
exist for a large class of nonlinearities, persist (but slowly deform) under small perturbations of the equation,
and can survive collisions with other solitary waves. In the case of cubic nonlinearity, no radiation emerges
from these direct collisions. Rather, the two solitary waves emerge from the collision unscathed, with the
same velocities and with no generation of additional radiation. The only change the wave experiences as a
result of collisions between solitary waves is a shift in their relative phases. In effect (see Fig. 1), for the
cubic nonlinearity, NLS solitary waves travel and interact as particles experiencing elastic collisions. For
other nonlinearities, very stable solitary waves exist, but radiation (at times slight and at times significant)
is generated by collisions. These remarkable stability properties for localized waves of NLS make them
potentially important in many physical and technological applications — including laser beams [157, 90] and
transoceanic telephone communication [152].

Understanding these stability properties has also generated considerable mathematical research. Formal
asymptotic methods can be used to study linearized stability of the solitary wave [101, 186, 187] and its
response to perturbations [101, 146]. For the latter, the NLS equation is perturbed by the addition of small
O(e) terms such as dissipation. Then approximate solutions are constructed from the solitary waveform,
with two modifications: (i) the replacement of its constant parameters (such as the velocity v) with (slowly
varying) functions of time; and (ii) the addition of a small correction to the solitary wave. Demanding that

this correction remains small over times of O(e™!) identifies the correct slow modulations of the parameters.



For example, small dissipation causes the velocity v(et) to slowly decay as a function of time. Some of these
formal calculations have been made rigorous mathematically: Nonlinear stability of the solitary wave has
been established [83, 84, 187]; while modulation theory has led to some of the most successful combinations of
pde scattering theory with geometric dynamical systems [188, 173, 174, 175] for the study of the interaction of
solitary waves with radiation. In this work, the evolution equations for the nonlinear wave are decomposed
into discrete solitary and continuous radiative components; and the equations are then analysed with a
combination of methods from scattering theory for pde’s with center manifold-like arguments from dynamical
systems theory. A global characterization of the interaction of solitary with radiation results [188, 173, 174,
175, 59, 160].

But the understanding of the remarkable elastic collision properties of solitary waves for the 1-D cubic
NLS equation required totally new mathematical ideas [77, 78, 151, 196] — ideas which are very different
from classical pde and dynamical systems methods. One description of these begins from the realization

that the NLS equation (1.1) is a Hamiltonian system,

. 0H
Wt = ——,
t 5q

which for the 1-D cubic case is a very special Hamiltonian system. In the next section we will describe
those new mathematical ideas which identify the very special nature of this 1-D cubic NLS equation, and

the reasons for the remarkable elastic scattering properties of its solitary waves.

3 The Integrable NLS Equation

The 1-D cubic NLS equation,

(3'1) 19 = Gz F2 (QQ) q,
is equivalent to the following linear system [77, 121, 196]

po = UMy,

(3.2) or = Vg

0 2Ng + Ga
VO =i [2)2 +w? £ (g7 — w?)] o3 + )

F(=2iA + ¢2) 0



and where o3 denotes the third Pauli matrix o3 = diag(1, —1). This equivalence follows from the integrability
condition for the overdetermined linear system (3.2): Note that system (3.2) consists in two equations for
only one unknown ¢. As such, it is overdetermined and will possess a solution iff ¢, = ¢, +. Explicitly
calculating this condition, using system (3.2), shows that the integrability condition is equivalent to the NLS
equation (3.1).

The linear system (3.2) is known as the “Lax pair for NLS” [121, 196]. From it, the nonlinear Schrédinger
equation (3.1) inherits a “hidden linearity” which is the key to an explanation of the truly remarkable
properties of 1-D NLS. And it is this relationship between linear equations (3.2) and nonlinear wave equations
(3.1) which is the “new mathematical idea” to which we referred at the end of the last section.

The primary way this equivalence has been used to study 1-D NLS begins from the “z-flow” of (3.2):

(3.3) L=,
where 0
. d q
(3.4) L=—iog— — .
dx +7 0

We view this linear “z-flow” as a Sturm-Liouville eigenvalue problem, with eigenvalue parameter A. For
example, consider the 1-D NLS equation (3.1) on the whole line (—o00 < & < 400), for smooth rapidly
decaying functions of z; i.e., in Schwarz class. [Actually, in the defocusing case |¢(z)| — ¢ > 0, while in the
focusing case, the limit ¢ vanishes.] Consider the operator L, equation (3.4), as an (unbounded) differential
operator on L?(R), which is known as the “Zakharov-Shabat” operator. Denote its point spectra (eigenvalues
with L?(R) eigenfunctions) by {\1, A2, ..., An }. As the coefficients ¢(x, t) of this differential operator evolve
in time ¢ according to 1-D NLS equation (3.1), one expects the eigenvalues A;(¢) to change with time. But
they do not! A simple calculation using the Lax pair (3.2) shows that the eigenvalues are constant in ¢. These
eigenvalues provide N invariants for the 1-D NLS equation (3.1) — where the number N, as determined by
the initial data, can be very large and often exceeds the number of classical invariants of L? norm, energy,
and linear momentum. Thus, the 1-D NLS equation possesses some unusual invariants, in addition to the
classical ones.

These invariants arise after considering the eigenvalues as functionals of the coefficients ¢(-,t):

This viewpoint leads one to consider determining ¢(+, t) from spectral data of the differential operator (3.4).
Clearly a finite number N of eigenvalues will be insufficient data to determine the function {¢(z,t) Vz €
(—00,4+00)}, and the eigenvalues will have to be augmented with additional spectral data. But this is a
well known problem in mathematical physics known as “inverse scattering theory” — particularly so for the
Schrédinger operator of nonrelativistic quantum mechanics, but also for the operator (3.4) which is a form

of the Dirac operator of relativistic quantum mechanics.



The appropriate spectral data (see, for example, [78, 64, 10, 11]) is
(35) SE{)\j,Cj,j:].,2,"',N; ’I“()\) V)‘E(_OO7+OO) }7

where \; denotes the eigenvalues, ¢; denotes certain norming constants of the associated L? eigenfunctions,
and r(\) denotes the “reflection coefficient” defined through the asymptotic behavior (as |z| — oo) of
the generalized eigenfunctions for the continuous spectrum: if 1»(¥) are matrix solutions of equation (3.3),

normalized by
(3.6) PE (2, A) ~ T gy too,
then from the transition matrix (which is independent of x)

) G B
BN D) @\ b)

one defines the reflection coefficient as follows:

(3.8) r(\) = %

(see, for example, [64]).

Each member of the spectral data S is viewed as a functional of ¢, and the data S uniquely determines ¢
by the integral equations of inverse scattering theory [50, 78]; that is, the correspondence between ¢ and S is
one-to-one and invertible [50]. There exist several equivalent formulations of the integral equations of inverse
scattering theory, including the Gelfand-Levitan equations [78] and the equations of Riemann-Hilbert theory
[52, 54]. The latter have proven to be the most powerful for mathematical analysis of asymptotic behavior.
(See Sections 7 and 8.) While these integral equations are difficult to solve analytically, they do provide
explicit representations of special solutions which consist of N-solitary waves in interaction, in the absence
of any radiation 7(\) = 0 VA. These representations have the functional form of a “log-determinant”, which
leads to interesting analysis as N (the number of solitary waves) tends to infinity. (See Section 8.)

As g(z, t) evolves in time according to 1-D NLS, one can use the Lax pair (3.2) calculate the time evolution

of the spectral data S:

Ai(t) = A;(0);

(3.9) cj(t) = exp[4iA;t] ¢;(0);
a(\t) = a(),0);

(3.10) b(\,t) = exp[—4ir’t] b(),0).

Thus,
r(\, t) = exp [—4iA%t] (), 0),



and we have the following (infinite!) number of constants of motion:
(3.11) {0 i =108 ol va € (0,00}

Thus, 1-D NLS (3.1) is an infinite dimensional Hamiltonian system with an infinite number of constants of
motion. Indeed, exactly one-half of the spectral data is invariant {\; Vj = 1,---, N; |r(X)| YA € (=00, +00)},
while the other half evolves linearly with ¢: {log (¢;) V5 =1,---,N; logr(\) VA € (=00, +00)}. Thus, using
the inverse spectral representation, one establishes that 1-D NLS (3.1) is a completely integrable Hamiltonian
system.

This infinite collection of constants of motion explains the remarkable stability and elastic collision
properties of solitary waves: First, one must understand the connection between spectral data and solitary
waves. The log-determinant formula for N-solitary waves, together with the invertibility of the map to
scattering data [50], establishes that there is a one-to-one correspondence between the solitary waves in the
spatial profile and the bound state eigenvalues in the spectral data. The N eigenvalues correspond to N
solitary waves, with the amplitude and speed of each fixed by the real and imaginary part of the associated
eigenvalue. Moreover, the reflection coefficient r()\) fixes the amplitude of the A" radiative component of
the nonlinear wave. The temporal behavior of the spectral data (3.10) shows that the speeds and amplitudes
of the solitary waves are invariant in time, and are not altered by “interactions of the solitary waves”.
And, since |r(\,t)| = |r(),0)|, no radiation can be generated by these interactions. In other words, the
infinite number of invariants so rigidly constrain the solution that the elastic collision properties of 1-D NLS
(3.1) result! Solitary waves which satisfy the elastic collision property are called solitons, to emphasize the

remarkable particle-like properties of these nonlinear waves.

3.1 Periodic Spatial Boundary Conditions

In our overview, we have focused upon solutions of 1-D NLS on the whole line, which decay rapidly as
|z] — co. Now we turn to solutions of (3.1) under periodic boundary conditions of (spatial) period ¢,
q(x+0,t) = g(x,t). NLS is still equivalent to the Lax pair (3.2), and it is still relevant to view the Zakharov-
Shabat operator (3.4) as an (unbounded) operator on L?(R), even though its coefficients ¢(z, t) are ¢-periodic
functions of x.

Since its coefficients are periodic in z, Floquet theory can be used to understand the spectral theory of the
differential operator (3.4). The well known Floquet procedures for Hill’s operator [135, 161] readily extend
to the Zakharov-Shabat operator (3.4). Note that this operator is self-adjoint in the defocusing case, but it
is not self-adjoint in the case of focusing nonlinearity. This lack of self-adjointness is the only real difficulty
for its Floquet theory, and is also the source of the most interesting phenomena of the NLS equation under
periodic boundary conditions [130].

The spectrum of the Zakharov-Shabat operator (3.4) with periodic coefficients, when viewed as an un-

bounded operator on L?(R), consists entirely of continuous spectrum which resides on a countable number

10



of curves in the complex plane, called “bands of spectrum”. In the self-adjoint case, these bands lie on the
real axis, while in the nonself-adjoint case, they are not so constrained. In both cases, the bands terminate
at periodic and antiperiodic eigenvalues, which typically have multiplicity one. However, for certain special
coefficients, these bands can join at eigenvalues of higher multiplicity. (Consider, for example, the simplest
case, ¢(x) = 0, for which all bands join at eigenvalues with multiplicity 2, and the continuous spectrum
consists of the entire real axis.)

Again, calculations using the Lax pair (3.2) show that the eigenvalues provide a (countably infinite)
collection of constants of motion. Moreover, inverse spectral theory [130] (although not as complete for
the nonself-adjoint Zakharov-Shabat operator (3.4) as for the Hill’s operator [161]) shows that 1-D NLS
(3.1) under periodic boundary conditions is a completely integrable Hamiltonian system. Its integration is
accomplished through “Louiville’s method” [5, 4], as realized by an Abel-Jacobi transformation and theta
functions. This procedure amounts to a transformation from ¢(z) to action-angle variables [99, 98], a beautiful
procedure which is most easily described for soliton equations in the case of the Toda lattice [69, 71, 43].

Generically, the level sets of this countable collection of eigenvalue invariants, {g € H' | \;j(¢) =
Aj(go) Vj}, are infinite dimensional tori. The solutions to the NLS equation under periodic boundary
conditions wind around this torus, executing almost-periodic motion in time ¢. One should think of the
nonlinear Schrédinger wave as being decomposed into a countable number of oscillators (called “degrees of
freedom”), one for each dimension of the torus. Each oscillator has both an amplitude and angle of oscil-
lation, with the amplitudes fixed by the constants of motion and the angles providing coordinates on the
infinite dimensional torus. As the values of the constants of motion change, the tori deform and fill out (or
“stratify”) the function space H'.

As noted above, for special choices of coefficients ¢., bands of spectrum can join. As the coefficient
approaches a special ¢., two eigenvalues coalesce. As this occurs, the torus become degenerate in that its
dimension decreases by one. (Intuitively, the amplitude for one of the oscillators vanishes, and the system
loses one of its degrees of freedom.) In the self-adjoint case, the pinched torus which results is always
stable, in the sense that nearby coefficients have tori for which the oscillatory degree of freedom that was
“pinched away” at ¢. now executes small amplitude oscillations [140]. In this stable case the singular level
set {g € H* | \j(¢) = \j(g«) Vj}, consists only in the degenerate torus itself.

On the other hand, in the nonself-adjoint case, the degenerate torus T, can be unstable. When it is
unstable, the singular level set is larger than the torus itself, containing the unstable manifold W¥(T,) as
well as the torus Ty. Intuitively, the circle which is “pinched” becomes one lobe of a “figure eight,” rather
than just a point. (See [63, 130] for pictures.) A homoclinic orbit results which approaches the degenerate
torus T as t approaches infinity:

Qhom(xvt) — T* as t — +oo.

Inverse spectral theory establishes that these unstable tori cannot result from eigenvalues which coalesce on

the real axis; hence, instabilities and homoclinic orbits must be associated with complex valued multiple
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eigenvalues, which must be finite in number. Hence, the dimension of the unstable manifold W*(7) must
be finite. Such spectral matters are discussed in detail in [130, 149].
An elementary example which illustrates these instabilities and their associated integrable geometry

begins from the trivial z-independent solution of NLS equation (3.1):
(3.12) qe(x, t;c,y) = cexp[~i(2c°t + 7)),

where (¢, ) denote two real parameters. This solution is a single circle. It has only one degree of freedom,
with the remaining (countable number) of degrees of freedom all “pinched away”. In other words, the torus
T, = S', is one-dimensional; hence, extremely degenerate.

The linear stability of solution (3.12) is easy to study:

q(x,t) = qe(w,t) +0f(a,t) exp [~i(2¢°t +7)];
ift = fow+2fF +22F +0(5);

fle,t)y = f(k)expli(ke —w(k))];

PR = BRI — 4.

