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Orthogonal Projection Using an Orthonormal Set
(Part 1)

» Let (u1,...,ux) be an orthonormal basis of a subspace E C V
» For any v € E, there exist a,...,a* € F such that

v:alul—i—---—l—akuk
» Since, for each 1 < j < k,
(v,u) = (atuy + -+ a*up, 1) = &,
it follows that

v=(v,u)u + -+ (v, ug)ug
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Orthogonal Projection Using an Orthonormal Set
(Part 2)

» Consider the map g : V — E given by
we(v) = (v,ur)ur + - + (v, uk) ug
» Foranyve Vand 1< <k,
(v —me(v),ux) = (v,ux) — (v,u ) =0

and therefore
v—mg(v) € EL

» Therefore, if for any v,
wé‘(v) =v —7g(v),

then
v = me(v) + T (v)

» |t follows that, if E has an orthonormal basis, then
EaEt=V
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Constructing an Orthonormal Basis of V' (Part 1)

v

Let E be a k-dimensional subspace of V, with kK > 1
Let (v4,...,vx) be a basis of E
Foreach 1 <j <k, let

vy

Ej = span(vi,...,V))

v

We can construct an orthonormal set that spans E by induction

> Let "
uy = ma

v

Then {u1} is an orthonormal basis of E;

5/26



Constructing an Orthonormal Basis (Part 2)

> Assume that j < k and that (u1, ..., u;) is an orthonormal basis
of E; C E
> Let
Viy1 = 7TEJ.(VJ‘+1) + Wé(\/j+1)a
where
mE (V1) = (1, t)un + - + (Vg1 1)y € E
7 (vir1) = vir1 — 7 (vin) € B

» Since vj1 ¢ Ej and mg(vj41) € E, it follows that

7 (vi+1) # 0

> Let N
Ujt1 = 7ﬂi(vj+1)
17 (vjs1)]
> Since uj41 € EJ-J‘, (ujp1,ui) =0forall 1 <j<j
» Therefore, (u1, ..., ujt1) is an orthonormal basis of Ej 4
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Gram-Schmidt Construction of Orthonormal Basis

» let (v1,...,V,) be a basis of an inner product space V
» There exists an orthonormal basis (u1, ..., u,) such that for each
1< k<n,
span(uy, ..., ux) =span(vy, ..., vk)
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Unitary Set

> Let V be a complex vector space
> Aset {e,...,e} is called unitary if
(eiaej) = 6lja1 < I7J < k
> If v=ale; + -+ a¥e, then for each 1 < j < k,
_ (5l k
(v,g)) =(a"er+ -+ a“ex, ¢)
= a'(er, ) + - + a*(ex. g)
» |t follows that a unitary set is linearly independent
> If ale; + -+ a“ex = 0, then for each 1 < j < k,
d=(aler+-- +a,g)=0
» If dim V = n, then a unitary set with n elements is a unitary

basis
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Gram-Schmidt

v

Lemma. Any (possibly empty) unitary set can be extended to a
unitary basis

Suppose S = {ey,..., e} is a unitary set, where k < dim V

The span of S is not all of V' and therefore there is a nonzero
vector v € V such that v ¢ S

Let vV =v — (V, 61)61 — e — (V, ek)ek
U # 0, because v ¢ the span of S
v is orthogonal to S, because for each 1 < j < k,

(0.¢) = (v—(v,er)er —--- = (v,&)ex, ) = (v, ) — (v, ) =0
If

v
€k+1 = T
(4]

then ||ext1]| =1 and (exy1,6) =0 foreach 1 <j < k
Therefore, {e1,...,ex+1} is a unitary set
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Adjoints of Linear Maps and Matrices (Part 1)

» lLet V, W be inner product spaces and L: V — W be a linear
map

» The (Hermitian) adjoint of L is defined to be the map
L*: W — V such that forany ve V and w € W,

(L(v), w) = (v, L*(w))

> If M is an m-by-n matrix, its (Hermitian) adjoint is defined to
be the n-by-m matrix

M =M
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Adjoints of Linear Maps and Matrices (Part 2)

> Let
E = [el e,,]

be a unitary basis of V and
F=[f ... f

be a unitary basis of W
» lLet L:V — W be a linear map and M be the matrix such that

LE = FM,

» Let L*: W* — V* be the adjoint of L and N be the matrix such
that
L*F = EN
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Adjoints of Linear Maps and Matrices (Part 3)

» For any vectors
v=ea + - +ead" =Eaand w=fb' +-- -+ f,b™ = Fb,
we get

(L(v),w)) = (LEa, Fb)

(

(FMa, Fb)
(f,MP4, £,b7)
(

1

fopr fa)MP 2 b
pgMP 2 B9

(S

M:

>

Jj=1p

Mf’af bP
1

12/26



Adjoints of Linear Maps and Matrices (Part 4)

