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Course Requirements: Assignments

Course
Requirements

» All homework assignments and exams will be handled using
Gradescope
» Homework
» Every one or two weeks

» Provided as Overleaf project and Gradescope assignment
» Solutions must be typed up using LaTeX
» Submissions uploaded as PDF to Gradescope

» Midterm and Final

> In person
» 150 minutes
» Graded exams uploaded to Gradescope
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Course Requirements: Grading Policy

Course
Requirements

» Course grade
» Homework: 20%
> Midterm: 30%
» Final: 50%
> Tweaks
» Homework and Exams
> Partial credit for correct and relevant logical reasoning
» Full credit for correct and relevant logical reasoning and correct
answer
» No credit for correct answer but incorrect logical reasoning
» Incorrect logic and calculations wil be severely penalized
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Course Information

Course
Requirements

» Web Pages
» My homepage: https://math.nyu.edu/~vyangd
» Course Homepage
» Course Calendar

» Textbook

> Yisong Yang, A Concise Text on Advanced Linear Algebra,
Cambridge University Press
» PDF available in Ed Discussion Resources
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https://math.nyu.edu/~yangd/index.html
https://math.nyu.edu/~yangd/MA-GY7043Spring2025/index.html
https://math.nyu.edu/~yangd/MA-GY7043Spring2025/MA-GY7043Spring2025Calendar.html
https://edstem.org/us/courses/72129/resources

Prerequisites: Mathematical Grammar

» Always write in complete English or mathematical sentences

» A sentence must have a subject and verb

Prerequisites

» A mathematical sentence usually contains an object

» Sample sentences
> (subject) equals (object)
» (subject) = (object)
> (subject) is less than (object)
» (subject) < (object)
> If (sentence), then (sentence)
» (assumption) —> (consequence)
> There exists (object) such that (sentence)
» 3 (object), (mathematical sentence about object)
> For any object, (sentence)
> V' (object), (mathematical sentence about object)
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Prerequisites: Basic Deductive Logic

N » You are expected to know how to use deductive logic
rerequisites

» Suppose A and B are English or mathematical sentences

» You are expected to know the meaning of the following phrases:

Aand B
Aor B

A is false
A= B
A< B
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Prerequisites

Prerequisites: Converse and Contrapositive

» The converse of the sentence

A— B

B = A

These two are not equivalent
» The contrapositive of the sentence

A — B

(B is false) = ( is false)

These two sentences are equivalent
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Prerequisites: Quantifiers

» Sentence holds for all objects

Prerequisites For each (object), (sentence),
V(object), (sentence)
» Sentence holds for at least one object

There exists (object), such that (sentence),

J(object), (sentence)
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Prerequisites: Nested Quantifiers

Prerequisites

» The sentence
V (object1), 3(object2) such that(sentence),
is not equivalent to

3 (object2), ¥ (objectl) such that(sentence),
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Prerequisites: Negations

» The negation of
Prerequisites > A s true and B is true
is
> A is false or B is false
» The negation of
> A s trueor B is true
is
> A is false and B is false
» The negation of
> If A is true, then B is true
is
> A is true and B is false

11/63



Prerequisites

Prerequisites: Negations With Quantifiers

» The negation of

V(object), (sentence)
J(object), such that (negation of sentence)
» The negation of

J(object) such that (sentence)

V(object), (negation of sentence)
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Prerequisites: Modus Ponens

Prerequisites

» All calculations and proofs must proceed as follows:
> Known to be true (by definition, assumption, theorem, or proof)
> A
> A= B
» True by deduction
> B
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Prerequisites: Definitions Versus Theorems

Prerequisites

» VERY VERY IMPORTANT: When studying theorems or
doing problems, make sure you know the definitions of every
word and symbol

» Always try to solve problem (e.g., doing a proof) using ONLY
definitions

» Use a theorem ONLY if absolutely necessary
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Prerequisites: Functions and Maps

» We will use the following notation when defining a function or
map:

Prerequisites

function : domain — codomain

input — output

» When doing calculations and proofs, It is important to keep
track of the domain and codomain of a function