Thus, the wave (3.12) is unstable to fluctuations with wave numbers 0 < k> < 4¢?; while shorter wavelength
fluctuations are neutrally stable according to linear stability theory. The “quantization condition” which
ensures spatial periodicity,

ki = 2%],

shows that the number of unstable Fourier modes scales linearly with the size ¢ of the periodic spatial domain.

j=...,-1,0,+1,...,

This instability of the plane wave (3.12) to long-wave fluctuations is a special case of a famous instability
in nonlinear dispersive wave theory, known as the “Benjamin-Feir instability” [12] in the context of water

“modulational instability” in the context of plasma physics [199]. It is now understood to

waves and as the
be the fundamental cause of solitary wave formation, of self-focusing and filamentation of a laser beam, and,
more generally, of blow-up in finite time.

This calculation of the tangent space to the unstable manifold of the circle S = ¢. shows
dim W*(S) =2N +1,

where the “2N” comes from the {cos (k;jz),sin (k;jz), j =1,..., N} basis of the unstable tangent space, and
the “1” is the dimension of the circle S itself.

Using integrable theory, one can identify all unstable tori T, for 1-D NLS, and construct rather explicit
representations of their unstable manifolds W*(T.), which for the integrable NLS equation equal their stable
manifolds W#(T,.). This beautiful representation results from Bécklund (Darboux) transformations — a
construction which we now describe in its generality [60, 130, 149):

First, one [60, 130, 149] establishes that, for each instability, there is an associated complex eigenvalue of

with multiplicity at least two. Thus, there is a correspondence between instabilities and complex multiple
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points in the periodic and antiperiodic spectrum of the Zakharov-Shabat operator (3.4) — a correspondence
which enables us to classify the unstable tori.

Fix a periodic solution of NLS which is quasiperiodic in ¢, unstable, and for which the instability is
associated to a complex double point v with multiplicity 2, for the operator ﬁ(q) We denote two linearly
independent Zakharov-Shabat eigenfunctions at (v, q) by (6+, ). Thus, a general solution of the Zakharov-

Shabat linear eigenvalue problem at (g, v) is given by

dw,tvicr,c) =cp ¢t + g

We use q_; to define a transformation matriz G by

o A—v 0

(3.13) G=G(\;v;9) =N N~
0 A—7D

where

N = { ¢1 —{52 }

o2 ;
Then we define Q and ¥ by ~
_ . 102

(3.14) Qx,t) = q(x,t) + 2(v —v) ¢1(Z§1 i ¢2$2
and
(3.15) Uz, 1) = G\iv;) dla,t5 M),

where ¢ solves the Zakharov-Shabat linear system at (¢, ). Formulas (3.14) and (3.15) are the Bicklund

transformations of the potential and eigenfunctions, respectively. We have the following
Theorem 3.1 Define Q(z,t) and U(x,t;\) by (3.14) and (3.15). Then
(i) Q(z,t) is a solution of NLS, with spatial period ¢;
(ii) The spectrum o(L(Q)) = o(L(q));
(111) Q(z,t) is homoclinic to q(x,t) in the sense that Q(z,t) — qo. (x,t), exponentially as exp(—o,|t|)
as t — +oo. Here qp, is a “torus translate” of q,0, is the nonvanishing growth rate associated to

the complex double point v, and explicit formulas can be developed for the growth rate o, and for the

translation parameters 04 .
(iv) U(z,t;\) solves the linear system (3.15) at (Q, \).

This theorem is quite general, constructing homoclinic solutions from a wide class of starting solutions
q(z,t). Its proof is one of direct verification, following the sine-Gordon model [60, 139]. Periodicity in z is
achieved by choosing the transformation parameter A = v to be a double point.

Several qualitative features of these homoclinic orbits should be emphasized: (i) Q(z,t) is homoclinic to

a torus which itself possesses rather complicated spatial and temporal structure, and is not just a fixed point;
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Figure 2: Homoclinic orbits associated with one instability (left panel) and two instabilities (right panel).

(i) nevertheless, the homoclinic orbit typically has still more complicated spatial structure than its “target
torus”. (iii) When there are several complex double points, each with nonvanishing growth rate, one can
iterate the Bécklund transformations to generate more complicated homoclinic manifolds. (iv) The number
of complex double points with nonvanishing growth rates counts the dimension of the unstable manifold of
the critical torus in that two unstable directions are coordinatized by the complex ratio ¢y /c_. Under even
symmetry only one real dimension satisfies the constraint of evenness, as will be clearly illustrated in the
example below. (v) These Bicklund formulas provide coordinates for the stable and unstable manifolds of the

“

critical tori; thus, they provide explicit representations of the critical level sets which consist in “whiskered
tori” [3].

An Example: The Spatially Uniform Plane Wave. As a concrete example, we return to the spatially
uniform plane wave ¢., equation (3.12), for which the entire construction can be carried out explicitly: A

single Bicklund transformation at one purely imaginary double point yields Q@ = Qu (2, t;¢,v;k =7,y /c_):

_ | cos2p—sinp sechr cos(2kz+¢)—isin2ptanh T —i(2c%t+7)
(316) QH - 1+sinp sechrt cos(2kz+¢) ce

. . 2
— eF2ippe=i(2¢7t+7) as T — Foo

where c;/c— = exp(p + if) and p is defined by 2cexp(ip) = (1 +i0), 0 = V42 -1, 71 = ot —p, ¢ =
p— (B4 7/2), and where the spatial period ¢ = 1. (see Fig. 2)

Several points about this homoclinic orbit need to be made:
(i) The orbit depends only upon the ratio ¢4 /c_, and not upon c4 and c_ individually.

(ii) @ g is homoclinic to the plane wave orbit; however, a phase shift of —4p occurs when one compares the

asymptotic behavior of the orbit as ¢t -+ — oo with its behavior as t -+ + oo.
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r—
Figure 3: Trouser diagram

(iii) For small p, the formula for )y becomes more transparent:

Qu ~ |(cos2p — i sin2p tanh 7) — 2sin p sechr cos(2kz + ¢) ce (27 t+),

(iv) The complex transformation parameter c;/c— = exp(p + i) can be thought of as S x R. In the
formula an evenness constraint about z = 0 can be enforced by restricting the phase ¢ to one of two
values — ¢ = 0, 7. In this manner, evenness reduces the formula for Qg from S x R to two copies
of R. In this manner, the even symmetry disconnects the level set. Each component constitutes one
“whisker” of the “whiskered circles”. While the target ¢ is independent of x, each of these whiskers
has x dependence through cos(2kz). One whisker has exactly this dependence and can be interpreted
as a spatial excitation located near x = 0 [Fig. 2 (left panel)] — while the second whisker (not shown)
has the dependence cos(2k(xz — 7/2k)), which we interpret as spatial structure located near = 1/2.
In this example, the disconnected nature of the level set is clearly related to distinct spatial structures

on the individual whiskers.

In this example the target is always the plane wave; hence, it is always a circle of dimension one, and
here we are really constructing only whiskered circles. On the other hand, in this example the dimension of
the whiskers need not be one, but is determined by the number of purely imaginary double points, which in
turn is controlled by the amplitude ¢ of the plane wave target and by the spatial period. (The dimension
of the whiskers increases linearly with the spatial period.) When there are several complex double points,
Béacklund transformations must be iterated to produce complete representations of the unstable manifold.
While these iterated formulas are quite complicated, their parameterizations admit rather direct qualitative
interpretations [see Fig. 2 (right panel)].

Thus, Bécklund transformations give global representations of the critical level sets. The level sets in the
neighborhood of these of critical ones have fascinating topological structure [63, 130]. The plane wave example
under even symmetry and with only one instability provides the simplest case. Here, dimW¥(g=S) =2 —

the dimension of each homoclinic orbit, plus the dimension of the target circle ¢ = S. In addition, NLS also
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possesses a four dimensional invariant manifold which contains W¥(q = S), and which can be viewed as the
result of “shutting-off” all degrees of freedom except for the spatial mean and the “first radiation mode.” In
this four dimensional space, the fixed energy level sets topologically form a trouser diagram shown in Fig. 3.
(The “trouser xS'” forms the three dimensional, fixed energy manifold.) Note in particular the symmetric
pair of homoclinic orbits and their relationship to the two legs, one of which represents a (periodic) soliton
located at the center of the periodic domain at @ = 0, and the other a soliton located one-half period away at
x = (/2. When all other radiation degrees of freedom are excited, each forms a small disc (a center for each
additional radiation degree of freedom), and the full phase space can be represented topologically (locally,
near the trouser) as the product of the trouser with a countable number of discs. More complex examples

are described in [130].

4 Temporally Chaotic Behavior

The existence of instabilities and their associated homoclinic orbits for the integrable NLS equation indicates
that external perturbations could induce chaotic responses in the perturbed deterministic pdes. Moreover,
the trouser topology nearby critical level sets, together with the correlation of the two legs of the trouser
with two distinct spatial locations for a soliton (“center” and “edge” of the periodic domain), indicates that
chaotic behavior under deterministic perturbations might involve a “random jumping” of a solitary wave
between these two spatial locations. An exciting possibility arises — Smale horseshoes [171] and chaotic
symbol dynamics [191] in a pde setting. Moreover, this temporal chaos — involving interactions of solitary
waves with each other, with radiation, and with external perturbations — should be easily observed in
numerical simulations, and even in laboratory experiments. And indeed this type of chaos does appear
to exist for certain near-integrable systems — temporal chaos resulting from competitions between, and

instabilities of, spatially coherent solitary waves.

4.1 Numerical Experiments

As described in the references [15, 149], we designed some numerical experiments to investigate this exciting

possibility. For example, we considered a damped-driven perturbation of an NLS equation in the form:

1 .
(4.1) —2iq; + Qoo + (qu_ —1l)g=iaq— \/ife*”,

with periodic boundary condition

(4.2) q(x + 0,t) = q(x,t),

and initial condition a periodic extension of the single soliton waveform
(4.3) q(x,0) = de,e 2 sech(2e,, 7).
where e = e, + ie,,, with e, chosen so that e~2%*? is periodic of period ¢ (usually e, = 0 and e, = 1/2).
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Figure 4: Perturbed solitonic dynamics. From top to bottom: 1) locked state, 2) periodic state, 3) quasiperiodic
state and 4) temporal chaotic state. Plotted here are |¢(z,t)|. The right panels are the corresponding surface cross
sections {Re ¢(0,t),Im ¢(0,¢)Vt}. Note that for the case of the quasiperiodic and chaotic dynamics shown here, the
values of the driving I" differ only by 0.4%.
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Figure 5: Center-edge jumps of soliton in the chaotic state. The dark line segments are the temporal traces of the

maximum of |¢(x,t)|.

These numerical experiments are described in detail in the survey [149], including: (i) the numerical
algorithms and their validation, which is essential when studying long-time temporal integrations of chaotic
behavior of unstable orbits; (ii) the collection of chaotic diagnostics with which we post-processed the numer-
ical data; and (iii) a detailed discussion of our numerical observations. Here we only give a brief description
of typical observations, for the simplest case where temporal chaos was observed.

We organized our numerical studies into bifurcation experiments in which all parameters were fixed
(dissipation strength a, spatial period ¢), except for the amplitude of the driving force I', which was increased
from experiment to experiment as a “bifurcation parameter”. In the simplest case, we set a ~ 0.1538 and
choose the spatial period ¢ ~ 6.12, for which only one instability is present. (For larger periods ¢ more
complicated behavior was observed.)

Sample results are pictured in Fig. 4. While the details of the bifurcation sequence are somewhat involved
[149], the general pattern may be summarized as follows. As I' increases, the long-time behavior of the wave
undergoes the following sequence of changes in |¢(z,t)|: (i) spatially flat, time independent; (ii) “sech-like”
in space, time independent; (iii) sech-like in space, but time periodic; (iv) sech-like in space, quasiperiodic
in time; (v) chaotic in time, with the sech-like excitation jumping from center to edge of the periodic spatial
domain.

We used standard chaotic diagnostics to identify chaotic behavior — including Poincaré sections, power
spectra, Lyapunov exponents, and information dimension. Each of these diagnostics is defined and discussed
in detail in [149]. In Fig. 4, we show four sample “cross sections” — for time-independent, periodic, quasi-
periodic, and chaotic temporal behavior.

We emphasize that this experiment, which is the simplest that we have found which has chaotic behavior,
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is extremely important for our theoretical studies. In it, the chaotic state contains only one spatially localized
coherent structure. At times this solitary wave is located at the center, and at other times it is seen at the
edges of the periodic spatial domain. These two locations are the only two allowed under even boundary
conditions. We believe that one source of the chaotic behavior is an irregular (random?) jumping of the
solitary wave between center and edge locations (see Fig. 5). This center-edge jumping of the solitary wave

through homoclinic transitions forms the basis for the simplest description and model of chaotic behavior.

4.2 Persistent Homoclinic Orbits

The first step toward analytical descriptions of such chaotic behavior is to assess the persistence of homo-
clinic orbits. These can provide a “skeleton” for chaotic trajectories. That is, persistent stable and unstable
manifolds, and their intersections, provide a framework with which chaotic behavior can be described. Proce-
dures for this description are well known for finite dimensional dynamical systems [85, 191], and have recently
been developed for the NLS pde [131]. See also [147] for a rather detailed overview of these mathematical
arguments. Here we present a brief sketch of the arguments, taken from [147], and state the persistence
theorem.

Specifically, we study a perturbed nonlinear Schrédinger equation (PNLS) of the form
(4.4) it = Qoo +2[qq—w?]q + ie[Dg—1],

where the constant w € (%7 1), € is a small positive constant, and D is a bounded negative definite linear
operator on the Sobolev space Helm of even, 27 periodic functions. Specific examples of the dissipation

operator D include the discrete Laplacian and a “smoothed Laplacian” given by
(4.5) Dq=—aq - BBy,
where the operator B has symbol given by

k2 k <k,
0 k>k.

b(k) =

This pde is well posed in H! . and the solution

e,p’
q(tie) = F(qin)

has several derivatives in ¢;,,, and in the parameters such as €, with the exact number of derivatives increasing
with decreasing e.
Our analysis of this equation begins with two observations: First, when ¢ = 0, the unperturbed NLS

equation is a completely integrable soliton equation. Second, the “plane of constants” II,,

I = {q(z,t) | 9uq(x,t) = 0},
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is an invariant plane for PNLS. In each of these two cases, [e = 0 or ¢ € II.], the behavior of solutions ¢(-,t)
can be described completely. In the first case, this description is described in Section 3.1; in the second case,
it is accomplished through “phase plane analysis”. In the jargon of the theory of dynamical systems, our
methods will be a form of “local-global” analysis, where at times the term “local” will mean close to the
plane II., and at other times “local” will mean close to integrable solutions. In any event, throughout our
global arguments, control is achieved either because of proximity to (i) the plane II. or (ii) e = 0.

4.2.1 Motion on the Invariant Plane

On the invariant plane II., the equation takes the form

(4.6) i = 2[q7—w?]q — ie[ag+1],

where it is assumed that the dissipation operator D acts invariantly on II. as
Dq = —aq,

for a a positive constant. Equivalently, in terms of polar coordinates

q= VT expib,
these equations take the form
I, = —2e[al+ VT cosb,
(4.7) 9, = —2(I—-w?) +— sinf.

