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Eigenvalues and Eigenvectors of a Linear
Transformation

▶ Consider a linear transformation L : V → V
▶ A scalar λ ∈ F is called an eigenvalue of L if there is a nonzero

vector v ∈ V such that any of the following equivalent
statements hold:

L(v) = λv ⇐⇒ (L− λI )v = 0

⇐⇒ v ∈ ker(L− λI )

▶ The vector v is called an eigenvector for the eigenvalue λ
▶ λ ∈ F is an eigenvalue of L if and only if the following equivalent

statements hold:

dim(ker(L− λI )) > 0 ⇐⇒ det(L− λI ) = 0

▶ The eigenspace for an eigenvalue λ of L is

Eλ(L) = ker(L− λI ) = {v ∈ V : L(v) = λv}
▶ Eλ(L) is a linear subspace of V
▶ The geometric multiplicity of the eigenvalue λ is dim(Eλ(L)
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Eigenvalues and Eigenvectors of a Square Matrix

▶ A scalar λ ∈ F is an eigenvalue of a matrix M ∈ gl(n,F) if
there is a nonzero vector v ∈ Fn such that any of the following
equivalent statements hold:

Mv = λv ⇐⇒ (M − λI )v = 0

⇐⇒ v ∈ ker(M − λI )

▶ The vector v is called an eigenvector for the eigenvalue λ
▶ λ ∈ F is an eigenvalue of M if and only if the following

equivalent statements hold:

dim(ker(M − λI )) > 0 ⇐⇒ det(M − λI ) = 0

▶ The eigenspace for an eigenvalue λ is the subspace

Eλ(M) = ker(M − λI ) = {v ∈ V : Mv = λv}

▶ The geometric multiplicity of the eigenvalue λ is dim(Eλ(M))
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Linear Transformation With Respect to a Basis

▶ Let L : V → V

▶ Given a basis
E =

[
e1 · · · en

]
,

where exists a matrix M such that for each 1 ≤ k ≤ n,

L(ek) = ejM
j
k

▶ If we denote
L(E ) =

[
L(e1) · · · L(en)

]
,

then
L(E ) = EM

▶ If v = Ea = eja
j , then

L(v) = L(Ea) = L(E )a = EMa

5 / 40



Eigenvalues and
Eigenvectors

Eigenvalues of Linear Transformation Versus Matrix

▶ Let L : V → V be a linear transformation and M be the matrix
such that

L(E ) = EM

▶ If v = Ea is an eigenvector of L for an eigenvalue λ, then

λv = L(v) = L(Ea) = L(E )a = EMa

and therefore
λEa = EMa

▶ It follows that
Ma = λa,

▶ Therefore, v = Ea is an eigenvector of L for the eigenvaelue λ if
and only if a ∈ Fn is an eigenvector of M for the eigenvalue λ
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Linear Transformation With Respect To Different
Bases

▶ Let E and F be bases of V
▶ There exists a matrix S such that fk = ejS

j
k , i.e.,

F = ES and E = FS−1

▶ Given a map L : V → V , there are matrices M and N such that

L(E ) = EM and L(F ) = FN

▶ On the other hand,

FN = L(F ) = L(ES) = L(E )S = EMS = FS−1MS

and therefore,
N = S−1MS

▶ If v = Ea = Fb, then

L(v) = EMa = FNb = ESNb = ESS−1MSb = EMSb

▶ Therefore,
a = Sb and b = S−1a
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Eigenvectors With Respect to Different Bases

▶ If v = Ea = Fb is an eigenvector of L for the eigenvalue λ, then
λ is an eigenvalue for both M and N = S−1MS

▶ The eigenvector of M for the eigenvalue λ is a

▶ The eigenvector of N for the eigenvalue λ is b = S−1a

▶ This can be checked directly:

Nb = S−1MSb = S−1Ma = S−1(λa) = λS−1a = λb
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Eigenvalues, and Eigenvectors of Similar Matrices

▶ Two matrices M and N are called similar if there is an invertible
matrix S such that

N = S−1MS

or, equivalently,
M = SNS−1

▶ If M and N are similar, then detM = detN

▶ M and N have the same eigenvalues, because if a is an
eigenvector of M for the eigenvalue λ and b = S−1a, then

Nb = S−1MSb = S−1Ma = S−1(λa) = λS−1a = λb
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Characteristic Polynomial of a Matrix

▶ Let δjk be the element in the j-th row and k-column of the
identity matrix, i.e.,

δjk =

{
1 if j = k

0 if j ̸= k

▶ Observe that the function pM : F → F given by

pM(x) = det(M − xI )

