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Dot Product on Rn

▶ Recall that the dot product of

v =

v
1

...
vn

 , w =

w
1

...
wn

 ∈ Rn

is defined to be

v · w = v1w1 + · · ·+ vnwn = vTw = wT v

▶ The norm or magnitude of v ∈ Rn is defined to be

|v | = ∥v∥ =
√
v · v

▶ If v and w are nonzero and the angle at 0 from v to w is θ, then

cos θ =
v · w
|v ||w |
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Properties of Dot Product

▶ The dot product is bilinear because for any a, b ∈ R and
u, v ,w ∈ Rn,

(au + bv) · w = a(u · w) + b(v · w)

u · (av + bw) = a(u · v) + b(u · w)

▶ It is symmetric, because for any v ,w ∈ Rn,

v · w = w · v

▶ It is positive definite, because for any v ∈ Rn,

v · v ≥ 0

and
v · v > 0 ⇐⇒ v ̸= 0
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Inner Product on Real Vector Space

▶ Let V be an n-dimensional real vector space
▶ Consider a function

α : V × V → R
▶ It is bilinear if for any a, b ∈ R and u, v ,w ∈ Rn,

α(au + bv ,w) = aα(u,w) + bα(v ,w)

α(u, av + bw) = aα(u, v) + bα(u,w)

▶ It is symmetric if for any v ,w ∈ Rn,

α(v ,w) = α(w , v)

▶ It is positive definite if for any v ∈ Rn,

α(v , v) ≥ 0

and
α(v , v) > 0 ⇐⇒ v ̸= 0

▶ Any positive definite symmetric bilinear function on a real vector
space V is called an inner product
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Hermitian Inner Product on Cn

▶ Recall that if z = x + iy ∈ C, then

z̄ = x − iy and zz̄ = z̄z = x2 + y2

▶ If A is a complex matrix, its Hermitian adjoint is defined to be

A∗ = ĀT

▶ The Hermitian inner product on Cn of

v =

v
1

...
vn

 , w =

w
1

...
wn

 ∈ Cn

is defined to be

(v ,w) = v1w̄1 + · · ·+ vnw̄n = vT w̄ = w̄T v = w∗v ∈ C,
▶ The norm of v ∈ Cn is defined to be

|v | = ∥v∥ =
√
(v , v)

▶ No geometric interpretation of the Hermitian inner product
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Not a Real Inner Product

▶ Not bilinear, because if c ∈ C,

(v , cw) = c̄(v ,w)

▶ Not symmetric, because

(w , v) = (v ,w)

▶ It is positive definite, because for any v ∈ Cn, (v , v) ∈ R,

(v , v) = v1v̄1 + · · ·+ vnv̄n = |v1|2 + · · ·+ |vn|2 ≥ 0,

and
(v , v) ̸= 0 ⇐⇒ v ̸= 0
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Properties of Hermitian Inner Product on Cn

▶ It is a linear function of the first argument, because for any
a, b ∈ C, u, v ,w ∈ Cn,

(au + bv ,w) = a(u,w) + b(v ,w)

▶ It is Hermitian, which means

(v ,w) = (w , v)

▶ Therefore, for any a, b ∈ C and u, v ,w ∈ Cn,

(u, av + bw) = ā(u, v) + b̄(a,w)
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Inner Product of a Vector Space Over F

▶ Assume F is R or C
▶ An inner product over a vector space V is a function

(·, ·) : V × V → F

with the following properties: For any a, b ∈ F and u, v ,w ∈ V ,

(au + bv ,w) = a(u,w) + b(v ,w)

(w , v) = (v ,w)

(v , v) ≥ 0

(v , v) ̸= 0 ⇐⇒ v ̸= 0

▶ If F = R, this is the same definition as before

▶ If F = C, this is the definition of a Hermitian inner product
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Examples

▶ For each v ∈ Fn, denote v∗ = v̄T

▶ The standard inner product on Fn is

(v ,w) = w∗v ,

which is the dot product on Rn and the standard Hermitian
inner product on Cn

▶ An inner product on the space of polynomials of degree n or less
and with coefficients in F is

(f , g) =

∫ t=1

t=0

f (t)g(t) dt

▶ An inner product on the space of matrices with n rows and m
columns is

(A,B) = trace(B∗A) =
∑

1≤k≤m

∑
1≤j≤n

B̄ j
kA

j
k ,

where B∗ = B̄T
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Nondegeneracy Property

