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Dot Product on R”

» Recall that the dot product of

Inner Product vi w

Spaces

is defined to be

vow=vinl+. o v =viw=uwTv

» The norm or magnitude of v € R” is defined to be
vl =lv][=vv-v
» If v and w are nonzero and the angle at 0 from v to w is 8, then

V- -w
cosf =

|v[|wl
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Properties of Dot Product

» The dot product is bilinear because for any a, b € R and
Inner Product u,v,w e Rn’

Spaces

(au+bv) -w=a(u-w)+ b(v-w)
u-(av+bw)=a(u-v)+b(u-w)

» It is symmetric, because for any v, w € R”,
V-W=Ww-Vv
> |t is positive definite, because for any v € R”,
v-v>0
and

v-v>0 <= v#0
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Inner Product on Real Vector Space

» Let V be an n-dimensional real vector space
» Consider a function
Inner Product o V X V — R

Spaces

» |t is bilinear if for any a,b € R and u,v,w € R”",
alau + bv,w) = aa(u, w) + ba(v, w)
a(u,av + bw) = ac(u, v) + ba(u, w)
» |t is symmetric if for any v, w € R",
a(v,w) = a(w,v)
» It is positive definite if for any v € R”,
a(v,v) >0

and
alv,v) >0 <= v#0
» Any positive definite symmetric bilinear function on a real vector

space V is called an inner product
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Hermitian Inner Product on C”

» Recall that if z=x+ iy € C, then

- - = 2 2
Inner Product z=X I-y and Zz=zz=X + y
Spaces

» If Ais a complex matrix, its Hermitian adjoint is defined to be

A = AT
» The Hermitian inner product on C" of
v! wl
v=1|:i|,w=]:|eC"
v’ w"

is defined to be

(v,w)=vwr+  vW" =viw=w"v=w"veC,
» The norm of v € C" is defined to be
vl =vll=+v(v,v)

» No geometric interpretation of the Hermitian inner product
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Not a Real Inner Product

Inner Product » Not bilinear, because if c € C,

Spaces

(v,ew) = ¢(v, w)

» Not symmetric, because

(w,v) = (v,w)
» It is positive definite, because for any v € C", (v,v) € R,
(v,v) =vidt - v = VP4 VP >0,

and
(v,v)#0 < v#0
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Properties of Hermitian Inner Product on C”

Inner Product

Spaces » It is a linear function of the first argument, because for any
a,beC, uv,weC

(au+ bv,w) = a(u, w) + b(v, w)

» |t is Hermitian, which means

(V’ W) = (W7 V)
» Therefore, for any a,b € C and u,v,w € C",

(u,av + bw) = a(u, v) + b(a, w)
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Inner Product of a Vector Space Over F

» Assume F is R or C
Inner Product

Spaces » An inner product over a vector space V is a function
(w):VxV-=>TF

with the following properties: For any a,b € F and u,v,w € V,

(au+ bv,w) = a(u, w) + b(v, w)
(w,v) = (v,w)
(v,v) >0
(v,v)#0 < v#0

» If F =R, this is the same definition as before
> If F = C, this is the definition of a Hermitian inner product
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Inner Product
Spaces

Examples

For each v € F", denote v* = v "

The standard inner product on F” is
(v,w) =w"v,

which is the dot product on R" and the standard Hermitian
inner product on C”

An inner product on the space of polynomials of degree n or less
and with coefficients in F is

(o= [ i

An inner product on the space of matrices with n rows and m
columns is

(A,B) =trace(B*A) = > > BlA|,

1<k<m1<j<n

where B* = BT
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Nondegeneracy Property

» Fact: If a vector v € V satisfies the following property:
Yw eV, (v,w) =0,

Inner Product
Spaces

then v =20
P> Proof: Setting w = v, it follows that

(v,v) =0 and therefore v =0
» Corollary: If vi, vp» € V satisfy the property that
Yw e V, (vi,w) = (va, w),
then vi = w»»
» Corollary: If ‘Ly,L; : V — W are linear maps such that
YveV, weW, (Li(v),w) = (La(v), w),
then L1 = L,
» Proof: Given v € V,
Yw e W, (Li(v),w) = (La(v), w),
which implies L1(v) = Lo(v)

» Since this holds for all v € V, it follows that L; = L 1/3



Fundamental Inequalities

» Cauchy-Schwarz inequality: For any v,w € V,

Inner Product

Spver (v, w)| < |v[|w]
and
(v, w)| = |v[|w]
if and only if there exists s € F such that
V = SW or w = sv
» Triangle inequality: For any v,w € V,
v+ w| <|v[+]|w]

and
lv+w| = |v|+|w]
if and only if v =+4w
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Proof When F = R

N » If v =0 or w =0, equality holds
nner Product
Spaces > Let

f(t)=|v—tw]?
=(v—tw,v—tw)

= |v|? = 2t(v, w) + t*|w|?