VI

Figure 6: Phase Plane Diagram of the ODE

When € = 0, the unperturbed orbits on II. are nested circles, with S, a circle of fixed points given by

I = w?. For € > 0, the perturbed orbits on II. are very different (see Fig. 6). First, only three fixed points
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exist: O, which is a deformation of the origin; @, a saddle which deforms from the circle S,; and P, a spiral
sink which also deforms from the circle S,,.
While the circle of fixed points S, for the unperturbed (¢ = 0) problem does not persist as a circle of

fixed points, motion near S, remains slow for small positive e. We introduce the variable J,
J =1 —u?,
and, in order to describe the slow flow close to this circle S,,, we rescale the coordinates

T = vt

(4.8) J = vj.

where v = /e. In these scaled coordinates, equations (4.7) on the plane II. take the form of an O(v)

perturbation of the conservative system

jr = —2(aw’+wcosh),

Thus, we see that near the circle S, the slow motion is approximated as a driven pendulum, with energy

1
(4.9) E(4,0) = 5]'2 —w (sinf + awb) .

4.2.2 Integrable Homoclinic Orbits

The unperturbed (e=0) focusing NLS equation is a completely Hamiltonian system,

, 5
(4.10) —ia = 5 H,

with the Hamiltonian H given by
2m
H 2/ (92> — (49)* + 2w°qq ] da.
0
Consider the two parameter family of plane wave solutions, independent, of x:
Q(Iv t;c, 7) = Cexp {_i[2(02 - wz)t - 7]}

Linearizing NLS about ¢(x,t; ¢,v) shows that this plane wave is linearly unstable, with positive growth rate

o for the linearized “cosx mode” given by

o=+vV4c? - 1.

As described in Section 3.1, a Bécklund transformation will produce an orbit homoclinic to this plane

wave:

cos2p — i sin 2ptanh 7 & sin p sech 7 cosx
(4.11) ot = { ..

1 Fsinp sech 7coszx
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where

T = o(t+toy),
) 1+1i0

mp — .
€ 2c

Here + labels a symmetric pair of homoclinic orbits. (Recall that —cosz = cos(z + 7), which shows that
one sign (+) represents an excitation centered at & = 0, while the other sign (—) represents an excitation
centered at x = 7.)

If we specialize to ¢ = w, ¢ lies on the circle of fixed points S,,, and the orbit ¢ is homoclinic to this
circle. Thus, from one point of view, (4.11) provides an explicit representation of a “whiskered circle”; while
from another viewpoint, it provides an explicit representation of the unstable manifold

WU(SW) = WS(SW) = U Qf (ta v t07 C) .
v, to,x

4.2.3 Melnikov Integrals

Next, we define the Melnikov integral which will be used to establish persistence. First, we write the

perturbed NLS equation in the form

(4.12) @ = iH'(q) +eG(q),
where H'(q) = —qzz — 2[qq — w?] ¢ and where G(q) denotes the perturbation:
(4.13) G(q):—aq—ﬁéq—l.

Let I denote a (real valued) constant of motion for the unperturbed (e = 0) system.

Definition: The Melnikov function (based on I) is defined by

/_Z <II[Qh(t)]7 G[qh(t)]> dt

(4.14) / HG i[ + G*i_l] }dt.
—o0 dq 0q an ()

In this definition, we assume that the integrals converge (which they do for our choices of constant I).

My

Melnikov integrals, together with geometric analysis, are used to assess the fate of the orbit g, (¢) under
the perturbation. As is clear from its definition, the Melnikov integral M; provides an estimate of the change
in the value of the constant of motion I over the perturbed orbit. Without an additional geometric setting,
this change provides very little information about persistence. When this integral does not vanish, one
can establish no persistence [42]. However, in particular geometric settings, a simple zero of the Melnikov
function with respect to one of its parameters can insure the intersection of certain stable and unstable
manifolds, and the persistence which follows as a consequence of this intersection.

Next we specialize the orbit ¢ (t) to one homoclinic to the circle of fixed points S,,. Setting ¢ = w
produces orbits homoclinic to S,,, which we denote by q,,:

cos 2p — i sin 2p tanh 7 + sin p sech 7 cos x

(4.15) qu(t) = wexpi[fy — 2p],

1 —sinp sech 7 cosx
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where tanp = v4w? — 1 and 7 = (tanp)(t + t,). While the orbit ¢, approaches the circle S, as t — +o0, it

approaches the fixed point wexpif, as t -+ —oo and, as t — +0oo,
G (t) — w !0e=1P)

Thus, the (heteroclinic) orbit experiences a phase shift of —4p

i [1_i¢mr
2w
It will be sufficient to use the the Melnikov integral based on the energy H. With these ingredients, we
assemble the final expression for this Melnikov integral:
Proposition: For the specific perturbation (4.13) and homoclinic orbit ¢, equation (4.15), the Melnikov
integral takes the form

(4.16) My =Moo 0,0) = [ <H'<qw<t>>7 G(qw<t>>>dt

—0o0

= [aMa + BMp+ M(6))],

where

oo

H' (0 (1)), qw<t>> dt

8

8

5
I
\\8\
3

— 00

(
(@0, Bauto)) d
(o 1)ar.

More explicitly,

27 2 2
47 w* sin” p, sech T
M, = / dT/ e X

[sech T + sin p, tanh? 7 cos # — sin® p, sech 7(2 + cos® )

+2sin® p, sech 7 cos z],

27 2 12
47w? sin” p, sech T
Mz = d dx X
Ié; / T/ o A5

[sinp, sech 7 cosx — sin® p, sech >7(1 + sin® z)] x
[2 sech 7 — 2sinp, sech > cosz — 2sin? p, sech T

+2sin® p, sech 27 cos x] + O(sin"~? p,),

47w sin® p, sech T
o A2

[eS) 2w
M(0y) = cos(fy —2p0)/ dT/ dx
—00 0

[ sech T — sin p, cos ],
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where p, = tan~!v4w? —1, A = [l — sinp, sech 7 cosz] and where the O(sin" 2 p,) term in the Mgz
equation is due to the fact that we used —02 instead of B in our calculation. Thus, the final expression for

the Melnikov integral is of the form
(4.17) M(a, B, 0y) = aMy + BMa + M cos(0y — 2p,),

where My, Mg, and M; are functions of w only.
Clearly, for small o and /3, this Melnikov function has simple zeros as a function of 8. At issue, of course,

is the geometric meaning of these zeros.

4.2.4 Persistent Homoclinic Orbits for PNLS

Simple zeros of the Melnikov function (4.17) enable us to prove the following persistence theorem for the

pde:

Theorem 4.1 The perturbed NLS equation (4.4) possesses a symmetric pair of orbits which are homoclinic
to the saddle fized point QQ, provided the parameters lie on a codimension 1 set in parameter space which is
approzimately described by

a=Ew)p.

E(w) can be computed explicitly to leading order €. In addition, various properties of persistent homoclinic

orbit (such as a “take-off ” angle) can be precisely characterized.

These two homoclinic orbits differ by the location of a transient spatial structure — a solitary wave
which is located either at the center (z = 0) or the edge (z = 7) of the periodic box. As such, this theorem
provides a key step toward a symbol dynamics for the pde.

The proof of this theorem is described in mathematical detail in [131], and a detailed overview of the
argument is presented in [147]. It is organized with “local-global” analysis, and it involves normal forms for
the perturbed NLS equation, invariant manifold theory for NLS and geometric singular perturbation theory,
combined with integrable theory and Melnikov analysis. It is important to keep in mind that, throughout
the proof, control is obtained in one of two ways — either the orbits are (i) close to the invariant plane
II., or they are (ii) close to the integrable case. Also keep in mind that the arguments will be a form of
“shooting”, where the goal will be to force an orbit to “hit” target manifolds of high dimension, but in an
infinite dimensional space. To make these manifolds easy targets, we make them very large in the sense that
they will be codimension 1.

The steps in the proof are as follows:

1. Preliminary set up including (i) motion on II., (ii) coordinates near II., (iii) linear stability and

time scales, and (iv) a normal form.

2. Local arguments including (i) persistent invariant manifolds, (ii) fiber representations, and (iii) the

height of the stable manifold W*(Q).
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Figure 7: Schematic Diagram of the Homoclinic Orbit

3. Global arguments which describe the first and second Melnikov measurements.

Here we restrict ourselves to a few remarks about these steps:

Remark 1: In the local arguments for persistence of stable and unstable manifolds, and for their rep-
resentations with “fiber coordinates”, we use integral equation methods rather than more geometric ones
[9, 133] from dynamical systems theory. These integral equation methods are natural for pde’s. Their use is
consistent with our view that intuition, taken from finite dimensional dynamical systems, should structure
the arguments — which should then be implemented with methods which are natural for pde’s.

Remark 2: Fiber-representions are constructions from geometric singular perturbation theory which permit
one to follow the long-time fate of the full motion with an orbit totally restricted to a slow manifold. These
were developed by Fenichel [65, 66, 67, 68] to provide a geometric understanding of singular perturbation
methods, such as those of Howard and Kopell [110, 92]. Recent descriptions of these fibrations, with explicit
examples, may be found in [97, 145, 147].

Remark 3: The argument is a “shooting method”, with the final target the stable manifold of the saddle
Q, W*5(Q). To ensure that this “target is hit”, this stable manifold must have sufficient height above the
plane II.. For this estimate, the effects of quadratic nonlinearities must be controlled. An elegant normal
form transformation for the pde is used to control these quadratic nonlinearities by transforming them into
cubics.

Remark 4: The shooting arguments make use of two distinct time scales in the problem — a slow scale for
motion near the plane II., and a fast scale for motion away from II.. These arguments are organized into
two measurements, associated with these two time scales. This organization of the argument follows some
earlier work [145], in which the pde was truncated to a four dimension model problem. A particularly clear
description of these finite dimensional arguments may be found in [111].

Remark 5: Intuitively (see Fig. 7), the persistent homoclinic orbit will “leave the saddle point @, creep
slowly near the plane II. along the unperturbed circle of fixed points S, to a location near the “take-off”

angle, rapidly fly away and return along a global orbit which is close to one of the integrable homoclinic
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orbits ¢, (t;v). Upon its return near I, it will slowly creep back to the saddle @, again near the circle S,,.”
Remark 6: The first measurement determines the intersection of the unstable manifold W*(Q) with a
persistent center-stable manifold W which is codim 1. This is accomplished with the Melnikov function
My = My(vyr), viewed as a function of the “take-off” angle 7. This Melnikov function measures the

distance between these manifolds,
AW (Q), W} = My (vr) + O(¥/?).

Remark 7: Within the persistent W€, the stable manifold W#(Q) is codim 1. Thus, once the orbit is
known to reside in W, a single measurement can ensure that it returns to the saddle ). This “second
measurement” is accomplished using the pendulum energy (4.9) and the fact that the stable manifold W*(Q)
is tall enough, as established by the normal form transformation.

Remark 8: Once the persistence of one homoclinic orbit is established, the symmetry  — x + 7 shows
the persistence of a second homoclinic orbit, and the ingredients for a “center-edge” symbol dynamics are

in place.

4.3 Chaotic Behavior

The simplest chaotic behavior which was observed in the numerical experiments for the perturbed NLS
equation consists of a single solitary spatial excitation which jumps, irregularly in time, between the two
distinct spatial locations at x = 0 and « = 7. These numerical experiments, together with the persistence

of a symmetric pair of homoclinic orbits, suggests a “symbol dynamics” explanation of this phenomena.

4.3.1 Symbol Dynamics

More precisely, the term “symbol dynamics” refers to the existence of an invariant set in the phase space
which is topologically equivalent to a set of all 2-symbol valued sequences. In our setting, these sequences
would take the values of C' (center) or E (edge), and the dynamics would be represented as a shift on this
sequence space. As such, the dynamics, when restricted to the invariant set, is as random as a sequence of
“coin tosses”.

In finite (usually very small) dimensions, the existence of such an invariant set is established by construct-
ing a “Smale horseshoe” [171, 153, 85, 191]. Such constructions have been carried out for orbits homoclinic
to the saddle @ for the four dimensional truncation [145], for a 2N + 2 dimensional truncation in [132], and
most recently for an infinite dimensional model of the pde [129]

Symbol dynamics is very appealing because it demonstrates the existence of chaotic motions which last
for all time. However, it has some drawbacks: First, it occurs on a very small set in phase space, which is not
shown to be (and is likely not) a stable set. As such, this type of chaos may not be observable. Moreover,
the behavior depends on parameters in a bifurcation fashion. Often the parameter values required to show

the existence of the horseshoe are very far from the values of the parameters at which chaotic behavior is
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observed in numerical experiments. (For example, in our analytical results [131], an additional dissipation
B3 > 0 is required which satisfies a codim 1 constraint. However, in the numerical experiments [149], chaotic
behavior is observed for 3 = 0, over a range of o values.) Finally, the construction of the horseshoe is almost
always performed for generic abstract models, rather than for a fixed specific dynamical system. To us, this
generic situation seems to be a severe limitation of the practice of the method — and particularly so for the

NLS pde with its singular, two-time scale, homoclinic orbits.

4.3.2 Long Complex Transients

Recently, Haller has been developing an alternative perspective, which he has applied to finite dimensional
discretizations of the perturbed NLS equation [88, 87], and to the pde [86]. In his work, using very similar
geometric perturbation methods, he constructs a large class of heteroclinic orbits from the saddle @ to (for
example) the sink P. These orbits have complex patterns of center-edge jumps, finite in number. While
only transient behavior, the length of the transients is arbitrarily long. In any case, this set of heteroclinic
orbits certainly demonstrates very complicated dynamics which depends sensitively upon initial conditions.
Moreover, these orbits are associated with a “mixing and entangling” of the unstable manifolds. And, as the
second measurement is not required to force the orbit to return to the saddle (), these heteroclinic orbits

exist for a full open set of external parameter values, without any codim 1 restriction.

4.4 Very Recent Work

Our proof [131] of persistence of homoclinic orbits for dissipative, driven perturbations of NLS is very
geometric. While beautiful, this geometric framework can be cumbersome and somewhat tedious. We
continue to develop methods which rely upon geometric intuition, but which implement the actul calculations
“more mechanistically” — within an integral equation framework, together with natural pde estimates. In
[148] we prove the persistence of an orbit homoclinic to an isolated unstable fixed point for a nonlinear Klein
Gordon equation (a simpler situation than the orbit homoclinic to a circle of fixed points treated in [131]) by
replacing Melnikov methods with a Lyapunov Schmidt framework for the pde, together with pde scattering
theory.