▶ Fact: If a vector v ∈ V satisfies the following property:

∀w ∈ V , (v ,w) = 0,

then v = 0
▶ Proof: Setting w = v , it follows that

(v , v) = 0 and therefore v = 0

▶ Corollary: If v1, v2 ∈ V satisfy the property that

∀w ∈ V , (v1,w) = (v2,w),

then v1 = v2
▶ Corollary: If ‘L1, L2 : V → W are linear maps such that

∀v ∈ V , w ∈ W , (L1(v),w) = (L2(v),w),

then L1 = L2
▶ Proof: Given v ∈ V ,

∀w ∈ W , (L1(v),w) = (L2(v),w),

which implies L1(v) = L2(v)
▶ Since this holds for all v ∈ V , it follows that L1 = L2 11 / 33
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Fundamental Inequalities

▶ Cauchy-Schwarz inequality: For any v ,w ∈ V ,

|(v ,w)| ≤ |v ||w |

and
|(v ,w)| = |v ||w |

if and only if there exists s ∈ F such that

v = sw or w = sv

▶ Triangle inequality: For any v ,w ∈ V ,

|v + w | ≤ |v |+ |w |

and
|v + w | = |v |+ |w |

if and only if v = ±w
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Proof When F = R

▶ If v = 0 or w = 0, equality holds

▶ Let

f (t) = |v − tw |2

= (v − tw , v − tw)

= |v |2 − 2t(v ,w) + t2|w |2

=

(
t|w | − (v ,w)

|w |

)2

+ |v |2 − (v ,w)2

|w |2

▶ f has a unique minimum when t = tmin, where

tmin =
(v ,w)

|w |
and f (tmin) = |v |2 − (v ,w)2

|w |2
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Proof of Cauchy-Schwarz (Part 1)

▶ If v = 0 or w = 0, equality holds

▶ If w ̸= 0, let f : F → R be the function

f (t) = |v − tw |2

= (v − tw , v − tw)

= |v |2 − t(w , v)− t̄(v ,w) + |t|2|w |2

▶ If f has a minimum at t0 ∈ F, then its directional derivative at
t0 is zero in any direction ṫ

0 =
d

ds

∣∣∣∣
s=0

f (t0 + sṫ)

= −ṫ(w , v)− ṫ(v ,w) + (t0ṫ + t̄0ṫ)|w |2

= ṫ(t̄0 − (w , v)) + ṫ(t0|w |2 − (v ,w))

= ṫ(t0 − (v ,w)) + ṫ(t0|w |2 − (v ,w))
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Proof of Cauchy-Schwarz (Part 2)

▶ In particular, if
ṫ = t0|w |2 − (v ,w),

we get
|t0|w |2 − (v ,w)|2 = 0,

▶ Therefore, the only critical point of f is

t0 =
(v ,w)

|w |2

▶ Since f is always nonnegative, it follows that

0 ≤ f (t0) = |v |2 − |(v ,w)|2

|w |2

which implies the Cauchy-Schwarz inequality
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Proof of Cauchy-Schwarz (Part 3)

▶ If w ̸= 0 and |(v ,w)| = |v ||w |, then

0 = |v |2 − |(v ,w)|2

|w |2
= f (t0) = |v − t0w |2,

which implies that
v = t0w
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Proof of Triangle Inequality

▶ The triangle inequality follows easily from Cauchy-Schwarz
inequality

|v + w |2 = (v + w , v + w)

= |v |2 + (v ,w) + (w , v) + |w |2

≤ |v |2 + |(v ,w)|+ |(w , v)|+ |w |2

≤ |v |2 + 2|v ||w |+ |w |2

= (|v |+ |w |)2

▶ If |v + w | = |v |+ |w |, then

|(v ,w)| = |(v ,w)| = |v ||w |,

which implies v = tw and therefore

|t + 1|2|w |2 = |tw + w |2 = |tw |2 + |w |2 = (|t|2 + 1)|w |2,

which implies that t = t̄, i.e., t ∈ R
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Polarization Identities

▶ On Rn

(v ,w) =
1

4
(|v + w |2 − |v − w |2)