» If you make sure that each input to a function really is an
element of the domain and each output really is treated as an
element of the codomain, youu will catch 90% of your errors
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Abstract Vector Space

> Let F be either the reals (denoted R) or the complex numbers
(denoted C)

» A vector space over [ is a set V with the following:

Abstract Linear » A special element called the zero vector, which we will write as
Alecbro 0, Oy, or simply 0
» An operation called vector addition:

VxV->V

(vi, ) = vi+w
» An operation called scalar multiplication:

VxF—V

(v,r) —»rv=vr

» The zero vector, vector addition, and scalar multiplication must
satisfy fundamental properties that are listed below
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Properties of Vector Addition

» Associativity
(it+w)+vs=v+(vr+wn)
prsiind » Commutativity
Vi+tw=w+wv
» Identity element:

v+6:v

» Inverse element: For each v € V, there exists an element,
denoted —v, such that

v+ (-v)=0
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Scalar Multiplication

» Properties
> Associativity

Abstract Linear
Algebra

(fifk)v = fi(fov)
> Distributivity

(A + h)v=fv+ hv
f(vi +w) = + fn

> |dentity element

lv=v
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Consequences

Abstract Linear
Algebra
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Valid and Invalid Expressions

» Valid expressions

(vector) + (vector

(scalar) + (scalar

Abstract Linear
Algebra

)
)
(scalar)(vector)
(vector)(scalar)

)

(scalar)(scalar

» Invalid expressions

(vector) + (scalar)
(scalar) + (vector)

(vector)(vector)
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Linear Combination of Vectors

» Given a finite set of vectors vq,...,v, € V and scalars
fl,... f™ the vector
flvg 4+ My

Abstract Linear

Algebra is called a linear combination of vq,..., v,

» Given a subset S C V/, not necessarily finite, the span of S is
the set of all possible linear combinations of vectors in S

[5]:{f1v1+~-~+f'"vm :
Vi f"eFandvy,...,v, €S}

» A vector space V is called finite dimensional if there is a finite
set S of vectors such that

[S]=V

Such a set S is called by some a spanning system, generating
system, or complete system

21/63



Basis of a Vector Space

> Aset {vi,..., v} C Vis linearly independent if
flvi+ - vy =0 = fl=...=f"=0, (1)
> A finite set S = (v1,..., V) C V is called a basis of V if it is
it Linear linearly independent and

(5= v

» For such a basis, if v € V, then there exist a unique set of scalar
coefficients (at,...,a™) such that
v =a v

» In other words, the map
F" -V
(Fr o f™ s v+ My,
is bijective
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Abstract Linear
Algebra

Examples of Bases

V2

> {v1,w} is a basis
» {wi,w,} is a basis
» {wi,ws} is a basis
» {wy,ws} is NOT a basis

Y
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Abstract Linear
Algebra

Every Finite Dimensional Vector Space Has a Basis

vvyVvVyy

v

Assume that T is a finite dimensional vector space
There exists a finite set S = {sy,...,s,} that spans T
If S is linearly independent, then S is a basis
If not, then there exists f1,...,fP € F, not all zero, such that
f151+~~~f”sp:6
If fP #£ 0, then
fl fr—1
Sp=ZS1++ —F—5-1

= o

It follows that S" = {s1,...,sp,—1} spans T
If S’ is not a basis, then repeat previous steps

After a finite number of steps, you get either a basis or S = {6}

24/63



Triangular Change of Basis

» Let E =(ey,...,en) be a basis of V
» A subset F =(f,...,fy) is triangular with respect to E if

fi=e+eM + - +e,M
Abstract Linear f2 =6+ 6 /\/]5’ 4+ 4 em/\/]2m

Algebra
k+1
fu =ex+ €k+1Mk+ +remM

fn = €em

» Observe that for each 1 < k < m, {f,...,f)} is linearly
independent and

[fla"'afk]:[ela"'vek]

» |t follows that E is a basis of V if and only if F is a basis of V
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Abstract Linear
Algebra

Existence of Triangular Change of Basis (Part 1)

Let E(e,. .., en) be a basis of V
Let F =(f,...,f,) be a basis of V, where for each 1 < k < n,

f = etMp + - + enMy

Rearranging and rescaling the basis vectors ey, ..., ey, we can
assume that Ml =1, i.e,,