Normal forms, while beautiful when they work as in the NLS case, often depend upon conditions which
are extremely difficult to verify — as, for example, in the case of the persistence of an orbit homoclinic to
a periodic solution in the sine-Gordon setting. Recently Shatah and Zeng [168] have used integral equation
estimates to replace the normal form argument. They also have extended our NLS results [131] to include
unbounded dissipative perturbations such as diffusion. They accomplished this extension by replacing our
“fiber” representation of the stable manifold with long-time, integral equation estimates. Such improve-
ments in the methods, while technical, are essential for the development of general procedures to establish

qualitative results, valid globally in time, for pde’s — such as the persistence of homoclinic orbits for pde’s.
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Another set of related questions concerns persistent tori, and persistence of associated periodic and quasi-
periodic solutions, for Hamiltonian perturbations of integrable systems. This well studied “KAM” behavior
in finite dimensional dynamical systems has recently been extended to infinite dimensional pde settings.
While we will not describe these extensions in this review, we do note several representative references:
[114, 115, 40, 20, 21, 22, 25, 13, 17, 48, 185, 54].

An important example is the persistence of the sine-Gordon “breather”. The sine-Gordon equation on the
whole line (—oo < & < 400) has exact solutions which are periodic in time, exponentially localized in space,
and which can be viewed as nonlinear bound states which consist of two solitons. The question of the survival
of such temporally periodic solutions to small Hamiltonian perturbations is known as the “persistence of
the breather”. For perturbations which do not depend upon derivatives of the field, the breather does not
persist [167, 166, 14]. Rather it decays extremely slowly, generating radiation as it decays at a rate which
is exponentially small in the perturbation parameter. The work of Segur and Kruskal [167, 166] uses formal
“asymptotics beyond all orders” [165] to capture this decay rate, while that of [14] proves that the breather
does not persist with mathematical arguments which begin from formulas of “soliton perturbation theory”
[146]. This persistence problem provides one example of the important interactions between solitary waves

and radiation in nonintegrable situations. (See [173, 174, 30] for others.)

5 Spatiotemporal Chaos

5.1 Intuition

In Section 4, we have discussed the existence and nature of temporal chaos which consists of spatially coherent
localized waves which dance chaotically in time. As Fig. 4 clearly indicates, these waves are very regular
in space. Their time series at location z, {q(z,t) Vt}, appears to be statistically well correlated to the time
series at location y # =z, {q(y,t) Vt}. On the other hand, waves of dispersive turbulence should behave
chaotically in both space and time. At least the time series {q(z,t) Vt} and {q(y,t) Vt} should become
statistically independent as the distance from z to y increases.

Intuitively, this independence might be achieved by increasing the size ¢ of the spatial domain. The
numerical data shown in Section 4 was for small spatial domains, with only one instability and only one
solitary wave under even, periodic boundary conditions. Recall that the number of instabilities, and hence
the number of solitary waves present in the spatial domain, scales linearly with ¢. Moreover, with an
increasing number of linearly unstable modes, there is, correspondingly, an increasingly large number of
distinct classes of spatial excitations in the form many types of quasi-solitons — standing waves, waves
traveling to the left and right, bound states which are quasiperiodic in time, etc. Therefore, increasing ¢ will
place more, and more complex, solitary wave structures into the spatial domain, and should decorrelate in
space. Moreover, relaxing even symmetry enlarges the number of spatial locations at which these solitary

waves can reside (from a discrete set to the continuum) (See [1] for fascinating effects which result from
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Figure 8: Evolution of system (5.1) with o = 0.004, I" = 0.144, w = 1. The initial condition ¢ = ¢ + eexp(i2wz/¢),
c=0.8, ¢ =2 x 107°. Plotted here is |¢(z,t)|. Left panel: Temporal chaos in the presence of one linearly unstable

mode, ¢ = 6.4; Right panel: Spatiotemporal chaos in the presence of two linearly unstable modes, ¢ = 9.6.

relaxing even symmetry). Indeed, this decorrelation is seen in our NLS numerical experiments [35, 34],
provided the constraint of even symmetry is removed. And, similar phenomena occur much more widely
than just for near-integrable waves. For example, a similar scenario occurs in studies of purely spatially
chaotic, stationary waves [7, 80], in which the temporal access of all of these stationary states remains to be
fully addressed [41].

Specifically, we will describe spatiotemporal chaos for the driven, damped NLS equation,
(5.1) iq; + Qe + 2|q1%q = —iag + Detwt+7),

with periodic boundary conditions,

(5.2) q(x +0) = q(x),

where £ is the system length, and w and « are the driving frequency and phase, respectively. The damping
coefficient a and the driving strength I' will be small.

A natural question: Given a temporally chaotic solution of the perturbed NLS equation, how large a
spatial domain, or how many instabilities, is required for effective decorrelation in space? An example with
only one instability is shown in Fig. 8 (left panel), while one with two instabilities in Fig. 8 (right panel).
Clearly, the two figures display drastically different spatial patterns.

Before investigating such questions further, we need first to formulate a precise definition of the concept

of spatiotemporal chaos.

5.2 A Definition of Spatiotemporal Chaos

There have been many definitions proposed to capture the essence of spatiotemporal chaos [41]. We prefer a

“working definition” which includes two points: (i) A temporally chaotic wave ¢(z,t), (ii) for which the time
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series {q(z,t) Vt} and {q(y,t) V¢} become statistically independent as the distance from x to y increases.

For a definition, we must make precise the meanings of “temporal chaos” and “statistical independence”.
For temporal chaos we will accept any common definition, such as a bounded attractor with positive Lyapunov
exponents.

Statistical independence is often estimated through the decay of the two-point correlation function:

1 T
(5.3) Oz —y) = lim / [(a(e.1) — @)@y, 1) — (@))] dt,

T—oo T =Ty J7,
where (-) denotes the temporal mean, and where we have assumed translational invariance of the system.
However, the vanishing of the two-point correlation function is only a necessary condition for statistical
independence; thus, we prefer to base the definition upon mutual information.
For two stochastic variables U and V', with probability density functions p(u) and p(v), respectively, and
with joint probability density function p(u,v), the mutual information between these two variables U and V'
is defined as [16]

(5.4) (U, V) = /du dv p(u,v) log%.

In this application of spatiotemporal chaos, the probability distributions will be generated by the chaotic

time series:

pe(q) : {q(z,t) Vt}
py(q) : {aly,t) vt}
px,y(Qv T) : {[q(ax t)v T(yv t)] Vt},

where r(y,t) = q(y,t). Intuitively, p,(q) dg is the fraction of time that ¢(x,-) € (¢,q + dq), etc. Thus, we

define the mutual information between points x and y by

pz,y(Q7 ’I“)

(5.5) I(x,y) = /dq dr pgy(q,7) log m

In terms of this mutual information between spatial points, we arrive at our

Working Definition: A wave ¢(z,t) is spatiotemporally chaotic if
1. g(z,t) is a temporally chaotic orbit (for example as characterized by positive Lyapunov exponents);

2. its mutual information between two spatial points, Z(z,y), decays exponentially for large separatons,

ie,as|z—y|>0.

It is well known that temporal chaos signifies a loss of information in time. (This loss of temporal
information can be quantified by a positive Kolmogorov-Sinai entropy, which in turn can be estimated by
the sum of positive Lyapunov exponents.) It is our view that a key feature of spatial chaos is a similar loss
of information, but over space. Mutual information provides a natural measure.

First, mutual information is closely related to entropy:

L(z,y) = H(z) + H(y) — H(z,y),
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where H(:) denotes the entropy. Here, H(x) is the entropy of g(x,t) at the space point x, and H(x,y) is
the total entropy of ¢(x,t) and ¢(y,t) between the two spatial points. This relation shows that the mutual
information Z(q(z,t),q(y,t)) measures the shared information between the two spatial points (x,y).
Mutual information more faithfully captures the notion of statistical independence than does the two-
point correlation, since the vanishing of mutual information is a necessary and sufficient condition for statis-
tical independence. (The factorization of the complete infinite hierarchy of correlation functions to all orders
is required for statistical independence — not just the factorization of two point correlations.) In addition,
unlike the correlation functions, mutual information is invariant under invertible coordinate transformations.
Thus, it provides an intrinsic description of the information propagated under the chaotic dynamics.
Unfortunately, the numerical computation of mutual information is far more involved than the correlation
functions. However, we stress the conceptual advantage of mutual information over correlation functions
since it renders a unified picture of chaos in time and space — spatiotemporal chaos giving rise to a loss of

information in both time and space.

5.3 Information Propagation in Linear Stochastic Dynamics

Before turning to the discussion of mutual information for chaotic NLS waves, we develop some intuition
about the behavior of mutual information for several distinct classes of linear waves. In particular, we
describe examples which illustrate very distinct behavior for the propagation of information in space for
diffusive, wave, and dispersive systems.

We need the mutual information between two random variables (X,Y), each individually normal with
means m,, m,, and variances o2 and 02, respectively, and whose joint probability density is Gaussian

1
20,0y (1 — p2)1/2

Xexp{_2(1ip2) l(fB;:nz)Z_m) <x;:ﬂz> (y;;ny> + <y;:Ly>2]}

Here p is the correlation coefficient, i.e., p = Cov(z,y)/(0,0y). In this case, definition (5.4) becomes

plz,y) =

xy) = Z dudy plz,y) {— Sin(L— )
a7 () e () () e (5 )
(5.6) - —%ln(l—pz).

First, consider diffusion dynamics:
ug — Duge = f(t)0(x), —oo < < 400,

where f(t) is a Gaussian white noise with zero mean and J-correlation:



(f®fE)) = ot -1),

where (---) denotes an average over noise. As any linear transformation of a Gaussian process remains a
Gaussian process, the solution

.562

( t)_/t; [_7
R A \/47rD(t—t’)eXp 4D(t - t')

is a Gaussian process, whose correlation can be easily written as

G

(ule, ' 1)) = — = Fi <_§> 7

where Ei is the exponential-integral function

o0
Ei(z) = —/ s~te™%ds for z <0,

—z

2+ x?
&= (T) :

Therefore, according to equation (5.6), the mutual information between u(x,t) and u(z’,t) in the case of

and where

diffusion is

Y=t (1- PO
I(z,2") = =31 <1 |Ei(_§1/t)Ei(—£z/t)l)’

in which & = 22/(2D) and & = 22 /(2D). For a fixed time t and a fixed 2’ # 0, we have

(5.7) I(z,z") ~

for large x, i.e., x > (2Dt)'/? and |z| > |2'|. Here C(2',t) is a positive constant depending on 2’ and .
Equation (5.7) shows that, in the case of diffusion, the mutual information decays with a power law in space.

Now we contrast this result with that for wave dynamics:
ug — ugy = f(£)0(x), —oo <z < +00,
where f(t) is again Gaussian white noise. Since the solution is
u(e,t) = f(t+2),
for x and ¢ within the “light cone” such that —t < x < 0, we have
(u(z, yu(a', 1)) = 56(x — 2').
Thus, in the wave case, the mutual information between u(x,t) and u(2’,t) for 2 and ¢ in the light cone is

0, x#

00, x=2ua.

(5.8) I(z,2') =
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(Note that the correlation coefficient p = 1 for # = 2’ by definition). Therefore, in the wave case, spatially
distinct points do not share any information when driven by Gaussian white noise which is ¢ correlated in

time. If the noise is Gaussian but with a finite correlation function in time,

(5.9) FOFE)) = Fexp (— It t") 7

T

then the mutual information between w(z,t) and u(z’,t) becomes

(5.10) I(z,2') = —%m [1 — exp (_Mﬂ .

T

At large distances, |¢ — 2’| > 7/2, the mutual information decays exponentially in space, i.e.,

(5.11) I(z,2') ~ exp <—M) .

T

Note that the equal-time two-point correlation function for the wave is

(5.12) Clx,2") = (u(z, t)u(a', 1)) ~ exp (—M) :

T

Therefore, in this case, the lengthscale of the spatial decay of the correlation function is two times that of
the mutual information. Numerical simulations have observed values of this ratio which are close to 2, even
for nonlinear systems [192, 159].

For linear Schrodinger dispersive waves, i.e.,
iup + Uz = f(t)0(x), —o0 <z < 400,

where f(t) is real Gaussian white noise, it can also be shown that the mutual information between wu(x,t)
and u(z',t) is

0, xZ£a,
(5.13) I(z,2') = 7 :
00, r=a.

That is, the information is not shared between any spatially distinct points.

These discussions show clearly that the propagation of information in space depends distinctly on the
class of linear pde. Moreover, for linear Gaussian processes, these calculations illustrate the sufficiency of
two-point correlations to compute mutual informations. In contrast, for the information propagation in the
situation of spatially extended deterministic nonlinear dynamics, mutual information, in general, requires a

full knowledge of joint probability distributions — and not just the two-point correlation functions [183].

5.4 Numerical Measurements of Spatiotemporal Chaos for NLS Waves

Now we return to chaotic NLS waves (5.1), and use mutual information to establish the existence of spa-
tiotemporal chaos. First, we calculate numerically the spatial correlation function C(z) [Eq. (5.3)]. Fig. 9
(left panel) shows the dependence of the correlation function C(z) on the system length. For ¢ = 6.4, which

corresponds to the one linearly unstable mode, clearly, the whole system is correlated. This is intuitively
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Figure 9: Numerical measurements. Left panel: Dependence of the correlation C'(z) on the system size L. Inset:
Transition of C(L/2) around Lyn = 27/c (dashed line) [cf. Eq. (3.12)]. Right panel: Mutual information Z(x). Fine
line: one linearly unstable mode; Dotted line: two linearly unstable modes, as also shown in the inset on the linear-log

scale (the straight line is a fit to an exponential form).

consistent with what one would conclude by observing the spatial structures of Fig. 8, since, for the most
times of the evolution, there is only one quasi-soliton in space. When the system size is increased so that
there are higher numbers of linearly unstable modes present, Fig. 9 (left panel) shows that their correlation
functions rapidly vanish. Therefore, the system becomes increasingly decorrelated, indicating an onset of
spatiotemporal chaos. As shown in the inset of Fig. 9 (left panel), the correlation at the half system length
as a function of ¢ displays a clear transition around the threshold ¢, = 27 /¢, above which the second linearly
unstable mode enters [see Eq. (3.12)].

According to our definition of spatiotemporal chaos, we use mutual information to further corroborate
the preceding results. Figure 9 (right panel) summarizes the mutual information as a function of the distance
x between any two points in space for both one and two linearly unstable modes, which corresponds to the
cases in the left and right panel of Fig. 8, respectively. For one linearly unstable mode the mutual information
remains nonzero across the system, signifying no sufficient loss of information over the whole system, while
it vanishes rapidly for the case of two linearly unstable mode. It can be further determined that this decay

is exponential as shown in the inset of Fig. 9 (right panel); that is,
(5.14) I(z) — exp(—%) for large x

with a decay length £ ~ 0.30. As solitons are phase-locked to the external driver, we anticipate that the
driving frequency w controls this decay length, i.e., the soliton’s frequency determines its spatial width, the
coherence length in space.