» On the other hand,
(v, L*(w)) = (Ea, L*(Fb))
(Ea, END)
= (ejaj, ekNI,J(bp)
= (Ej, ek)ajl\_l;‘Ep
= dja Ny bP
-3 W
j=1 p=1
» Since (L(v),w) = (v,L*(w)) forallve Vand we W, it
follows that _ ' _
N = Mf, e, M, = Mf,
or equivalently,
N = M*
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Adjoints of Linear Maps and Matrices (Part 5)

» If E is a unitary basis of V' and F is a unitary basis of W,
L:V — W is a linear map, and M is a matrix that satisfies

L(E) = FM,

then
L*(F) = EM*
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Basic Properties of Adjoint Map

> If L,L,Ly: V — W are linear maps and ¢ € F, then

(L1 + L) =

(cL)” =
(LioLp)" =
(L) =
(w,L(v)) =

*

L7+ L5

cL*

=L3ol]

L
(L

(W), v)
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Fundamental Subspaces of Adjoint Map

» let L:V — W be a map between inner produt spaces

» Then
ker(L*) = (image(L))*
ker(L) = (image(L*))*
image(L) = (ker(L*))*
image(L*) = (ker(L))*
»> That

> For any subspace S, (S*)* =S
» For any linear map A, (A*)* = A

imply that (2),(3),(4) follow directly from (1)
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Proof that ker(L*) = (image(L))*

w € ker(L*) < L*(w)=0
— VeV, (v,[*(w))=0
— VveV, (L(v),w)=0
— w e (image(L))*
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Geometric Description of a Linear Map and its
Adjoint
» Recall that if E is a subspace of V/, then
V=E@E"*

» Therefore,
V = (ker(L)) @ (ker(L))*

> It is easy to show that the restriction of L to (ker(L))=,
L : (ker(L))* — image(L)
is bijective
> Equivalently, by (4),
L :image(L*) — image(L)
is bijective
» Therefore,
rank(L) = dim(image(L)) = dim(image(L")) = rank(L")

18/26



Isometries

» A map (not assumed to be linear) L: V — W, where V and W
are normed vector spaces, is an isometry if for any v € V,

IL(V)[ = Iv]

» Theorem: If V and W are inner product spacesand L: V — W
is an isometry, then L is linear and satisfies for any vy, v, € V,

(L(v1), L(v2)) = (v1, v2)

» Lemma: L:V — W is an isometry if and only if L* o L = Iy,
i.e., L* is a left inverse of L
» In particular, if L(v) =0, then

v=L*(L(v))=0

and therefore, ker(L) = {0}
» It follows that if L : V — W is an isometry, then

dim(V) < dim(W)

19/26



Basic Properties of Isometries

» If L:V — W is an isometry and (v1,...,Vv,) is an unitary basis
of V, then (L(v1),...,L(v,)) is an unitary set in W

> If L, : V— W and L, : W — X are unitary, then so is
lrol;: V= X
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Unitary Transformation

» If W =V, then an isometry L : V — V is called a unitary
transformation

» If V is an inner product space, a linear transformation
L:V — V is unitary, if for any v,w € V, if any of the
following equivalent statements hold:

(L(v), L(w)) = (v, w)
(L7 L(v), w) = (v, w)
[*olL=1

L is invertible and L™ = L*
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Unitary Matrices

» Let L:V — V be a unitary map
» If (u1,...,u,) is a unitary basis of V and L(uy) = M{;uj, then

MM,

M*M =1
» A matrix M is unitary if MM = MM* = |
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Examples of Unitary Matrices

» An n-by-n matrix is unitary if and only if its columns form a
unitary basis of F”

» A real 2-by-2 matrix is a unitary matrix with positive
determinant if and only if it is of the form

cosf) —sin0
sinf  cos@

» For any 6,0 ¢ R
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More Properties of Unitary Matrices

» Let U be a unitary matrix
> det(U*) = det(U)
> Because det(AT) = det(A) and det(A) = det(A)
> If X\ is an eigenvalue of U, then |A\| =1
> Because if A is an eigenvalue of U with eigenvector v, then

v = [Ov] = [Av] = [Al|v],

which implies [A] =1
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Properties of unitary maps and matrices

» If Ly, Ly are unitary maps, then sois L; o L,

> If My, M, are unitary matrices, then so is My M,
» If L is unitary, then L is invertible and L=! = L* is unitary

> If M is unitary, then M is invertible and M~ = M* is unitary
» The identity map is unitary

» The identity matrix is unitary
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Unitary Group

» Define the unitary group U(V) of a Hermitian vector space V to
be the set of all unitary transformations

» Denote
U(n) = U(C")
using the standard Hermitian inner product on C”

» Both satisfy the properties of an abstract group G

> Any ordered pair (g1, 82) € G X G uniquely determine a third,
denoted g1g> € G

> (Associativity) (g182)g3 = £1(8283)

> (ldentity element) There exists an element e € G such that
ge=eg=gforanyge G

» (Inverse of an element) For each g € G, there exists an element
g leGsuchthatggl=glg=e

» U(n) is an example of a matrix group

» Both U(V) and U(n) are examples of Lie groups
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