A=e+Me+- -+ Mey
Suppose for each 1 < j < k,
fi=e+ ej+1W+1 +t+emMy”

and
fk+1 = elM,lH + -+ emM;:H
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Abstract Linear
Algebra

Existence of Triangular Change of Basis (Part 2)

> If feyq ¢ [(917 ey ek], then
fi—f (M o)
k+1 = Tkl 1Vl1 k11
MKt My
=enMil+- -+ enMi ¢ e, el
» Rearranging and rescaling ex1, ..., €m, We can assume
_ j+2
firr = k1 + graMi T+ + emM

» Observe that for each 1 < k < m, {f,..., fc} is linearly
independent and

[ﬁ,.‘.,fk]:[el,...,ek]

» |t follows that m = n
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Dimension of a Vector Space

Abstract Linear

Aleebrs » Every basis of a finite dimensional vector space V has the same
number of elements
» The dimension of a finite dimensional vector space V to be the
number of elements in a basis

» The dimension of V is denoted dim V
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Product of Row Matrix and Column Matrix

> A row matrix looks like this:
R=(r,...,rm) = [rl rm]

» A column matrix looks like this:

Abstract Matrix
Notation Cl

» The matrix product of R and C is the 1-by-1 matrix

RC=[n - rm|: =nct4 -+ rpc™
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Generalized Matrix Products

» This notation id valid if
> Each r; is a scalar

Each ¢ is a scalar

And therefore RC is a scalar

Each r; is a scalar

Each ¢/ is a vector

And therefore RC is a vector

Each r; is a vector

Each ¢/ is a scalar

And therefore RC is a vector

» The notation is invalid if

» Each r; is a vector
» Each ¢ is a vector

» Order matters: CR # RC!
» We will use only items 1 and 3 above

Abstract Matrix
Notation

VVYVVVVVYYVYYY
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Product of Column Matrix and Row Matrix

» Consider a column matrix

c
c=|:
Abstract Matrix c"
Notation
and ra ow matrix
R= [rl rm]
» The matrix product of C and R looks like this
cl clrn o ey
CR=1|:lln o ] = 5
c” c"n c"rm
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Product of Two Matrices

» The matrix product of the matrices

(mE o M} R!
M= =
(M M Rm
s Mt [Ny e My
N=| | =la el
ey
is the m-by-n matrix
R'G, -+ RIC,
MN = : :
R"G -+ R™C,

» This formula can be used if
» Components of both M and N are scalars
» Components of M are scalars, components of N are vectors

» Components of M are vectors, components of N are scalars 26



Abstract Matrix Notation for Vector With Respect
to Basis

» A basis (f1,...,fy) of a vector space V will always be written as
a row matrix of vectors,

F = [fl fm]
Abstract Matrix » Any vector is a unique linear combination of the basis vectors

v="Ffb 4+ -+ b7 €V

» This can be written as the matrix product of the basis written as
a row matrix and the coefficients written as a column matrix

V:ﬂb1++fmbm:[fi fm} . :Fb7
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Standard Basis of 3

» Denote the standard basis vectors of F3 by

1 0 0
Abstract Matrix € = 0 , € = 1 , €3 = 0
0 1

Notation
0

» The basis can be written as a row matrix of column vectors:

11010
E=le e e|=|0[1|0]|=1
0/0|1
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Change of Basis Example

» Consider a basis

1]ofo
F=[h £ =] -1|1]0
1|11

R » Given a vector v = (1,2, 3), there are coefficients b*, b2, b> such
Notation that

(1,2,3) = b*(1,-1,1) + b%(0,1,1) + b*(0,0,1)
= (b', —b' + b?, b* + b3 + b3)
or, equivalently,
bt =1
—bt+ b* =2
b' +b*+ b =3
» Unique solution is (b, b%, b3) = (1,3, —1)
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Change of Basis

» Consider two different bases of an n-dimensional vector space V/,

E = [el e,,] and F = [fl f,,]
_ » Since F is a basis, we can write each vector in F as a linear
N Mot combination of the vectors in E
F = [fl fn}