These results establish that spatiotemporal chaos exists for NLS waves, with the transition from temporal

chaos to spatiotemporal chaos occurring at the system size at which a second instability arises. Only two
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instabilities seem to be required. Spatiotemporal chaos in such small systems is somewhat unexpected,
as the prevalent belief in the physical literature requires very large systems with many unstable modes

[41, 89, 82, 57, 58, 170, 137, 200, 172, 38, 112, 91, 176, 39]. (See, however, the recent work [80]).

6 Descriptions of the Chaotic State

Given a chaotic state, one seeks ways to describe and to understand it. For temporal chaos, dynamical
systems theory has provided a framework and some concepts, including: “strange” attractors, horseshoes
and symbol dynamics, Lyapunov exponents, different dimensions, and universal routes to chaos — as well
as more statistical descriptions of the attractor, including invariant measures and entropy. The application
of some of these concepts to temporally chaotic dispersive waves is described in the survey [149].

For spatiotemporal chaos much less is known, and we believe that statistical representation will be essential
for its description. For waves which occur in nature, such as waves on the surface of the ocean, statistical
behavior and properties in the mean become far more important than individual trajectories. Wave spectra
are observable, and modelling these with deterministic initial-boundary problems seems unnatural and would
be irrelevant. Spatiotemporal chaotic waves call for statistical descriptions. In this section, we briefly
describe three such statistical theories — (i) invariant measures of equilibrium statistical mechanics, (ii)

weak-turbulence theories, and (iii) effective stochastic dynamics.

6.1 Equilibrium Statistical Mechanics

Nonlinear dispersive waves are frequently related to conservative mechanical systems. The Toda lattice and
the sine-Gordon equation (as a continuum limit of coupled pendula) provide two examples. Equilibrium
statistical mechanics is the traditional description of conservative mechanical systems with a large number
of degrees of freedom; hence, it provides a natural starting point for a statistical description of conservative
waves.

We view the 1-D NLS equation under periodic boundary conditions,

i = ee—29(q0) 4
q(z,t) = qlz+4,1),
as a Hamiltonian system
. 0H
iqp = —
qt 5q_ )

with Hamiltonian ,
1) = [ ot + o] a.
0

Statistical mechanics of NLS is the study of the Gibbs measure based upon this Hamiltonian. This measure,

on the space of continuous functions, can be written formally in terms of the Hamiltonian H as

(61) 2 e { — BH[u(),v0)]} pu()pe(),
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where ¢(z) = u(x) + iv(z), and where the normalization constant (partition function) Z is defined as

7= / exp{ — BH [u(:),v(-)] } pu(-)pv(:).
C(0,0)

Here C(0, ¢) denotes the space of continuous, periodic functions in which [u(x),v(z)] reside, and the positive
parameter 3 denotes inverse temperature.

For those not familiar with function space integrals, reference [102] provides an intuitive introduction
which emphasizes a view of the integral over functions as a “sum over paths”, and which makes concrete the
notation pu(-), etc.

In the defocusing (g > 0) case, it is relatively easy to give precise meaning to these formal expressions

by writing
Zoxp { = BH (), o()]} pu()pe()
L ‘ 2 212 I ex — ‘ U2 ’U2 X u(-)DVU\-
= Zoxn{ =0y [ o deh exp{ =5 [ 2 +02) de} puC)ou()
£
(6.2) = Zow{ =8y [ 40 de} o))

where Dy u(-)Dywv(-) denotes unnormalized Wiener measure:

¢
Dyu(-)Dyv(-) = exp{ — B/O [uZ + v2] dz} pu(-)DV(").

With this observation, Wiener measure can be used to give a precise mathematical definition of the Gibbs
measure for the defocusing case [19, 23, 142, 141, 143].

Wiener measure is supported on functions which are continuous, but no-where differentiable. As such,
these functions are “very rough”; for example, the energy space H' has Wiener measure zero. For the
Gibbs measure to be invariant, the NLS equation must be well-posed for such rough data. Clearly, energy
arguments will not work for such rough data. Resolving these existence issues requires delicate and interesting
mathematical arguments [19, 23, 142, 141, 143], which establish that the Gibbs measure exists and is invariant
for the defocusing NLS case.

The focusing (g < 0) case is more subtle, as the formal expressions show. (Note, for g < 0 the integrand
(6.2) is unbounded.) In one-dimension, control can be achieved by constraining with the L? norm (which is
also invariant).

The goal of an equilibrium statistical mechanics of waves is to use these invariant measures to extract
statistical properties of typical wave configurations. Rose, Leibowitz, and Speer introduced these NLS
measures, studied them both numerically and in “mean field”, and posed some fascinating problems [127,
128]. In particular, they conjectured a phase transition in the focusing case which involves solitons vs
radiation — At high temperature (small 3), the typical configuration would consist in radiation, while at
low temperature, it would consist in a gas of solitons. While recent evidence seems against this conjecture,

the extraction of qualitative information about the statistical ensemble of waves from the Gibbs measure
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remains open mathematically. (There is a related calculation for the discrete Toda lattice which estimates
the expected number of solitons as a function of the temperature, and which agrees well with numerical
observations [155, 154, 138, 33, 179].)

There are many fascinating issues, including: the thermodynamic (¢ — oo) limit, together with the
possibility of the coupling constant g — oo; the extraction of spectra and other mean properties of the waves
from the measure; the use of the measure or its moments to produce effective integration schemes, constrained
by partial data [37]; “fluctuation-dissipation theorems” for ensembles of waves; macroscopic transport [73];
the application of these ideas to vortex filaments of fluid mechanics [134] (which can be described by NLS
and its perturbations [103, 104, 107, 105, 106]).

Although these issues are fascinating mathematically, the fact that the measure is concentrated on rough
functions remains troublesome physically. Typically, dissipation dominates at small scales — exactly where
this rough spatial behavior appears. And this description of waves as a conservative Hamiltonian system
neglects dissipation. Descriptions which focus upon steady fluxes of excitations between the different spatial
scales, rather than upon equilibrium behavior, may be more relevant for ensembles of nonlinear waves. One

such description is “weak turbulence theory”.

6.2 Weak-turbulence Theories

In order to understand dynamics of spatially extended, nonlinear wave systems, an important issue one
must first address is the identification of fundamental excitations. In an appropriate coordinate system
the fundamental excitations often acquire a very simple representation, such as a soliton in the nonlinear
spectral representation, which is far simpler and more compact than its Fourier (plane wave) representation.
Conceptually, these natural representations often allow us to capture the main dynamics of the system.
The small residual interactions amongst the fundamental excitations can be then treated perturbatively.
The theoretical power, as we demonstrated in preceding chapters, of the spectral representation toward
understanding temporal chaos precisely lies in the fact that solitonic excitations and their interactions are
the most important features in this dynamics.

In this section we present another important theoretical formalism for nonlinear phenomena — namely,
weak-turbulence theories. The dynamical emphasis of this formalism is wave-wave interactions. One origin
of this formalism was a description of nonlinear phenomena in plasmas [199, 198, 195], such as the processes
of modulational instabilities, decay instabilities, and wave couplings. It turns out that a Hamiltonian formal-
ism, together with normal form transformations, provides a natural language for weak-turbulence, in which
dissipative effects can be taken into account as small corrections. The waves described by weak-turbulence
must be of small amplitude; and the weak-turbulence formalism fails to capture strongly nonlinear effects
such as wave collapse and self-focusing. This is to be expected since these nonlinear phenomena involve a
different kind of coherent degrees of freedom than simple resonant wave interactions.

Weak-turbulence theories provide a statistical description for the kinetic evolution of correlation func-
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tions which describe wave spectra. In the derivation of these kinetic equations, a random phase approxi-
mation (i.e., a Gaussian assumption), as well as some technical assumptions, are invoked for the interacting
waves, resulting in a certain closure scheme for the weak-turbulence description of the dynamics. These
are strong assumptions which are difficult to verify, and often are not valid. Therefore, the applicability of
weak-turbulence closures should be carefully examined. We will describe an explicit toy model which was
introduced [136] to illustrate the hazards of a blind application of the weak-turbulence formalism. We will
also describe an alternative new closure scheme [136] which provides an accurate representation of the wave

spectra for this model problem.

6.2.1 Formalism

If there is only one type of wave dispersion w(k) present in a nonlinear medium, one can describe the waves

in the absence of dissipation by the complex amplitude aj satisfying the Hamiltonian system

.Bak 0H
We consider Hamiltonians of the form
(6.4) H = Hy + Hips,
where
(6.5) Hy = /w(k)akdkdk

is the Hamiltonian of the linearized problem, and Hj, is the perturbation describing the interaction amongst
those degrees of freedom represented by ar. Generally, Hi,s can be expressed in terms of power series in ay,

and ay, such as
Hint = /(Pk:klkg Ak Qk, Ay + Prkyky Gk, Gky)0(k — ki — ko) dkdkydks
(6.6) +/(Qkklk2 kg Ay + Qs ky Aty Ay )0 (K + o1 + ko) dedky dky
+ / Ruk kavs @i, Qiey g O (K + k1 — by — ky) dbedky dads.

The dispersion w(k) determines the nature of wave interaction and its resulting turbulence properties.

For example, if the following condition holds,

(6.7) w(k) w(ky) + w(ks)

k

ki1 + ko

for some k, the wave interaction leads to the resonant interaction of the waves ay, and ag, into ag,+x,. This
situation is called three-wave resonance. If Eq. (6.7) does not have solutions, and if the following condition

holds instead,

(6.8) w(ky) +wlky) = w(ks) +w(ks),

ki +ke = kg4 ky,
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then the four-wave resonance is responsible for the main energy transfer between weak dispersive waves. In
this instance, it can be easily shown that a normal form transformation will place the Hamiltonian (6.4) in
the form

(69) H = /w(k)akdkdk +/Skk1k2k3 Ezkdklak2ak36(k + Kk — ky — kg) dkdkidkadks.
This is the general Hamiltonian system with four-wave resonances. Clearly, the “particle” number
(6.10) N = /nkdk: /nwdw,

is conserved, where ny = |ax|? and n, = nydk/dw. In addition, the kinetic energy

(6.11) E:/wknkdk: /wnwdw.

is an important quantity.

6.2.2 Direct and Inverse Cascades

These two conserved quantities under the four-wave resonance have direct implication on the flux of energy
and wave number in the w space, when the system is forced at some wave numbers and damped at others.
This can be easily seen from a global balance of “particles” and energy. Consider an idealized situation
in which N particles are being created per unit time at frequency w, and N_ and Ny particles are being

removed at frequencies w_ and w,. In a steady state, conservation of particles and energy leads to

N = N_+N,,
wN = w_N_ +w+N+.
Solving for N_ and N, we have
N —
(6.12) N_ = M7
Wy — W
N(w—w_
(6.13) N, = Nw-w-)
Wy —w—

Since N_, Ny > 0, w has to lie between w_ and wy. Without loss of generality, we choose w_ < w < wy.
As neither N_, Ny nor w_N_, wy N, vanish, there are fluxes of particles and energy in both directions
from w. If w_ is near zero, there will be almost no energy removal at the low frequencies, and the energy
will flow upward from w to w;, resulting in an upward (direct) cascade of energy from the low frequencies
to the high ones. If wy is very large, Eq. (6.13) shows that the number of particles removed at w; will be
very small, and the particles have to flow from w to w_, creating a downward (inverse) cascade of particle
numbers. As a consequence, if the dissipation takes place only at frequencies near zero and at very high
values, there is an “inertial” range in which the energy flows upward from its source to the sink at the high
frequencies, whilst the particles flow downward from their source to the sink at the low frequencies. As
we will see below, these cascades provide a physical basis for understanding (nonequilibrium) steady state

solutions in weak-turbulence theories.
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6.2.3 A Simple Model

To further illustrate detailed aspects (such as the closure issues and wave spectra) of weak-turbulence via

four-wave resonances, we describe a model system introduced by Majda, McLaughlin and Tabak [136]. The

2
|3z|6/4Q> .

The equation has two parameters a > 0 and 3 > 0. For § = 0, a standard cubic nonlinearity results. The

governing equation of the system is

(6.14) iq = |02]%q + |0, 7574 (‘mzlﬁ/‘*q

parameter 3 is introduced to effectively weaken this nonlinearity as a consequence of a nonlocal smoothing

in space. The parameter a controls the dispersion relation
(6.15) w(k) = |k[*,

which, for a < 1, leads to resonance quartets in this one-dimensional model.

The essence of weak turbulence theory is a statistical description of weakly nonlinear dispersive waves
in terms of a closed, kinetic equation for certain two-point spectral functions. Starting with the equation
of motion for system (6.14) in the Fourier space, and introducing Gaussian randomness through the initial

conditions, one has

. 2Im<ak1ak2dk3(zk>
(616) nt(k,t) = / |k‘1|B/4|k‘2|ﬁ/4|k3|5/4|k|ﬁ/46(k1 + kz - kg - k) dkldkzdkg

for the two-point function

(6.17) n(k,t) = (g (£)an(t)).

The evolution of the four-point functions depends on six-point functions. Under a Gaussian random phase

approximation, and the assumption that

7 (ak, ar, rsax) = 0,

ot
one obtains

NnaNgng + NiN3Ng — N1N2Ng — N1N2N3

(6.18) Im(ag, ak, Gk, ar) ~ —27 e |37 kea | 372 [Feg | P/ o]/

0wt +ws — w3 —w),

where ny = n(ks,t), etc. Using this closure condition, one can close Eq. (6.16) to arrive at

N1NaN3Ny ( 1 1 1

6.19) iy = drr [ L1213k
(6-10) i = dm | o kT

N ns no

Eq. (6.19) is the kinetic equation for n(k,t).

6.2.4 Zakharov’s Solutions

For an angular averaged kinetic equation (6.19), the trivial time-independent solutions
(6.20) n(w) =c,
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and

(6.21) n(w) = —,

correspond to equipartition of particle number and energy, respectively. Using a conformal mapping, Za-
kharov showed that the angular averaged kinetic equations often possess additional (Kolmogorov) power law
solutions of the form [197]

(6.22) i (W) = —

Ja
for v # 0, or 1, which describes the spectra for the cascades in nonequilibrium situations. These solutions
are intimately related to fluxes of particles and energy in w or k space as we discussed previously [197]. For

system (6.14), it can be shown that for a =1/2

nkw) = cw/38-5/3
e, ng(k) = c|k>/30-5/6
for the inverse cascade, and
ng(w) = a2
ie, nkg(k) = c|k|2/3f3*1

for the direct cascade.