= (ol = LY e L

wl wl?

» f has a unique minimum when t = tn, where

(Va W) 2 (V’ W)2
tmin = ~———= and f(tmin) = |v|* —
w2 Flimio) [wp?
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Proof of Cauchy-Schwarz (Part 1)

» If v =0 or w =0, equality holds
» If w#0,let f:F— R be the function

Inner Product
Spaces

f(t) =|v—tw]?
= (v —tw,v — tw)
= vI* = t(w, v) — (v, w) + [t’|w]?

» |f f has a minimum at ty € I, then its directional derivative at
to is zero in any direction f

0= % 5=0 f(to + st)
= —t(w, v) — i(v, w) + (tof + Bot)|w|?
= (T — (w, v)) + H(to|w[* — (v, w))
= i(to — (v, w)) + {(to|w[* — (v, w))
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Proof of Cauchy-Schwarz (Part 2)

» In particular, if
b= tow? — (v.w),
we get
[tow[? — (v, w)? =0,
» Therefore, the only critical point of f is

,_(vw)
e

» Since f is always nonnegative, it follows that

2
v, w
0< f(tO) = |V|2 - |( |W|2)|

which implies the Cauchy-Schwarz inequality
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Proof of Cauchy-Schwarz (Part 3)

Inner Product
Spaces

» If w0 and |(v,w)| = |v||w]|, then

(v, w)I?

0= |v|2 — |VV|2

= f(to) = |V — t0W|27

which implies that
v = fyw
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Proof of Triangle Inequality

» The triangle inequality follows easily from Cauchy-Schwarz
inequality

Inner Product
Spaces

v+ w)? =(v+wv+w)
= v+ (vow) + (w, v) + [w|?
< VP (v, W)+ [(w, V)| + [wf?
< V2 + 2]]|w| + |w]
= (v +[w])?
» If [v+ w| = |v|+ |w]|, then
(v, w)| = |(v,w)| = [v]lw],
which implies v = tw and therefore
[t + 12w = [w + w> = [tw] + [wf? = (|t + 1)[w],

which implies that t = £, i.e., t € R
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Polarization ldentities

Inner Product
Spaces

» On R"
1 2 2
(vow) = 2 (v +wl" = v —wf)

» On C"

(v,w) = %(|v+ w2 +ilv 4+ iw)? = v — w|* = i|v — iw]?)

18/33



Norm Defined by Inner Product

» The normof v € V,
Inner Product
Spaces |V| = (V7 V)

satisfies the following properties for any s € F, v,w € V

|sv] = |s||v| (Homogeneity)
[v| >0 (Nonnegativity)
lv|=0 <= v=0 (Nondegeneracy)
v+ w| <|v|+ |w]| (Triangle inequality)

» Homogeneity and the triangle inequality imply convexity: For
any 0<t<landv,weV,

(1 —t)v + tw| < (1 —t)|v|+ t|w]
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Norm

Inner Product
Spaces

» A norm on a vector space V over I is a function
g:V =R,

that satisfies for any s € F and v,w € V,

|sv] = |s||v| (Homogeneity)
[v| >0 (Nonnegativity)
[v|]=0 <= v=0 (Nondegeneracy)
v+ w| <|v|+|w]| (Triangle inequality)
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Inner Product
Spaces

Examples of Norms

> Given 1 < p < o0, the £, norm of v € F" is defined to be
VIp = (IVHP -+ [v7]P) /P

» The /5, norm of v € F" is defined to be

IV]so = max(|vY],..., |v"])

= pll>moo vlp

» The L, norm of a continuous function f : [0,1] — C is defined

to be
x=1 1/p
Il = ([ 1reap o)

» The L, norm of a continuous function f : [0,1] — C is defined
to be

[le = supflF()] 5 0= x <1} = fim [£]],
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Parallelogram ldentity

Inner Product
Spaces

» A norm |- | on a vector space V satisfies the parallelogram
identity

v+ w2+ |v—wf =2(v]? +|w?), Vv,we V
if and only if there is an inner product on V such that

V> = (v.v)

22/33



Orthogonality For Standard Dot Product on R”

Inner Product
Spaces

» The following are synonyms: orthogonal, perpendicular, normal
» On R",

» Two vectors vi, v» are called orthogonal if

ViV = 0
» A basis (vi,..., vs) is called orthonormal if for any 1 <j,j < n,
1 ifi=j
Vi v =0 = S
0 ifi#j
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Orthogonality on an Inner Product Space