=[eM+ - +eM) - e M4+ e,M]
My M

= [el e en] :
Mp . M

= EM
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Change of Coefficients

» Any vector v can be written as either a linear combination of the

basis E,
Sl
v=ea' +--+ea"=[e -+ e || =Ea
an
Abstract Matrix
Notation or as a linear combination of the basis F,
bl
v=Abl 4+ b = - f] | 1| =Fb
bn

> If F = EM, then

v=Fb=E(Mb)=Ea
» Therefore,
a=Mband b=M 13
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Change of Basis Formula

» Let E and F be bases of V such that
F=EM,

Abstract Matrix » If v=Ea= Fb, then

Notation
a=Mband b=M"1a

» The matrix that transforms old coefficients into new coefficients
is the inverse of the matrix that transforms the old basis into the
new basis

» WARNING: This works only if you write a basis as a row matrix
of vectors and the coefficients as a column matrix of scalars
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Linear Functions

» If V is a vector space, then a function
{:V—>TF
is linear, if for any vi, v, € V
Abstr?ct Matrix
Notation Z(vl + V2) = Z(Vl) + K(VQ)
and for any v € V and s € T,
l(vs) =£(v)s
» Consequences:
£(0y) =0
U—v) = —L(v)
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Linear Maps

» If V and W are vector spaces, then
L:V W

is a linear map or linear transformation, if for any
v,vi,\pb € VandseT,

Linear Maps and
Functions

L(vi +vp) = L(v1) + L(w)
L(sv) = sL(v)

» Consequences:
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Properties of Linear Maps

> If K:U— Vand L:V — W are linear maps, then so is

LoK:U— W

Linear Maps and

Functions » If L:V — W is bijective, it is called a linear isomorphism

» If L:V — W is a linear isomorphism, then so is

LYW= v
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n-Dimensional Vector Spaces are Isomorphic

» LetdimV =dimW =m
» Let E = (eq,...,en) be a basis of V
» Let F=(fi,...,fy) be a basis of W
» The map

Linear Maps and LEQF'i V - W

Functions

eat +--+epam i fial 4+ 4 fpa”

is a linear isomorphism

» Given any basis (e, ..., ey) of V, there is a linear isomorphism

Ly :F™" =V

(@',...,a") > era' + -+ epa”
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Linear Maps and
Functions

Vector Space of Linear Maps

Given vector spaces V and W, let
L(V,W)={L:V > W : Lislinear}

L(V, W) is itself a vector space, because
> If A,B e L(V,W)and s €F, then

A+ B, sAc L(V, W)

Let gl(n, m, ) denote the vector space of n-by-m matrices with
components in F

» dimgl(n,m,F) = nm
Let gl(n,F) = gl(n, n,TF)
Let gl(n) = gl(n,R)
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Matrix as Linear Map

» Let E = (eq,...,en) be a basis of V
» Let F=(f,...,f,) be a basis of W

» For each M € gl(n,m,F), let L: V — W be the linear map

where
V1< k<m, L(ek):fll\/l,}-i—~-~—&—f,,M[(7

and therefore for any v = eja! + - - e,,a™ = Ea,

Linear Maps and
Functions

L(v) = L(era* + -+ ena™
=L(ep)at 4+ -+ L(em)a™
= (AM} +---+ MDAt + -+ (AME 4+ M) ™
=fA(Mfa' + -+ ML) 4 (MY - MPa™)
= fi(Ma)" + -+ + f,(Ma)"

» This defines a map Ig r : gl(n,m,F) — L(V, W)
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Linear Map as Matrix

Let E = (e1,...,en) be a basis of V

Let F—(ﬁ,...7 ») be a basis of W

Let L: V — W be a linear map

For each e, 1 < k < m, there exists (I\/I,}, ..., M) € F" such
that

vvyvyy

L(ex) = fll\/l,f + - MY
» Therefore, for any v = gal+. - 4ey,ameV,

Linear Maps and

Functions L(v) = L(e131 + o+ ema™)
= L(er)a" + -+ L(em)
= (AM} + - fMP)ar + -+ (AME 4 4 F,M7)a™
=fh(Mia' +---MLa™) + -+ (MY + -+ M2a™)
= fi(Ma)! + -+ + fy(Ma)"