6.2.5 Numerical Results and Failure of the Weak-turbulence Theory for the Model

In [136], numerical experiments were carried out for the direct cascade of energy from long waves to short
waves. For a = 1/2 and 8 = 1, the Komolgorov spectrum from the weak-turbulence theory is ny ~ |k|~/3.
However, numerically this spectrum was not observed. Instead, the numerical measurements yielded a much

steeper spectrum n ~ |k| =3/

over large inertial ranges. Moreover, in contrast to the weak-turbulence predic-
tion of the existence of a spectral bifurcation at a critical 3, the experiment displayed no spectral bifurcations.
Careful postprocessing of the numerical simulations shows clearly that the Gaussian approximation is satis-
fied. Therefore, one would expect that the weak-turbulence theory should work. It turns out that the failure
of the weak-turbulence theory prediction for this one dimensional model can be traced to the breakdown of

the closure condition (6.18). Using the insight derived from the numerical results, a new closure condition

was proposed [136]:

(ninanzng)'/?

W1 + ws — w3 — wy

(623) Im(aklak2dkadk4) C

for the evolution of the two-point function n(k). The scaling of the Komolgorov spectrum under this new
closure is found to be in excellent agreement with numerical scalings for the model. In general, to find a
good closure scheme is a difficult problem. As is demonstrated by our example, although weak-turbulence
theories provide a systematic approach to the closure problem, the validity of the closure thus obtained still

needs to be carefully tested for the applicability of the weak-turbulence theories.
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Finally it is worth noting that the weak-turbulence theory for system (6.14) is insensitive to the sign of
the nonlinear term. Recalling that modulational instabilities and solitons crucially depend on this sign, one

appreciates that weak turbulence, when valid, must be restricted to nonlinear waves of very small amplitudes.

6.3 Effective Stochastic Dynamics

In weak-turbulence theories, one uses two-point correlations (6.17) to characterize the spectra of wave-wave
interactions over many scales. However, one may also be interested in a “macroscopic” description of the
longest waves in the spatiotemporal chaotic system. The long waves in the deterministic chaotic system will
be effectively stochastic. One anticipates that their dynamical evolution will be described by a stochastic
equation — in which the chaotic waves on intermediate spatial scales will act as both a “source of a random
stirring force” on the longest waves, and a “sink for the dissipation” of the longest waves. That is, long-wave
instabilities create chaotic shorter waves, which, in turn, act as an “active heat bath” which causes the
random forcing and dissipation of the longest waves. In contrast to weak-turbulence theory (which can be
viewed as a stochastic description of the active heat bath), “effective stochastic dynamics” depends critically
on properties of the nonlinearity because it demands the presence of long-wave instabilities. For example
focusing, rather than defocusing, nonlinearity is required.

Recently, this issue of “non-equilibrium fluctuation-dissipation theorems” has received renewed interest
in statistical physics, particularly in the connection between the hydrodynamic limit of the Kuramoto-
Sivashinsky equation and the Burgers-KPZ universality class [200, 193, 172, 38, 32, 100, 93]. The formalism
used to describe the coarse-grained effective stochastic dynamics is a natural extension to a dissipative
system of the Zwanzig-Mori projection formalism for a Hamiltonian system in thermal equilibrium [182].
When applied to the Kuramoto-Sivashinsky model in the spatiotemporal chaotic regime, a noisy Burgers
equation results as the effective long-range, large-time dynamics [200, 193, 172, 38, 32].

There are two questions: (i) Does an effective stochastic dynamics exist which provides a macroscopic
description of long waves in a chaotic deterministic system? (ii) Can a closure theory be developed which
derives the effective stochastic equations from the original deterministic system? Most of the work in the
literature assumes an affirmative answer to the first question, and develops formal closure schemes to address
the second. Often, these heuristic arguments are based on ideas from renormalization group methodology
[76, 193, 194], and are very difficult to convert into precise asymptotic analyses. In this article, we address the
first question with numerical experiments designed to validate some necessary conditions for the existence
of an effective stochastic dynamics.

In [35, 34] we extend the methods of reference [200] to the perturbed NLS equation (5.1), focusing upon
which aspects of chaoticity are necessary for the validity of its effective stochastic dynamics. Specifically,
is spatiotemporal chaos necessary or is temporal chaos sufficient for an effective stochastic dynamics? Sur-
prisingly, we find that numerical tests of necessary conditions for an effective stochastic dynamics for the

perturbed NLS equation require only temporal chaos, in contrast to the Kuramoto-Sivashinsky equation
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for which spatiotemporal chaos is believed to play a crucial role for the validity of the effective stochastic
dynamics [200, 193, 172, 38, 32]. But effective stochastic dynamics fails for quasi-periodic behavior.
The representation of the perturbed NLS equation (5.1) in the Fourier space is

2 .
(6.24) iar = (k* —ia)ay — ” Zaqapftp+q_k + (T N,

a,p

where ,
ag :/ q(z)e*® dx
0

with k& = 2rm/{, m being an integer. The effective dynamics is concerned with the dynamics for aj, in the
long wavelength limit. In other words, the aim is to construct an effective dynamics for the macroscopic
observable
i) =7 3w,
[k|<A

where A is a (small) cutoff parameter.

Zaleski [200] developed a numerical procedure to test the possibility of an effective stochastic dynamics
for the Kuramoto-Sivashinsky equation. We will illustrate the method for the perturbed NLS equation. For

a fixed cutoff A and any &y, we can rewrite equation (6.24) in an equivalent form:

2 .
(6.25) iar, = (k* —iag)ay — = > Sagaplpiq—r + (L' “H6, o + Fi(t),

a,p

Fy(t)

. < 2 / _
—i(or — ap)ak — 72 Z AqapQq+p—k;

where S° denotes summation over all |g|, [p|, |¢ + p — k| < A and ', a summation in which at least one
of wavenumbers |q|, |p|, |¢ + p — k| is larger than A.

In this setting, equation (6.25) can be viewed as the effective stochastic dynamics, provided we regard
Fi(t) as a stochastic force and & as an correction to dissipation and/or dispersion, (e.g., a k-dependent
Redy, will represent an effective k-dependent damping while Imay, an effective dispersion).

If Fi(t) truly acts as an “external” stochastic force, it cannot depend on the solution ¢(s) in the past;

i.e., for s < t. This “causality condition”
(6.26) (Fr(t)ar(t —s))e =0 for s >0,

where (- --); is the time average over ¢, determines an expression for the effective dissipation parameter:

— 21 ({ag(t)ap(t)agrp—r (£)ax(t — s))
(6.27) = e PROE R .

Relation (6.27) implies explicit s-dependence, which we denote as ay(s). The existence of an effective
stochastic dynamics requires s-independence — at least over a coarse-grained time scale. The numerical
computation of the full dynamics (5.1) shows that equation (6.27) is indeed s-independent for the perturbed

NLS equation, even in the regime of only temporal chaos [see Fig. 10 (left panel)]. No spatiotemporal chaos is
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Figure 10: Numerical validation of effective stochastic dynamics: the s-independence of ay(s) (left panel) and rapid
decay of the force-force correlation (right panel) (Note that (F(t)F(t + s))/{|F(t)|>): = 1 for s = 0). Time unit is

normalized by 27 /w.

required. In view of the the usual belief that an effective stochastic dynamics requires spatiotemporal chaos,
this result is rather surprising. Of course, as is expected, this s-independence also applies in the regime of
spatiotemporal chaos. However, an effective stochastic description is not valid for quasiperiodic dynamics,
since quasiperiodic temporal behavior introduces a long memory time. And indeed, this was borne out in
the numerical simulations [34].

In the presence of temporal chaos alone, the numerical construction shows that the effective Redy, gives
rise to a renormalization of dissipation for the longest waves (k = 0,1). In general, Imda; has the form of

Bo + Bok? + B4k*, leading to an additional modification of the Schrddinger dispersion w = k2 to
(6.28) w ~ (14 B1)k* + Bk,

with 3; and (2 determined from a numerical construction.

In addition to this test that ay(s) is independent of s, another necessary criterion for stochastic dynamics
is that the effective stochastic force should have no long-time correlation. This is satisfied in the perturbed
NLS case: it has been (numerically) shown that (F}(t)Fy(t + s)); decays rapidly, and can be regarded as no
correlation over the coarse-grained time-scale [see Fig. 10 (right panel)]. The construction procedure only
demands the causality (6.26), which only involves correlations for the same k. For k # &', (Fj.(t)ar (t — s))¢
is left unconstrained by the determination of the effective dissipation. However, the numerical results also
show that, for the Fj(t) constructed above, (Fi(t)ar (t — s))+ ~ 0 also holds for k& # k'. The fulfillment of
causality in this general form is indicative of a deep self-consistency, and goes toward the validation of the
interpretation of F(t) as an external stochastic forcing. Of course, whether a Gaussian white noise can be
used to replace Fy(t) in the effective dynamics requires a further statistical characterization of higher orders

of correlations in the stochastic forcing.
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Finally, we emphasize that a significant separation of scales lies in the heart of the validity of effective
stochastic dynamics. And we note in passing that the numerical simulations show that effective stochastic
dynamics also works well with even symmetry imposed. For example, for one linearly unstable mode, with
or without even symmetry, the effective ay, are the same within numerical errors.

In summary, these numerical studies have clarified the nature of the chaoticity which is required for
effective stochastic dynamics, i.e., temporal chaos seems sufficient for the validity of the effective equation

for perturbed NLS, while the absence of chaos invalidates effective stochastic dynamics.

6.4 Nonlinear Localization

In this survey, we have described deterministic chaos, together with some discussion (in the section on weak-
turbulence theory) of the stochastic behavior induced by random initial conditions. However, stochastic
waves can also be generated by a random environment. In contrast to the decoherence effects caused by
spatiotemporal chaos, the spatial disorder of a random environment can cause the waves to localize. This
phenomena is particularly striking for linear waves — where it can convert conductors into insulators [2],
and prevent sound from propagating [169]!

For example, consider the very idealized model for an electron propagating in a metal — the one dimen-

sional linear Schrodinger equation of quantum mechanics:
it = —Gze + gV (2)q, —00 < < 400

Here V(z) is a random potential which models impurities in the metal. This problem can be completely

understood by analyzing the time-independent spectral problem
—Gzz + 9V (2)q = Eq.

Following the original work of Anderson [2], it is now understood (with complete mathematical rigor) that the
spectrum of this one dimensional problem consists of only point spectrum with no continuous spectrum. (See,
for example, [177].) Any amount of randomness converts a problem with only continuous spectrum (g = 0)
into one with dense point spectrum (g # 0)! All eigenfunctions in the random system are exponentially
localized in space, since they are associated with the discrete eigenvalues in the point spectrum. As such, the
extended generalized eigenfunctions of the continuous spectrum in the deterministic ¢ = 0 case (which are
associated with conduction) are all destroyed by the randomness, and replaced by localized eigenfunctions
which do not conduct. Extended waves are localized by the random environment.

While this problem is completely understood for linear waves, it is essentially open in the presence
of nonlinearity. Focusing nonlinearity causes waves to localize into solitary waves, while defocusing causes
nonlinear spreading. Numerical experiments show that the competition between these deterministic nonlinear
processes and the linear localization caused by spatial disorder produces some interesting phenomena —

phenomena which, as yet, is not well understood analytically.
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For the nonlinear Schrédinger equation,
(6.29) iqr = —qua + V(2)q + 29lq|°q,

where V() is a random potential, some theoretical results [55, 108] related to localization have been obtained

using a time-harmonic ansatz,

q(z,t) = exp(—ik*t)u

Bu = —ug, + V(z)u+ 2g|ul®u,

to study the resulting time-independent nonlinear Schrédinger equation. However, in the presence of non-
linearity, this nonlinear eigenvalue problem approach inherited from the linear theory may not be sufficient.
These time-independent solutions may be dynamically unstable, and hence irrelevant for the description of
long-time behavior. This is indeed the case [28]: For both the focusing and defocusing nonlinearities, the
time harmonic solutions of the random NLS equation are often unstable.

Furthermore, it has been demonstrated numerically [28] that the disordered NLS equation exhibits rather
different dynamics, depending on whether the nonlinearity is focusing or defocusing. For the focusing case,
the final attractor of the dynamics is a state which consists of interacting, highly localized solitary waves,
with widths far narrower than the localization lengths of the corresponding linear system. For the defocusing
case, in contrast, the system settles down to a nearly monochromatic state with a spatial profile which can
be approximately described by

29lq(2)[* ~ k* =V (2).

This profile is slaved to the random potential and its form indicates a lack of localization.

Finally we mention that similar issues arise in the discrete NLS equation

(630) ifn = _J(anrl + qnfl) —wqn + VnQn + 2g|Qn|Zan

in the presence of disorder V,,, where J and w are constants. Similar localization phenomena have been
observed. In the discrete case, the localized states are intimately related to discrete breathers, which are
ubiquitous, robust nonlinear excitations in discrete nonlinear systems [6]. For the focusing case, in the weak
nonlinearity limit, the localization is still “Anderson-like”. With increasing of nonlinearity, the excitations
become highly localized and are controlled by the nucleation of discrete breathers. This scenario suggests the
existence of a phase diagram in disorder-nonlinearity space describing a crossover between a disorder con-
trolled attractor and a nonlinearity controlled attractor. Again, as in the continuous case, it has been shown
that the effect of nonlinearity on localization depends sensitively on the class of nonlinearities: the nonlin-
earity enhances the localization in the focusing case, whilst suppressing the localization in the defocusing

case.
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7 Asymptotic Long-Time Behavior of NLS Waves

In final two sections we return to the completely integrable NLS equation, in order to exhibit the level of
precision in asymptotic description of nonlinear waves which can be extracted from the inverse spectral rep-
resentation. In this section we will describe the Riemann—Hilbert formulation of the inverse spectral problem
for the defocusing NLS equation. Then we will use this formulation to establish long time asymptotics for the
defocusing NLS equation. The results described here are due to Deift, Its, and Zhou [45]. A more detailed

description of the analysis contained in [45] is presented in [53].

7.1 Statement of the Riemann—Hilbert Problem

Before defining the Riemann—Hilbert problem, we begin with an auxiliary matrix-valued function: Given a
function r(\) € S(R), the Schwarz space of C* functions which decay faster than any power as |A\| — oo,

we build a matrix vy +(A) via

1 r(\)
—r(A) 1= |r(V)P

(7.1) Ve a(\) = e 2N N7 (i2EN2 =2 )0

The goal of the Riemann—Hilbert problem is to determine the unique 2x2 matrix valued function m(A\, z, t)
satisfying (7.2)-(7.4) below:
(7.2) m is analytic in C\ R,
with continuous boundary values for A € R, m4 (A, z,t) = lim, o m(\ £ i€, 2, t), satistying
(7.3) my (N z,t) =m_ (A, x, t)vg 1 (N).
Finally, m possesses the following asymptotics for x and ¢ fixed:
(7.4) m — I as A = oo.