▶ On Cn

(v ,w) =
1

4
(|v + w |2 + i |v + iw |2 − |v − w |2 − i |v − iw |2)
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Norm Defined by Inner Product

▶ The norm of v ∈ V ,
|v | =

√
(v , v)

satisfies the following properties for any s ∈ F, v ,w ∈ V

|sv | = |s||v | (Homogeneity)

|v | ≥ 0 (Nonnegativity)

|v | = 0 ⇐⇒ v = 0 (Nondegeneracy)

|v + w | ≤ |v |+ |w | (Triangle inequality)

▶ Homogeneity and the triangle inequality imply convexity: For
any 0 ≤ t ≤ 1 and v ,w ∈ V ,

|(1− t)v + tw | ≤ (1− t)|v |+ t|w |

19 / 33



Inner Product
Spaces

Norm

▶ A norm on a vector space V over F is a function

g : V → R,

that satisfies for any s ∈ F and v ,w ∈ V ,

|sv | = |s||v | (Homogeneity)

|v | ≥ 0 (Nonnegativity)

|v | = 0 ⇐⇒ v = 0 (Nondegeneracy)

|v + w | ≤ |v |+ |w | (Triangle inequality)
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Examples of Norms

▶ Given 1 ≤ p < ∞, the ℓp norm of v ∈ Fn is defined to be

|v |p = (|v1|p + · · ·+ |vn|p)1/p

▶ The ℓ∞ norm of v ∈ Fn is defined to be

|v |∞ = max(|v1|, . . . , |vn|) = lim
p→∞

|v |p

▶ The Lp norm of a continuous function f : [0, 1] → C is defined
to be

∥f ∥p =

(∫ x=1

x=0

|f (x)|p dx
)1/p

▶ The L∞ norm of a continuous function f : [0, 1] → C is defined
to be

∥f ∥∞ = sup{|f (x)| : 0 ≤ x ≤ 1} = lim
p→∞

∥f ∥p
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Parallelogram Identity

▶ A norm | · | on a vector space V satisfies the parallelogram
identity

|v + w |2 + |v − w |2 = 2(|v |2 + |w |2), ∀v ,w ∈ V

if and only if there is an inner product on V such that

|v |2 = (v , v)
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Orthogonality For Standard Dot Product on Rn

▶ The following are synonyms: orthogonal, perpendicular, normal

▶ On Rn,
▶ Two vectors v1, v2 are called orthogonal if

v1 · v2 = 0

▶ A basis (v1, . . . , vn) is called orthonormal if for any 1 ≤ i , j ≤ n,

vi · vj = δij =

{
1 if i = j

0 if i ̸= j
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Orthogonality on an Inner Product Space

▶ Let V be an n-dimensional vector space over F with inner
product (·, ·)

▶ Two vectors v1, v2 are orthogonal if

(v1, v2) = 0

▶ Vectors v1, . . . , vk are mutually orthogonal if for every
1 ≤ i < j ≤ k ,

(vi , vj) ̸= 0

▶ Mutually orthogonal vectors must all be nonzero

▶ A set of muturally orthogonal vectors is called an orthogonal
set
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Linear Independence of Orthogonal Set

▶ An orthogonal set is linearly independent, because if

a1v1 + · · ·+ akvk = 0,

then for any 1 ≤ j ≤ k ,

0 = (vj , a
1v1 + · · ·+ akvk) = aj(vj , vj)

Since vj ̸= 0, (vj , vj) ̸= 0 and therefore aj = 0
▶ If

v = a1v1 + · · ·+ akvk ,

then for each 1 ≤ j ≤ k ,

aj =
(v , vj)

|vj |

and

v =
(v , v1)

|v1|
+ · · ·+ (v , vk)

|vk |
▶ Any orthogonal set of n vectors is a basis
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Orthonormal Set and Basis

▶ {v1, . . . , vk} ⊂ V is called an orthonormal set if for any
1 ≤ i , j ≤ k ,

(vi , vj) = δij
▶ If F = C, such a set is also called a unitary set
▶ An orthonormal set of n elements is called an orthonormal or

unitary basis
▶ Any orthogonal set {v1, . . . , vk} can be turned into an

orthonormal set,

{ v1
|v1

, . . . ,
vk
|vk |

▶ An orthormal or unitary basis is an orthonormal set with n
elements,

E = (e1, . . . , en) ⊂ V

▶ If v = a1e1 + · · ·+ anen, then

aj = (v , ej)

▶ I.e.,
v = (v , e1)e1 + · · ·+ (v , en)en
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Example: Finite Fourier Decomposition (Part 1)

▶ For each −N ≤ k ≤ N, consider

vk : [0, 2π] → C
θ 7→ e ikθ

▶ Let

V = {a−NvN + · · ·+ a0 + · · ·+ aNvN : (a1, . . . , aN) ∈ C2N+1}.