=
∑
σ∈Sn

ϵ(σ)(M − xI )
σ(1)
1 · · · (M − xI )σ(n)n

=
∑
σ∈Sn

ϵ(σ)(M
σ(1)
1 − xδ

σ(1)
1 ) · · · (Mσ(n)

n − xδσ(n)n )

is a polynomial in x of degree n

▶ pM is the characteristic polynomial of M

▶ x is a root of pM if and only if it is an eigenvalue for M
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Characteristic Polynomial of a Linear
Transformation

▶ Let L : V → V be a linear transformation

▶ Define pL : F → F by

pL(x) = det(L− xI )

▶ If E is a basis and L(E ) = EM, then

(L− xI )(E ) = E (M − xI )

and therefore

pL(x) = det(L− xI ) = det(M − xI ) = pM(x)

▶ It follows that pL is a polynomial of degree n
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Similar Matrices Have the Same Characteristic
Polynomial

▶ Proof 1: If L(E ) = EM and L(F ) = FN, then

pM(x) = pL(x) = pN(x)

▶ Proof 2: If M = SNS−1, then

M − xI = S(N − xI )S−1

and therefore

pM(x) = det(M−xI ) = det(S(N−xI )S−1 = det(N−xI ) = pN(x)
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Examples

▶ Let

Z =

[
0 0
0 0

]
,

▶ Zv = 0v for any v ∈ R2 and therefore 0 is the only eigenvalue

▶ Any nonzero vector v ∈ R2 is an eigenvector

▶ The characteristic polynomial is

pZ (x) = det(Z − xI ) = det

([
0 0
0 0

]
− x

[
1 0
0 1

])
= −x2
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Examples

▶ If D =

[
a 0
0 b

]
, then D

[
v1

v2

]
=

[
a 0
0 b

] [
v1

v2

]
=

[
av1

bv2

]
▶ If x = a = b, then the only eigenvalue is x

▶ Every v ∈ R2 is an eigenvector

▶ If a ̸= b, then the only eigenvalues are a and b
▶ The eigenvectors for the eigenvalue a are[

x
0

]
= x

[
1
0

]
, x ∈ F\{0}

▶ The eigenvectors for the eigenvalue b are[
0
x

]
= x

[
0
1

]
, x ∈ F\{0}

▶ The characteristic polynomial is

pD(x) = det(D − xI ) = x

[
a− x 0
0 b − x

]
= (a− x)(b − x)
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Examples

▶ If A =

[
0 1
1 0

]
, then A

[
v1

v2

]
=

[
0 1
1 0

] [
v1

v2

]
=

[
v2

v1

]
▶ The only eigenvalues are 1,−1

▶ The eigenvectors for the eigenvalue 1 are[
x
x

]
, x ∈ F\{0}

▶ The eigenvectors for the eigenvalue −1 are[
x
−x

]
, x ∈ F\{0}

▶ The characteristic polynomial is

pA(x) = det

([
0 1
1 0

]
− x

[
1 0
0 x

])
= det

([
−x 1
1 x

])
= 1− x2
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Examples

▶ If B =

[
0 −1
1 0

]
, then B

[
v1

v2

]
=

[
0 −1
1 0

] [
v1

v2

]
=

[
−v2

v1

]
▶ There are no real eigenvalues
▶ The complex eigenvalues are i ,−i
▶ The eigenvectors for the eigenvalue i are[

ix
−x

]
= x

[
i
1

]
, x ∈ F\{0}

▶ The eigenvectors for the eigenvalue −i are[
x
ix

]
= x

[
1
i

]
, x ∈ F\{0}

▶ The characteristic polynomial is

pB(x) = det(B − xI )

= det

([
−x −1
1 −x

])
= 1 + x2
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Complex Versus Real Eigenvalues

▶ If an n − by − n matrix contains only real entries, it can have
anywhere from 0 to n eigenvalues

▶ A polynomial with complex coefficients

p(x) = a0 + a1x + · · · anxn,

where an ̸= 0 with complex coefficients can always be factored
into n linear factors

p(x) = an(r1 − x) · · · (rn − x)

▶ A complex matrix A always has anywhere from 1 to n
eigenvalues, where an eigenvalue might appear more than once
in the factorization of pA

▶ The algebraic multiplicity of an eigenvalue λ is the number of
linear factors equal to (λ− x) in pA
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Examples

▶ Let D =

3 0 0
0 −2 0
0 0 3


▶ The eigenvalues of D are −2, 3
▶ The characteristic polynomial of D is

pD(λ) = (x − 3)(x + 2)(x − 3) = (x − 3)2(x + 2)