» This defines a map Jg r : L(V, W) — gl(n, m,F)
JEF_IEF and IEF—JEF
» Therefore, dim L(V, W) = dimgl(n, m,F) = nm

v
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Concrete to Abstract Notation

L(v)=L(ea' +---+ena™) =1L

Linear Maps and
Functions
m

=[AM} + -+ f,M]

M

o

[L(e)

M} + -

a
em |
om
al
L(em)] | :
am
al
~+f,,M,’,’] :
am
= FMa
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Subspace and its Dimension

» A subset T of a vector space X is a subspace of X if for any
p,geFanda,be T,

pat+qgbe T

Linear Maps and ...
Functions » If a subspace has at least one nonzero vector, then it is itself a

vector space
» Define the dimension of a subspace S as follows:
> If S = {0} then dimS =0
» If S {0}, then S is a vector space and dim S is its dimension
as a vector space
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Kernel, Image, Rank of a Linear Map

» Consider any linearmap P: Z = Y
» The kernel of P is defined to be

kerP={zeZ : P(z) =0}

Linear Maps and > ker(P) is a subspace of Z
Functions
» The image of P is defined to be

P(Z)y={P(z) : ze Z}CY

» P(Z) is a subspace of Y

» The rank of P is
rank(P) = dim P(2)
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Example O

» Define Z : F2 — F2 to be
Z(x,y) = (x,y,0), for all (x,y) € F?

» In other words,

. 1
2(BD-]g
Linear Maps and -y O

Functions
» ker Z = {0}
> Z(F?) = {(x,y,0) : x,y,e F} CF"
> A basis of Z(F2) is {Z(e1), Z(e2)} = {(1,0,0), (0,1,0)}
» Therefore,

dimkerZ =0
rank Z = 2
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Example 1

» Define W : F? — 3 to be
W(x,y) = (y,0,0), for all (x,y) € F?

» In other words,

X 0 1 X
w(1) = 1o ol [
Linear Maps and ‘y 0 O ‘y
Functions
» ker W = {(x,0) : x €F}
> A basis of ker W is {(1,0)}
> W(F?) = {(y,0,0) : y €F}
> A basis of W(F?) is {(1,0,0)}
» Therefore,
dimker W =1
rank W =1
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Example 2

» Define U : F2 — F3 to be
U(x,y) = (0,0,0), for all (x,y) € F?

» In other words,

« 0 0 .
Linear Maps and U ( |:y:| ) = 0 0 |:y:|
Functions 0 O
> ker U = F?
> U(F?) = {(0,0,0}
» Therefore,
dimker U =2

rank U =0
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Example 3

» Define U : F® — F? to be
U(x,y,z) = (y,2), for all (x,y,z) € F3

» In other words,

X X

0 10
Linear Maps and U y - |:0 0 1:| y
Functions z z

» kerU={(x,0,0) : zeF}
> A basis is {(1,0,0)}

> U(F%) = F?

» Therefore,

dimkerU =1
rank U = 2

52/63



Example 4

» Define U : F3 — F? to be
U(x,y,z) = (2,0), for all (x,y,z) € F3

» In other words,

Linear Maps and Z
Functions

» kerU={(x,y,0) : x,y € F}
> A basis is {(1,0,0),(0,1,0)}
> U(F?) = {(z,0) : z€F}
> A basis is {(1,0)}
» Therefore,

dimker U =2
rank U =1
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Example 5

» Define U : F3 — F2 to be
T(x,y,z) = (0,0,0), for all (x,y,z) € F>

» In other words,

x o0 o]|"
tineaﬁMapsand T y = 00 0 y
unctions Z Z
> ker U =F3
> U(F?) = {(0,0,0)}
» Therefore,
dimker U =3

rank U =0
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Bases of V and W Induce Basis of L(V/, W)

> If (e1,...,€em) is a basis of V and (fi,...,f,) is a basis of W,
then foreach 1 < k<mand 1< p<n, let