Inner Product
Spaces >

Let V be an n-dimensional vector space over F with inner
product (-,-)
» Two vectors vy, v» are orthogonal if

(vi,») =0
» Vectors v, ..., vk are mutually orthogonal if for every
1<i<j<k,
(vi,vj) #0

» Mutually orthogonal vectors must all be nonzero

» A set of muturally orthogonal vectors is called an orthogonal
set
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Linear Independence of Orthogonal Set

» An orthogonal set is linearly independent, because if

1 k
Inner Product a v +-.--4+a Vi = 0’

Spaces

then for any 1 < j < k,
0=(v;,a'vy + -+ aw) = 2(v;, v)

Since v; # 0, (v}, v;) # 0 and therefore & =0
> If
v:alvl—l—-n—i—akvk,

then for each 1 < j < k,

S vy
|vjl
and
L (v,v1)+”.+(v,vk)
v vl

» Any orthogonal set of n vectors is a basis
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Inner Product
Spaces

Orthonormal Set and Basis

» {v1,...,vw} C Vis called an orthonormal set if for any

1<i,j<k,
(v, vi) = 0
If F = C, such a set is also called a unitary set
An orthonormal set of n elements is called an orthonormal or
unitary basis
Any orthogonal set {vi,..., v} can be turned into an

orthonormal set,
Vi Vi

{|V17m’ Vi
An orthormal or unitary basis is an orthonormal set with n
elements,
E=(e,...,en)CV
If v=ale; +---+ a"e,, then
a=(v,¢)

le.,
v=(v,e)er + -+ (v,e))en
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Example: Finite Fourier Decomposition (Part 1)

» For each —N < k < N, consider
Inner Product
Spaces

vk 1 [0,27] - C
6 s e™?
> Let
V:{a_NVN-l—-'-—i-aO—i—---—i—anN : (al,...7aN)€C2N+1}.

» Vs a (2N + 1)-dimensional complex vector space

» Consider the inner product

()= | Tﬁ(e)fz(e)de
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Finite Fourier Decomposition (Part 2)

» If j # k, then

0=2m

\Snpnaecrez’roduct (VJ7 Vk) — / ei(j—k)@ do
0=0
itk o=2m
i(j— k) 0=0
=0
60=2m
(Vk, Vk) = / 1d6
6=0
=27
» Therefore, (v_p,...,vy) is an orthogonal basis, and
(u—n,...,un), where
Vi
Uy = , =N < k<N,
, Vor

is an orthonormal basis
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Finite Fourier Decomposition (Part 3)

Inner Product

Spaces » Given any f : C°([0, 27]), let

(@) =a Nu_n+--+a"up,

where
9271' i
ak = (f,u e ¥ dp
= (F, ) \/277 /9
» When is fy is a good approximation to 7
» When is .

f= Z akuk?

k=—o0
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Orthogonal Complement

» Let V be a real vector space with inner product (-, -)
» Given a subspace E C V, define its orthogonal complement to
be the subspace

Et={veV : VecE (v,e)=0}
» ENEL = {0}, because if
ve ENEL,

Inner Product
Spaces

then
lv[* = (v,v) =0,

> Ifvi,wm € E, wi,wr € EL, and
vi+w = v+ v,
then
V1—V2:W2—W16EﬁEL

and therefore, vi = v and wy = wp
> If follows that E @ E~ is a subspace of V
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Orthogonal Decomposition

Imer Product » For each v € E @& E, there exist unique v; € E and v, € E*+
paces
such that
v=vi+w

» Define the orthogonal projection maps

Pe:E®ELt - E

V= v
and

Pz :E®E" — E*

V = Vo
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Orthogonal Projection Maps

> Pg, PE are linear maps
» Pc: E@ E' — E is projection onto E:

Inner Product
Spaces

YweE, Pe(v)=v

> PE:E®EL — Et is projection onto E*L:

Vv e EL, PE(v)=v

» Orthogonal decomposition: For any v € E @ E*,

Pe(v)
(v

v

mm

PE(V) + Pg(v)
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Orthogonal Projection Minimizes Distance to a
Subspace

» Observe that v — Pg(v) = PZ(v) € E+
» Fact: Foreachve E® EL and w € E,

Inner Product
Spaces lv— Pe(v)| < |v—wl|
and equality holds if and only if w = Pg(v)
» Proof: Let v = v; + v», where
vi = Pe(v) € Eand vy = v — Pg(v) € E*
» Then for any w € E,
v —w|* = |v— Pe(v) + Pe(v) — w|®
=(va+(vi —w),va+ (vi — w))
=(v2,va) +2(vi —w,va) + (vi — w, vy — w)
> v — Pe(v)?
and equality holds if and only if
vi—w,vi —w|>=(vi —w,v; —w) =0
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