The fact of the matter is that if r(\) is the reflection coefficient associated with go(z) as defined in (3.8),

then the solution ¢(x,t) to the defocusing NLS equation is obtained from the matrix m via

(7.5) q(xz,t) =2 | lim A (I —m(\ x,t))
A—00 12
That is, if m possesses the asymptotic description m = I 4+ % as A — oo, then g(z,t) = =2 (m1),,.

Remark: In this section we have replaced t in the defocusing NLS equation with —¢, and the equation

becomes
i + oz — 2|q/?q = 0.

The above Riemann—Hilbert problem (7.2)-(7.4) is one formulation of the integral equations of inverse

scattering theory, as mentioned in Section 3. Indeed, if we set

(7.6) T(\, 2, t) = m(\ x,t)er?72,
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then it turns out that for A € C\ R, ¥ is a fundamental matrix solution of the differential equation (3.3),

normalized by the following two conditions:

(7.7) Te A3 5 [ as x — +00,

(7.8) Ve~ A% remains bounded as ¢ — —oco.

The jump relation (7.3) expresses the fact that while U(\, x,t) satisfying (7.7)-(7.8) is defined a priori for
Im\ # 0 only, it turns out that (), z,¢) has continuous boundary values for \ € R,

Uy (A2, t)= liﬁ)l U(\ £ i€, 2, t).
Since ¥ and ¥_ represent two fundamental matrix solutions of (3.3), they must be related, i.e.,
‘Il-l‘(Av Zz, t) = \Il—()\v €, t)v()\v t)7

for some jump matrix v which is independent of x.

Remark: If one starts with this jump relation, and then uses (7.6), one arrives at a jump relation for
m, which appears a bit different than (7.3), because the time-dependence is not explicit. However, one can
compute the evolution of the matrix v(A,t) explicitly (see, for example, [53]), and (7.3) can be derived in
this fashion.

Remark: The connection between the Riemann-Hilbert problem (7.2)-(7.4) and a set of integral equa-
tions for inverse scattering theory is classical: it turns out that existence and uniqueness of the solution of a
Riemann—Hilbert problem is equivalent to invertibility of an associated integral operator. This is explained

in many papers; we refer the reader to [53], where the connection is made particularly clearly.

7.2 Long-Time Behavior

In this subsection we will explain the Riemann—Hilbert approach to the problem of computing the long-time
asymptotics of the solution to the defocusing NLS equation. The idea is to describe the solution to the
Riemann—Hilbert problem (7.2)-(7.4) for ¢t — oo, and then use the reconstruction formula (7.5) to compute
asymptotics for g(z,t).

To avoid technical issues, we will assume for the remainder of this section that the reflection coefficient
r(A\) can be continued analytically to a strip containing the real axis. This is satisfied, for example, if go(x)
is analytic, with sufficient decay as x — oco.

From a calculational point of view, the basic idea behind the method is that if we have a Riemann—Hilbert

problem which is simple:

n(A) analytic in C\ X,
ny(A)=n_ (I +err(N), NeX

n(A) — I, as A = oo,
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where ¥ is some oriented contour, and err()) is uniformly small on ¥ [O (1) in the L'(X) N L*(X) norm,
for example], then the solution to this Riemann—Hilbert problem can be obtained by solving an associated
integral equation. It turns out that because the term err is uniformly small, this integral equation can
be solved by Neumann series. Unraveling this connection between the Riemann—Hilbert problem and the
integral equation, one arrives at an asymptotic expansion for the solution of the Riemann—Hilbert problem
(in powers of %) In the present setting, rather than arriving at a “simple” Riemann-Hilbert problem as
described above, we will arrive at a simplified model Riemann—Hilbert problem which can be solved exactly
([45], see also [53]).

Now we will explain how one arrives at a “simple” Riemann—Hilbert problem. The fundamental obser-

vation is that we have the factorization of the matrix v, ¢(\)

1 0 1 r(X)e2itd
(7.9) Ve (A) = , ,
—r(\)e?0 1 0 1
(7.10) ith = itd(\, x,t) = it (207 —t 7 aX) = it(2A* — 4\oN),
X
11 -
(7.11) Ao m

Now although v, () possesses rapidly oscillating terms (as ¢ — o), we observe that for A < A, the second
factor on the right hand side in (7.9) can be analytically continued above the real axis, and Re{—2it8} < 0,
i.e. the rapidly oscillating term becomes exponentially decaying! Furthermore, the first factor on the
right hand side of (7.9) can be analytically continued below the axis, where the oscillatory term again
becomes exponentially decaying. (These properties of itf can be seen by noting that if A = u + iv, then
Re it = —4tv(u — N\g).)

We now indicate how one splits a part of the real axis into two contours, deformed above and below
the real axis, in order to exploit the exponential decay indicated above. We begin by re-writing the jump

relation (7.3), using the factorization (7.9),

1 0 r(\)e—2it?

1
my =m_ .
—r(N)e*? 1 0 1

Now using the analyticity discussed above, we may write this equation (for Re A < \g) as follows,

1 —r(N)e 2 1 0
m =1m . ’
0 1 r(\)e?t? 1
+ —
and so if we define n; via
1 _We—mo )
ny =m for X\ above the axis, Re A < Ao,
0 1
1 0
ny=m ' for X below the axis, Re A < A,
—r(\)e?t? 1
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then ny possess no jump across (—oo, Ag). Since r and T can only be continued to a strip containing the real

axis, we cannot make this definition globally, and so we define n; as shown in Fig. 7.1.

—2it6
ny=m (Ve n=m
1

1
0

1 0
ng=m )\0

_r()\)eZitG 1 ny=m

Figure 7.1. The definition of the matrix ;.
Now n, is analytic for A € C\ X1, where ¥, is shown in Fig. 7.2. Observe that the jump across the real

axis for A < Ag has been removed by this factorization.

1 r(\)e 20
0 1

Ao

N

Vgt (A
; 0 £(A)

—r(\)e%t? 1
Figure 7.2. The new contour ¥, and jump matrices v(1).

Putting this all together, we have transformed the first Riemann—-Hilbert problem for m, into a new

Riemann—Hilbert problem, for n;:

(7.12) ny is analytic in C\ ¥y,
(7.13) (1), (A 2,t) = (n1)_ (A, t)vg(vlz (M) for A € X4, (vfclz is defined in Fig. 7.2),
(7.14) ny — I as A = oo,

which is equivalent to the original problem: if we have a solution to the new problem, then by using Fig.
7.1, we have a solution to the original problem.

Remark: The contour ¥ is oriented as shown in Fig. 7.2, and we use the convention that the plus side
of an oriented contour lies to the left as one traverse the contour. The +(—) subscript in (7.13) denotes the
boundary value taken from the +(—) side of the contour ¥;.

The second, and more fundamental, thing to observe is that now, for Re A < Ag, the off-diagonal entries

in the jump matrices v(!) are exponentially decaying, and so the jump matrices are exponentially close to I.

Unfortunately, for A to the right of Ao, this procedure does not work immediately. Indeed, for Re A > Aq,
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and A below the real axis, e?®? is exponentially growing, and for Re A > Ao, and A above the real axis,
e~ 20 is also exponentially growing. However, we can switch the order of the factors that appear through a

lower /upper factorization:

W —2ith 1
(715) v = | b O =roE 0 1 0
| 0 1 0 1L—|r(\)? __17"“3))\)‘262#0 1

Now for A to the right of ), the first term on the right hand side of (7.15) can be deformed below the
real axis, and the off-diagonal entry becomes exponentially decaying, while the third term can be deformed

above the real axis, and again the off-diagonal entry becomes exponentially decaying. (It turns out that

since the reflection coefficient is analytic in a strip containing R, the quantity r(\) = r(\), A € R, possesses

an analytic continuation to a strip, as does 1 — |r(\)|2.) So now we define ny using Fig. 7.3.

Figure 7.3. The definition of ns.

We thus arrive at the following Riemann-Hilbert problem for ns:

ny is analytic in C\ X5,
(n2); (A1) = (n2)_ (A, o) (A), A € S,

1"7

ny — I as A — oo,

where the new contour ¥ is shown in Fig. 7.4, along with the jump matrices vg(ft) .

1 0
L or(A)e > () 2it0
. “=hoEe 1
1
o TP 0
0 L—|r(N)?
1 0 1 T%)\) o—2it0
1—|r
_ 2it9
r(\e 1 0 1



Figure 7.4. The contour X5, and the jump matrices vfz

There remains a diagonal jump matrix, for A € (A, 00), which, it seems, cannot be deformed away. Even
if we attempt to deform this term off of the axis, there is no hope to gain exponential decay, because this
jump matrix has no t-dependence. This piece of the puzzle is handled by first solving the following scalar

Riemann—Hilbert problem: find § analytic in C\ R such that
SN (1=1]r(N)P), A > Ao,

d_(N), A < Ao,
6 — I, as A = oo.

5 () =

It turns out that this problem can be solved by formula:

6(A):exp[%/}\mw¢9 , A¢R

Now, using this, we define
o 0
0 6t

One may verify directly that the matrix valued function n3 solves the Riemann—Hilbert problem

ng is analytic in C \ X3,
(n3), (A, 2,8) = (ng)_ (A, 2,80} (\), A € S,

ng — I as A — oo,

1 r(\)d—2e2it0
0 1 1 0

r(\ i
_17‘7{())‘)‘25262 0 1

TN 52 2it0
1 pogpd 2™

0 1

1 0
—r(\)6%e?0 1

3)

Figure 7.5. The contour X3 and the jump matrices v, ;

Now we have finally arrived at a Riemann—Hilbert problem which is in the fortunate situation that away
from one point, g, the jump matrices are uniformly close to I. The last step to arrive at a Riemann—Hilbert
problem which is “simple” in the manner described above, is to isolate the local nature of the Riemann—

Hilbert problem for ns.
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To do this, we introduce the scaling transformation,
¢ = (8)'2(A = o),

which is a map from C to C, sending X3 to X4, shown in Fig. 7.6. This figure also shows the new jump

matrices, v (A(()).

1 T()\(C))5_2€_2it0 1 0
0 1 rAQ)) 52.2it0

IO

1=[r(AO)I?

1

1 rAQ) _5—2,—2it0
—r(A()se

Figure 7.6. The contour ¥4, and jump matrices v (A(()).
Remark 1: We have chosen the contour ¥3 so that for a small neighborhood of Ag, the contour consists
of 4 straight lines emanating from \g, forming angles of /4 radians with the real axis. Because of this, on a
large neighborhood of ¢ = 0 (of size O(t'/?)), the new contour X4 consists of 4 straight lines forming angles
of 7/4 radians with the real axis.

Remark 2: For ¢ on the contour ¥4, we have the following representation for §(\(¢))e?:

it _ ¢ i¢2/4 ,—2itA2 k(Ao+C/(88)1/2
(7.17) d(A(C))e = (8t)i"/26< /4e e (Mo+C/(8t)77%)
B (C)#/Zei<2/4e—2itxéen(xo)€n<xo+</<8t)”2)—n<xo)
8t)wv ’
=550,
where
1 oo
k() = ~5 A log(A — s)dlog (1 — |r(s)|2),

1
v = o log (1 — |7‘(/\0)|2)7
eR(X0) o —2itA]
(8t)w/z
51 = (3 6iC? 4 mOha+¢/ (80)/%) ~x(Xo)

(7.18) 50 =

We now make one further transformation, by defining n4({):
50 0 @)~ o
(7.19) w@= 0 oy @ {0
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(recall from the definition (7.18) that §(9) is a constant). The matrix ny then solves the following Riemann—

Hilbert problem:

ny4 is analytic in C\ Xy,

(na) . (C,2,8) = () _ (¢, 2, )00 Q) ¢ € T,

ng — I as A = o0,

where ©4 and v(¥) are shown in Fig. 7.7. Notice that v(*) is obtained from v®)(\(¢)) by replacing de?? by
s,

T (5(1)) 2
U e (0Y)
0 1

Figure 7.7. The contour ¥4, and the jump matrices v (¢).

The last step is to solve this final Riemann-Hilbert problem for ns. Observe that r(A(¢)) = r(Ao+ (5510#1/2)
It turns out that one can show that the solution to this problem is well approximated by the solution to
the problem obtained by replacing r(A(¢)) with r(\o), and @ (A(¢)) with 60 = ¢#¥e~i*/4 This model
problem can be solved through the use of parabolic cylinder functions. Thus the final problem for n4 can
be solved asymptotically. We will omit these details, and refer the reader to [53]. We now assume that we
have obtained n4 by this procedure.

In summary, by explicit, invertible transformations, m — ny — ns — n3 — ny4, we have arrived at a
simple problem whose solution can be approximated easily. We can unravel all of these transformations,
and hence we have obtained an approximation for the solution of the original Riemann—Hilbert problem
(7.2)-(7.4). For example, if we take X to lie in the region of the upper half-plane which is above the contour
Y3, then we find
(6@)~" o 5@ 0 ST 0

0 5@ () 0 (5@)7" 0 5N
In this region of the complex plane, one can compute asymptotics for A — oo, and from those asymptotics,
read off the asymptotics for ¢(z,t), using (7.5). We refer the reader to [53] for the details, and here only

state the final result.

Let

ni = lim ¢(na(Q) = 1))

o4



If g(x,t) is the solution of the defocusing NLS equation, then there is a constant M so that as ¢t — oo,

20 ) == (50) 7 (o1, +0 (451),

for |/\0|:‘%‘§M.

n [53], the explicit asymptotic description of n4 is carried out. If we use this, and formula (7.18), then

we have the following result:

Theorem 7.1 If q(x,t) is the solution of the defocusing NLS equation, then there is a constant M so that

as t — oo,

_ 27r)1/2ei7r/4e—ﬂ'u/2 logt
21 — 1/2 iv lT —2k(Xo) Z(
(r21) 1) = —(20) (s e o (e,

X
A :‘—‘<M.
for | ol il S

Such uniform long-time asymptotics is unprecedented in the theory of nonlinear waves, and can only be
obtained because of the deep connection between the linear spectral theory and the complete integrability
of NLS. Similar results have been obtained for other soliton equations (see, for example, [45]). We close this
section by reiterating that a key step in the argument is understanding how to handle rapidly oscillating

terms in Riemann—Hilbert problems.

8 Semi-Classical Behavior
Consider the NLS equation in the form

(8.1) ey =  €qoa—29(qd)q
q(z,0) = A;(z)exp [ESW(CB)],

where 0 < ¢ < 1. The limiting behavior of g(z,t;¢) for fixed = and ¢, as ¢ — 0, is known as the “semi-
classical” or “vanishing dispersion” limit. This limit is very natural in the linear (g = 0) case, where it
describes the semi-classical reduction of nonrelativistic quantum mechanics. In this setting, the parameter
€ denotes Planck’s constant h, and the limit describes the reduction of Schrédinger quantum mechanics
to Newtonian classical mechanics as i — 0. In the nonlinear cases (g # 0), the limit describes vanishing
dispersion. In this limit, beautiful rapidly oscillating wavetrains form and propagate. The goal of the “small
dispersion” problem is to characterize and describe these nonlinear wavetrains.