▶ The eigenvalue 3 has multiplicity 2, and the eigenvalue 2 has
multiplicity 1

▶ The eigenvectors for the eigenvalue −2 are0x
0

 = x

01
0

 , x ∈ F\{0}

▶ The eigenvectors for the eigenvalue 3 arex10
x2

 = x1

10
0

+ x2

00
1

 , x ∈ F\{0}
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Examples

▶ Let M =

[
1 1
0 1

]
▶ The characteristic polynomial of M is

pM(λ) = det(M − λI ) = det

([
1− λ 1
0 1− λ

])
= (1− λ)2

▶ The only eigenvalue is 1 with multiplicity 2

▶ Since

M

[
v1

v2

]
= M =

[
1 1
0 1

] [
v1

v2

]
=

[
v1

v1 + v2

]
,

the eigenvectors of the eigenvalue 1 are[
0
x

]
= x

[
0
1

]
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Diagonal Matrices

▶ An n-by-n matrix M is diagonal if

M j
k = 0 if j ̸= k

▶ In particular, the k-th column of M is

Ck = Mek = Mk
k ek (no sum over k),

where (e1, . . . , en) is the standard basis of Rn

▶ The determinant of M is, by multilinearity,

D(C1, . . . ,Cn) = D(M1
1e1,M

2
2e2, . . . ,M

n
n en)

= (M1
1 · · ·Mn

n )D(e1, . . . , en)

= M1
1 · · ·Mn

n

▶ Since M − λI is also diagonal, it follows that the characteristic
polynomial of M is

pM(λ) = det(M − λI ) = (M1
1 − λ) · · · (Mn

n − λ)

▶ The diagonal elements of M are its eigenvalues
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Triangular Matrices

▶ An n-by-n matrix M is upper triangular if it is of the form

M =


M1

1 M1
2 · · · M1

n−1 M1
n

0 M2
2 · · · M2

n−1 M2
n

...
...

...
...

...
0 0 · · · Mn−1

n−1 Mn−1
n

0 0 · · · 0 Mn
n


▶ I.e., M j

k = 0 if j > k
▶ An n-by-n matrix M is lower triangular if it is of the form

M =


M1

1 0 · · · 0 0
M2

1 M2
2 · · · 0 0

...
...

...
...

...
Mn−1

1 Mn−1
2 · · · Mn−1

n−1 0
Mn

1 Mn
2 · · · Mn

n−1 Mn
n


▶ I.e., M j

k = 0 if j < k
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Columns of an Upper Triangular Matrix

▶ Let M be an upper triangular matrix and consider the matrix
T = M − λI

▶ T is itself an upper triangular matrix

▶ Choose a value of λ ∈ F such that every element on the
diagonal of T is nonzero

▶ Let (e1, . . . , en) be the standard basis of Rn

▶ Let (C1, . . . ,Cn) be the columns of T

▶ By assumption, C 1
1 ,C

2
2 , · · · ,C n

n are all nonzero
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Columns of Upper Triangular Matrix (Part 2)

▶ Each column can therefore be written as

Ck = C k
k Ĉk ,

where

Ĉk =



Ĉ 1
k
...

Ĉ k−1
k

1
0
...
0


and Ĉ j

k =
C j
k

C k
k

, for each 1 ≤ j , k ≤ n
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Determinant of Upper Triangular Matrix (Part 1)

▶ Let (C1, . . . ,Cn) be the columns of T and recall that the
determinant of T is

det(T ) = D(C1, . . . ,Cn)

where D ∈ ΛnV ∗ satisfies D(e1, . . . , en) = 1

▶ By the multilinearity of D,

D(C1, . . . ,Cn) = D(C 1
1 Ĉ1,C

2
2 Ĉ2, . . . ,C

n
n Ĉn)

= (C 1
1C

2
2 · · ·C n

n )D(Ĉ1, . . . , Ĉn)
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Determinant of Upper Triangular Matrix (Part 2)

▶ Since T is upper triangular, its columns are of the form

C1 = C 1
1 e1

C2 = C 1
2 e1 + C 2

2 e2

C3 = C 1
3 e1 + C 2

3 e2 + C 3
3 e3

...
...

Cn = C 1
n e1 + C 2

n e2 + C 3
n e3 + · · ·+ C n

n en

▶ Similarly,

Ĉ1 = e1

Ĉ2 = Ĉ 1
2 e1 + e2

Ĉ3 = Ĉ 1
3 e1 + Ĉ 2

3 e2 + e3

...
...