[PV W

be the linear map where

Linear Maps and

Functions f, if j =k
Lk e) = P
p( J) {O otherwise

and let E € gl(n, m) be the matrix that has a 1 in the p-th row
and k-th column and 0 everywhere else
> Theset{Lg :1<k<mand1l<p<n}is a basis of
L(V, W) such that
Ivw(EZ) = Mg
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Normal Form of a Linear Map

» let L:V — W be a linear map

» Lemma: There exists a basis (e1,...,€ey) of V and a basis
(f,...,f) of W such that for each 1 < k < m,

Le) = fo ifl<k<r
T Yo ifr+l<k<m’

Linear Maps and
Functions

where r = rank(L)
» In particular,

ker(L) = span of {e,41,...,en} and L(V) = span of {f1,...,f,}

» The matrix of L with respect to this basis is

M: II’XF ‘ OI'XITI*I’

0n—r,r ‘ 0n—r,m—r
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Corollary: Rank-Nullity Theorem

» Theorem: dimker(L) + rank(L) = dim V

Linear Maps and » Proof: The normal form shows that if dim V = m and
rank(L) = r, then dimker(L) = m —r
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Linear Maps and
Functions

Proof of Existence of Normal Form

v

vVvyYVYyVvVvyy

Let s =dimker(L) and r =dim V —dimker(L) = m —s
If s > 0, there exists a basis of ker(L), which will be denoted

(em—s+l7 ey em)

This can be extended to a basis (e1,..., €, €+41,...,€m) of V
Foreach 1 < k <r, let fi = L(ex)

(f,..., 1) is linearly independent

It can be extended to a basis (f,...,f,) of W

It follows that

dimker L + rank L = dimker L 4+ dim L(V)
=s+r=m
=dimV
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Injective and Surjective Maps

» Consider a linear map L: V — W
» dimker L =0 <= L is injective:

L(Vl): L(Vz) e L(Vz)*L(Vl):OW
< L(V2 — V1) =0w
Linear Maps and < vy — v, Ekerl = {0\/}

Functions

< W =Wv;
» rank L =dim W <= L is surjective:

rank L = dim W
<~ dimL(V)=dimW
—= L(V)=W
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Bijective Maps

» A map L:V — W an isomorphism if it is bijective, i.e., both
injective and surjective

» Therefore,
L:V — W is bijective <= dimker(L) =0 and rank(L) = dim W
Linear Maps and » By the rank-nullity theorem, this holds if and only if
rank(L) = dim W
» Equivalently, L is an isomorphism if and only if

dimV =dim W and dimkerL =0

if and only if
dimV =dim W =rank L
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Example (Part 1)

v

Consider the map L : F3 — F? given by

V1 V1
el 2 22 3] = vi+2v2 +3v3
|10 0 4 a 4y3

Linear Maps and
Functions

ker L= {(v1,v2,v3) : vl 4+2v2 =0}
A basis of ker L is {(—2,1,0)}
A basis of F3 is {(0,1,0),(0,0,1),(-2,1,0)}

A basis of L(F®) is

{£(0,1,0),L(0,0,1)} = {(2,0),(3,4)}

vvyVvVyy
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Example (Part 2)

> If

1 ] and [ @]:H

» Then

Linear Maps and
Functions

(L(e) L(e) L) =[a £ 0]=[h 5] Ll) (1) 8}

» And given any vector v = e;a’ + ea® + e3a°,
L(v) = L(e)a' + L(e)a® + L(e3)a® = Ra* + ha® = FMa,

where
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Composition is Matrix Multiplication

» Consider vector spaces U, V, W and linear maps
K:U=>V,L:V>W
> Let (ep,...,ex) be a basis of U
» Let (f1,...,fm) be a basis of V
> let (g1,...,8,) be a basis of W
» There is an m-by-k matrix M such that
Funcrons K(e) =M, 1<j<k
» There is an n-by-m matrix N such that

L(f,) =gNj, 1<p<m
» There is an n-by-k matrix P such that
(LoK)(e) =gaPf, 1<j<k
» On the other hand,
(Lo K)(g) = L(K(g;)) = L(,M]) = L(£,)M] = gaNzMP

» Therefore, P? = NSMJP.
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