▶ V is a (2N + 1)-dimensional complex vector space

▶ Consider the inner product

(f1, f2) =

∫ θ=2π

θ=0

f1(θ)f̄2(θ) dθ
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Finite Fourier Decomposition (Part 2)

▶ If j ̸= k, then

(vj , vk) =

∫ θ=2π

θ=0

e i(j−k)θ dθ

=
e i(j−k)θ

i(j − k)

∣∣∣∣θ=2π

θ=0

= 0

(vk , vk) =

∫ θ=2π

θ=0

1 dθ

= 2π

▶ Therefore, (v−N , . . . , vN) is an orthogonal basis, and
(u−N , . . . , uN), where

uk =
vk√
2π

, −N ≤ k ≤ N,

is an orthonormal basis
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Finite Fourier Decomposition (Part 3)

▶ Given any f : C 0([0, 2π]), let

fN(θ) = a−Nu−N + · · ·+ aNuN ,

where

ak = (f , uk) =
1√
2π

∫ θ2π

θ=0

f (θ)e−ikθ dθ

▶ When is fN is a good approximation to f ?

▶ When is

f =
k=∞∑
k=−∞

akuk?
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Orthogonal Complement

▶ Let V be a real vector space with inner product (·, ·)
▶ Given a subspace E ⊂ V , define its orthogonal complement to

be the subspace

E⊥ = {v ∈ V : ∀e ∈ E , (v , e) = 0}
▶ E ∩ E⊥ = {0}, because if

v ∈ E ∩ E⊥,

then
|v |2 = (v , v) = 0,

▶ If v1, v2 ∈ E , w1,w2 ∈ E⊥, and

v1 + w1 = v2 + v2,

then
v1 − v2 = w2 − w1 ∈ E ∩ E⊥

and therefore, v1 = v2 and w1 = w2

▶ If follows that E ⊕ E⊥ is a subspace of V
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Orthogonal Decomposition

▶ For each v ∈ E ⊕ E , there exist unique v1 ∈ E and v2 ∈ E⊥

such that
v = v1 + v2

▶ Define the orthogonal projection maps

PE : E ⊕ E⊥ → E

v 7→ v1

and

P⊥
E : E ⊕ E⊥ → E⊥

v 7→ v2
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Orthogonal Projection Maps

▶ PE ,P
⊥
E are linear maps

▶ PE : E ⊕ E⊥ → E is projection onto E :

∀v ∈ E , PE (v) = v

▶ P⊥
E : E ⊕ E⊥ → E⊥ is projection onto E⊥:

∀v ∈ E⊥, P⊥
E (v) = v

▶ Orthogonal decomposition: For any v ∈ E ⊕ E⊥,

PE (v) ∈ E

P⊥
E (v) ∈ E⊥

v = PE (v) + P⊥
E (v)
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Orthogonal Projection Minimizes Distance to a
Subspace

▶ Observe that v − PE (v) = P⊥
E (v) ∈ E⊥

▶ Fact: For each v ∈ E ⊕ E⊥ and w ∈ E ,

|v − PE (v)| ≤ |v − w |

and equality holds if and only if w = PE (v)
▶ Proof: Let v = v1 + v2, where

v1 = PE (v) ∈ E and v2 = v − PE (v) ∈ E⊥

▶ Then for any w ∈ E ,

|v − w |2 = |v − PE (v) + PE (v)− w |2

= (v2 + (v1 − w), v2 + (v1 − w))

= (v2, v2) + 2(v1 − w , v2) + (v1 − w , v1 − w)

≥ |v − PE (v)|2

and equality holds if and only if

|v1 − w , v1 − w |2 = (v1 − w , v1 − w) = 0
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