Ĉn = Ĉ 1
n e1 + Ĉ 2

n e2 + Ĉ 3
n e3 + · · ·+ Ĉ n−1

n en−1 + en
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Determinant of Upper Triangular Matrix (Part 3)

▶ Therefore,

D(Ĉ1, . . . , Ĉn)

= D(e1, Ĉ2, . . . , Ĉn)

= D(e1, Ĉ
1
2 e1 + e2, Ĉ

1
3 e1 + Ĉ 2

3 e2 + e3, . . . , Ĉ
1e1 + · · ·+ en)

= D(e1, e2, Ĉ
2
3 e2 + e3, . . . , Ĉ

2
n e2 + · · ·+ en)

= D(e1, e2, e3, . . . , Ĉ
3
n e3 + · · ·+ · · ·+ en)

...
...

= D(e1, e2, . . . , en)

= 1
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Characteristic Polynomial and Determinant of
Triangular Matrix

▶ It follows that if λ is not equal to any of C 1
1 , · · · ,C n

n ,

pM(λ) = det(T )

= D(C1, . . . ,Cn)

= C 1
1C

2
2 · · ·C n

nD(Ĉ1, . . . , Ĉn)

= C 1
1C

2
2 · · ·C n

n

= (M1
1 − λI ) · · · (Mn

n − λI )

▶ Therefore, the polynomial

r(λ) = pM(λ)− (M1
1 − λI ) · · · (Mn

n − λI )

has infinitely many roots
▶ This implies that r is the zero polynomial
▶ The characteristic polynomial of an upper triangular matrix M is

pM(λ) = (M1
1 − λI ) · · · (Mn

n − λI )

▶ In particular, det(M) = pM(0) = M1
1 · · ·Mn

n
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Diagonal Linear Transformation

▶ Let dimV = n

▶ Let L : V → V be a linear transformation

▶ Suppose L has n linearly independent eigenvectors e1, . . . , en
with eigenvalues λ1, . . . , λn

▶ Then with respect to the basis E = (e1, . . . , en),

L(ek) = ekλk

▶ Equivalently,

[
L(e1) · · · L(en)

]
=

[
e1 · · · en

]

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


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Diagonal Linear Transformation

▶ Conversely, suppose L : V → V is a linear transformation and E
is a basis such that

L(E ) = ED,

where D is a diagonal matrix

▶ Then
L(ek) = ejD

j
k = ekD

k
k

▶ Therefore, L has eigenvalues D1
1 , . . . ,D

n
n with eigenvectors

e1, . . . , en respectively
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Diagonalizable Linear Transformation

▶ Let L : V → V be a diagonal linear transformation
▶ If E is a basis of eigenvectors, then

L(E ) = ED,

where D is a diagonal matrix
▶ Given any basis F , there is an invertible matrix M such that

F = EM

and vice versa
▶ There is a matrix A such that

L(F ) = FA

▶ Therefore,

ED = L(E ) = L(FM−1) = L(F )M−1 = FAM−1 = EMAM−1

▶ I.e., M and D are similar
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Diagonalizable Linear Transformation and Matrix

▶ A linear transformation L : V → V is diagonalizable if any of
the following equivalent conditions hold:
▶ There exists a basis of V consisting of eigenvectors
▶ There exists a basis E such that L(E) = ED, where D is a

diagonal matrix
▶ Given any basis F and matrix A such that

L(F ) = FA,

A is similar to a diagonal matrix
▶ A matrix A is diagonalizable if it is similar to a diagonal matrix
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Linear Transformation With Distinct Eigenvalues

▶ Let dim(V ) = n and L : V → V be a linear transformation with
n distinct eigenvalues λ1, . . . , λn, i.e.,

j ̸= k =⇒ λj ̸= λk

▶ Let v1, . . . , vn be eigenvectors of λ1, . . . , λn respectively

▶ Suppose v1, . . . , vk−1 are linearly independent

▶ If a1v1 + · · ·+ akvkw = 0, then

0 = (L− λk I )(a
1v1 + · · ·+ akvk)

= a1(Lv1)− λkv1) + · · ·+ ak(L(vk)− λkvk)

= a1(λ1 − λk)v1 + · · ·+ ak(λk − λk)vk

= a1(λ1 − λk)v1 + · · ·+ ak−1(λk−1 − λk)vk−1,

▶ Therefore, a1(λ1 − λk) = · · · = ak−1(λk−1 − λk) = 0
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Linear Transformation With Distinct Eigenvalues