Remark: Physically, the nonlinear Schrodinger equation provides an asymptotic description [164] of the
slowly varying envelope of a rapidly oscillating nonlinear wavetrain, which is (i) strongly dispersive, (ii)
nearly monochromatic, and (iii) weakly nonlinear (of small amplitude). As such, properties of NLS solutions
such as “blow-up in finite time” and “the development of rapid oscillations” tend to violate the assumptions

of the NLS representation — assumptions such as slowly varying envelopes and small amplitude waves.
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Figure 11: Semi-classical behavior: Linear case

Thus, the physical importance of these properties of NLS is not immediate; nevertheless, laser beams do
filament and they can develop oscillations (which are associated to “optical shocks”). The validity of NLS
in capturing such physical phenomena is a matter of scales — which can be short on the envelop scale, while
still long on the scale of the underlying wavetrain. In any case, often there is a correlation between beautiful

NLS wavetrains and observable behavior in laserbeams [31, 163, 162, 109, 75].

8.1 Sample Numerical Simulations

Figures 11, 12, and 13 illustrate the formation of rapid oscillations in the magnitude |q(z,t;€)| for three
cases: (i) linear (¢ = 0), (ii) defocusing nonlinearity (g > 0), and (iii) focusing nonlinearity (¢ < 0). The

same initial data is used for each case:
)
q(z,0) = Ajp(x) exp [gSm(x)] ,

where
d

dz
In the figures, e = 0.02. Notice that initially there are no oscillations in the data |¢(z,0)| = A;,(x), but they

Ain(2) = exp(—2?), Sin(x) = —tanh(z).

form temporally in |g(x, t;€)|.
In the linear case, Fig. 11 shows a severe focus of intensity, and the emergence of caustics which bound a

region in space-time which supports rapid oscillations. These phenomena are well understood in this linear
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Figure 12: Semi-classical behavior: Defocusing nonlinearity

Figure 13: Semi-classical behavior: Focusing nonlinearity
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case, and can be easily calculated using elementary stationary phase evaluation of

et = [ {1 “ 52 - 50|} Ant) v

The oscillations are the consequences of phase-interference of the quantum mechanical wave function ¢(z, t; €).
The mathematical theory of Lagrangian manifolds [4] was invented to describe such semi-classical phenomena
in the presence of a potential.

The behavior for defocusing nonlinearity is milder — with no focus of intensity, but with two distinct
regions of space-time which support rapid oscillations (Fig. 12). In these oscillatory regions (for both the
linear and defocusing cases), the convergence of |¢(z, ¢;€)| as € — 0 is only weak convergence. As € — 0, the
wave-length of the oscillations goes to zero linearly with €, but their amplitude does not vanish. Rather, the
amplitude itself converges to a nonvanishing limit, and the oscillations fill-in an “envolope” defined by the
amplitude. This prevents strong convergence of |q(x,t; €)|.

The focusing case, Fig. 13, exhibits the most severe behavior. (The intriguing second region of distinct
oscillations was also observed in [150].) To summarize, the oscillations may be ordered by their severity —
from the least severe defocusing nonlinearity, through the intermediate linear case, to the most severe case

of focusing nonlinearity.

8.2 Formal Semi-Classical Asymptotics

This ordering can be understood by the following formal asymptotic calculation [31], which applies before

the onset of oscillations: We make the ansatz

(8.2) Az, 156) = A(z,1) exp {ésm t)} ,
insert it into NLS equation, and balance powers of € to obtain

P

2PP, + 4gAA,,

A, 9PA, + P, A,

where P = S,. This is a first order system of pde’s for A and P. It can be placed in Riemann invariant
form:

(8.3) rf = C*rs,

where the Riemann invariants I'* are defined by
(8.4) r£=P+2,g A4,
and where the characteristic speeds are given by

(8.5) C* =2[P £ /gA].
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From these characteristic speeds (or “nonlinear group velocities”), one can understand the “ordering”. In the
defocusing case, the speeds are real and distinct, and the system of equations (8.3) is “strictly hyperbolic”
[122]. As such, the unknowns A and P are bounded; hence, the intensity A% cannot blow-up. (However, its
derivatives can.)

On the other hand, in the linear case, the two real speeds are identical and the system (8.3) is “degenerate
hyperbolic”. When the hyperbolic system is degenerate, it can have foci at which its solutions diverge. In
fact, this linear NLS case is particularly simple: The equation P; = 2P P, can be easily solved by the method
of characteristics [96], which can then be used to solve Ay = 2P A, + P, A, whose amplitude A(z,t) is seen
explicitly to diverge at a focus of the characteristics.

In the focusing case, the speeds are complex. The system is not hyperbolic, and the Cauchy problem is
not, well-posed. Instabilities are present which are related to the “modulational instability” as was described
earlier. The situation is unclear, and quite unstable.

Returning to the case of defocusing nonlinearity, the modulation equations (8.3) describe the propagation
of the waveform (8.2), until it “breaks at a focus of the characteristics”. Moreover, by replacing the waveform
ansatz (8.2) with one based upon slowly varying elliptic functions [74], one can use the modulation theory of
Whitham [189, 190] to anticipate the evolution of those oscillations which form beyond “break-time”. While
this modulation theory provides beautiful representations of the oscillations, it is based upon the local ansatz
of a modulating waveform — an assumption which is not connected to, nor derived from, the nonlinear initial
value problem. As such, modulation theory provides only a partial description — although a very detailed

one.

8.3 The Weak Limit in the Defocusing Case

In the defocusing integrable case, inverse spectral theory can be used to characterize completely the weak
limit (8.1). This characterization connects the weak limit to the initial data; moreover, it characterizes the
(phase) transition boundaries in space-time, across which the nature of the oscillations changes (See Fig.
12).

Lax and Levermore [123, 125, 124] first used inverse spectral theory to describe vanishing dispersion
nonlinear wave problems in the setting of the Korteweg deVries (KdV) equation. That initial work, together
with subsequent studies, is summarized in the survey [126]. The heart of the matter is a closed formula for
the solution of the KdV equation obtained by neglecting the reflection coefficient (the formula involves only
the solitons). A remarkable calculation then shows that, asymptotically as the dispersion parameter tends
to zero, this formula is governed by an associated maximization problem in function space, in which x and ¢
appear as external parameters. These methods were adapted in [94, 95] to study the semi-classical limit of
the defocusing cubic NLS equation, where the steps in, and organization of, the proof of the Lax-Levermore
construction is clarified significantly.

Today, the modern approach to these semi-classical limits combines the methods of Lax-Levermore with
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those of Riemann-Hilbert problems with rapidly oscillating kernels. (Here, the oscillations arise as the co-
efficient of dispersion vanishes, rather than as ¢ — 00.) Recently, Deift, Venakides, and Zhou [51] have
completed a Riemann-Hilbert analysis of the small dispersion limit of the KdV equation. They are able to
obtain a very detailed asymptotic description of the solution. It is remarkable to note that the maximiza-
tion problem identified by Lax and Levermore appears as an essential component for this Riemann-Hilbert
analysis: the support of the maximizer determines the limiting subset of the real axis on which a model
Riemann-Hilbert problem must be solved. Moreover, if this limiting set consists of finitely many (but more
than one) intervals, then the asymptotic description of the solution involves an associated theta function,
and one is able to connect the initial value problem with the higher genus modulation equations of [70].

So far such a Riemann-Hilbert analysis has not been carried out for the case of the semi-classical limit
of the NLS equation, and there are some difficulties. One particularly interesting aspect is that in [51], the
authors assume that there are no solitons present, and work exclusively with the reflection coefficient. The
situation in which there are N solitons, and N — oo in the small dispersion limit (the easiest case for the

Lax-Levermore approach), seems somewhat more difficult in the Riemann-Hilbert setting.

8.4 More on the Modulation Equations

In spite of the success in the characterization of the semi-classical limit through inverse spectral theory, mod-
ulation theory still provides the quickest method to display the local space-time structure of the oscillations.
While significant work [126, 184, 51] has been carried out toward extracting this local structure from the
Lax-Levermore/Riemann-Hilbert framework, the modulation approach is still far more direct. Moreover,
inverse spectral theory is restricted to the very special case of integrable nonlinear waves, and it would seem
that the modulation approach will form the basis for studies of more general nonintegrable waves.

In the completely integrable setting, a particularly beautiful representation of the modulation equations
exists — an “invariant representation” in terms of meromorphic differentials. These are developed, and
their consequences explored, in some detail in the KdV setting [70, 144]. Similar results could certainly be
developed for defocusing NLS [74].

One begins with an N-phase, quasi-periodic waveform and its associated Zakharov-Shabat spectral theory.
Let {A1, A2, ..., Aan } denote the simple eigenvalues, and consider the hyperelliptic Riemann surface defined

through these branch points:
R= </\, (TTx=x) )

The modulation of the waveform is described by letting the parameters be (slowly varying) functions of space-
time, {A;(z,t), j = 1,...,2N }. Then, as shown in [74, 95], the modulation equations take the compact
form

(8.6) 8 QW) = 9, QW(N),
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where Q) and Q®) denote differentials of the form

p(a)

(8.7) Q@ = d\, a=u,t,

R
and where P(®) denote polynomials which are uniquely defined in terms of the branch points Nz, t), j=
1,...,2N } through normalization conditions [74, 95]. Thus, these differentials are uniquely specified by the
branch points {\;(z,t), j = 1,...,2N }, and they depend upon (z,t) only through these branch points.
Moreover, these differentials characterize physical features of the wave — such as its frequencies of oscillation
and its nonlinear group velocities. Thus, the modulation equations (8.6) may be viewed as evolution equations
for the branch points.

As described in detail in [70, 144] for the KdV case, equation (8.6) is a particularly compact form of the

modulation equations. All other forms may be extracted from it:

1. Expansion of the modulation equations (8.6) near A ~ \; produces the Riemann invariant form of
the equations. The branch points are shown to be Riemann invariants, and explicit formulas for the
characteristic speeds are deduced:

~ p®
Cl=—

PO [\,

2. Expansion of equations (8.6) as A — oo produces the “averaged conservation law” form of the modu-

lation equations, as first deduced by Whitham [189).

3. Integration of representation (8.6) around certain cycles on the Riemann surface produces a “canonical

Hamiltonian-system form” of the modulation equations [70, 61].

8.5 The Focusing Case

While the semi-classical limit of the defocusing integrable NLS equation is rather completely characterized
through inverse spectral theory, the semi-classical limit for the focusing case remains open — which many
regard as the open problem in integrable nonlinear wave theory [95, 126]. In the focusing case, it is not even

clear that the weak limit exists. Recently, there has been some progress:

1. By analysing the modified KdV hierarchy, Ercolani, Jin, Levermore and MacEvoy [62] showed that the

obstruction is not the nonself-adjointness of the Zakharov-Shabat operator.

2. Bronski [29] has computed numerically a fascinating “Y-configuration” in the Zakharov-Shabat spec-

trum in the semi-classical limit for one type of data.

3. Consequences of this Y-configuration in the spectrum have been observed recently in laboratory ex-

periments in nonlinear optics [113].

4. Miller and Kamvissis [150] have studied numerically the semiclassical limit for special analytic data.
Their numerics indicates that the weak limit appears to exist and to be described, prebreaking, by the

elliptic modulation theory.
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5. Tian [180] has developed some numerical evidence toward the existence of a weak limit, as well as a

particularly clean form of the log-determinant N-soliton formula in the focusing case.

Given this recent progress on the semi-classical limit for focusing nonlinearity, we are optimistic that this
central problem of integrable nonlinear wave theory will soon be solved.

On the other hand, when the waves are not integrable, the semi-classical limit is completely open. The
only known mathematical result is due to Grenier [81], who characterizes the prebreaking limit for defocusing
nonlinearities. In this more general setting, the semi-classical limit and its generation of rapid oscillations is
one example of the nonlinear transitions of excitations between spatial scales. As such, it is related to theories
of turbulence (see Section 6.2). Recent promising mathematical approaches [116, 117, 118, 119, 18, 24] to

such transitions between scales combine pde and dynamical systems methods.

9 Conclusion

In this survey, we have used a class of nonlinear Schrédinger equations to display typical qualitative proper-
ties of nonlinear dispersive waves, and to illustrate the interplay between the methods of partial differential
equations and those of dynamical systems theory by which these properties can be understood mathemati-
cally. Specifically, for the study of global behavior for evolutionary pde’s, we advocate implementing intuition
from the theory of dynamical systems with methods natural for the pde. In addition, the central importance
of scientific computation to the process is also emphasized throughout the survey, as is stochastic behavior.

One very special NLS equation is the integrable case of cubic nonlinearity in one spatial dimension. As
one of the soliton equations, it represents the most spectacular success of dynamical systems methods for
pde’s. The miraculous properties of the soliton, which were discovered numerically, have been understood
through the realization that these soliton equations are completely integrable Hamiltonian systems in infinite
dimensions. However, this understanding did not follow solely through intuition from dynamical systems
theory. Rather it resulted from a totally new mathematical idea — the deep connection between certain
special nonlinear wave equations and the spectral theory of linear differential operators. Moreover, for the
rigorous calculation of asymptotic limits, the full exploitation of this deep connection requires the proper
setting, skills, and methods from mathematical analysis — the Riemann-Hilbert formulation of inverse
spectral theory.

With the full power of the mathematical methods of the spectral and inverse spectral theory of linear
differential operators, complete integrability (which seems so special from the viewpoint of nonlinear waves)
has been shown to be quite universal throughout mathematical analyses where, in addition to the represen-
tation of integrable waves, it has been used: to solve classical problems regarding the asymptotic description
of orthogonal polynomials [46]; to resolve open conjectures about the universality of random matrix theories
[47]; to provide an understanding of sorting algorithms and of matrix factorizations [49] such as the “LU” and

“singular-value” decompositions of numerical analysis; and, most recently, the solution of certain counting
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problems in number theory [8] which may indicate a relation of these integrable methods to the zeros of
the Riemann { function. Again, we emphasize that this remarkable breadth of integrable techniques follows
from both the new mathematical idea and its natural analytic framework.

For nonlinear waves, integrable examples illustrate rich and fascinating global behavior; however, they do
not indicate the generality of the phenomena. Once integrability is broken by perturbations of the equation,
very little is known mathematically. In this survey we described some initial steps toward persistence, and
toward the characterization and description of temporal and spatiotemporal chaos. However, most important
non-integrable problems remain open, and we anticipate that the interplay between dynamical systems, pde,

and stochastic analysis will play significant roles in their resolution.
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