▶ Since v1, . . . , vk−1 are linearly independent, it follows that

a1(λ1 − λk) = · · · = ak−1(λk−1 − λk) = 0

▶ Since the eigenvalues are distinct, this implies that

a1 = · · · = ak−1 = 0

▶ By assumption, a1v1 + · · ·+ akvkw = 0 and therefore ak = 0

▶ It follows by induction that v1, . . . , vn form a basis of V

▶ Therefore, L is diagonalizable

▶ Conclusion: Any linear transformation with n distinct
eigenvalues is diagonalizable
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Direct Sum of Subspaces

▶ Let V1, . . . ,Vk be subspaces of V
▶ {V1, . . . ,Vk} is a linearly independent set of subspaces if for

any nonzero vectors

v1 ∈ V1, v2 ∈ V2, . . . , vk ∈ Vk

are linearly independent
▶ Equivalently, {V1, . . . ,Vk} is linearly independent if for any

v1 ∈ V1, . . . , vk ∈ Vk ,

v1 + v2 + · · ·+ vk = 0 =⇒ v1 = v2 = · · · = vk

▶ Equivalently, {V1, . . . ,Vk} is linearly independent if for any
v1,w1 ∈ V1, . . . , vk ,wk ∈ Vk ,

v1+v2+· · ·+vk = w1+w2+· · ·+wk =⇒ v1 = w1, . . . , vk = wk

▶ If {V1,V2, . . . ,Vk} is linearly independent, then their direct
sum is defined to be

V1 ⊕ V2 ⊕ · · · ⊕ Vk = span(V1 ∪ V2 ∪ · · · ∪ Vk)
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Examples

▶ {S1,S2}, where S1,S2 ⊂ F3 are given by

S1 = span(e1)

S2 = span(e2),

is linearly independent

▶ If {v1, . . . , vk} is linearly independent and

∀1 ≤ j ≤ k , Vj = span(vj),

then {V1, . . . ,Vk} is a linearly independent set of subspaces

▶ If (e1, e2, e3, e4) is a basis of V and

S = span(e1, e2, e3), T = span(e4),

then V = S ⊕ T
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Eigenspaces of Distinct Eigenvalues are Linearly
Independent (Part 1)

▶ If λ1, . . . , λk are distinct eigenvalues of L : V → V , then their
eigenspaces Eλ1 , . . . ,Eλk

are linearly independent

▶ Prove by induction that for any 1 ≤ j ≤ k ,

v1 + · · ·+ vj = 0 =⇒ v1 = · · · = vj = 0

▶ This holds for j = 1

▶ Inductive step: Assume that it holds for 1 ≤ j < k and prove it
holds for j + 1
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Eigenspaces of Distinct Eigenvalues are Linearly
Independent (Part 2)

▶ Suppose v1 ∈ Eλ1 , . . . , vj+1 ∈ Eλj+1 satisfy

v1 + · · ·+ vj+1 = 0 (1)

▶ It follows that

0 = (L− λj+1I )(v1 + · · ·+ vj+1)

= (λ1 − λj+1)v1 + · · ·+ (λj − λj+1)vj

▶ By the inductive assumption,

(λ1 − λj+1)v1 = · · · = (λj − λj+1)vj = 0

▶ Since λi − λj+1 ̸= 0 for each 1 ≤ i ≤ j ,

v1 = · · · = vj = 0

▶ By (1), it follows that vj+1 = 0
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Eigenspaces of Distinct Eigenvalues are Linearly
Independent (Part 3)

▶ By induction,

v1 + · · ·+ vk = 0 =⇒ v1 = · · · = vk = 0

▶ This implies that Eλ1 , . . . ,Eλk
are linearly independent
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Diagonalizability of a Linear Transformation (Part
1)

▶ Let λ1, . . . , λk be the eigenvalues of L : V → V

▶ L is diagonalizable if and only if

dim(Eλ1) + · · ·+ dim(Eλk
) = dimV

▶ Let n0 = 0 and, for 1 ≤ j ≤ k , let

nj = dim(Eλj )

Nj = n1 + · · ·+ nj

▶ For each 1 ≤ j ≤ k , let

(vNj−1+1, · · · , vNj )

be a basis of Eλj
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Diagonalizability of a Linear Transformation (Part
2)

▶ Suppose
a1v1 + · · ·+ anvn = 0,

▶ For each 1 ≤ j ≤ k , let

wj = aNj−1+1vNj−1 + · · ·+ aNj vNj ∈ Eλj

▶ Since w1 + · · ·+ wk = 0, it follows that

w1 = · · · = wk = 0

▶ For each 1 ≤ j ≤ k ,

0 = wj = aNj−1+1vNj−1 + · · ·+ aNj vNj ,

which implies aNj−1+1 = · · · = aNj = 0

▶ Therefore, (v1, . . . , vn) is a basis of V

▶ L is diagonal with respect to this basis
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