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Unitarily Equivalent Matrices

» My, M, € gl(n,TF) are unitarily equivalent if there exists a
unitary matrix U such that

My = UMy U*

» Since U* = U1, unitarily equivalent implies similar



Unitary Equivalence to Diagonal Matrix

Recall: A matrix D is diagonal if and only if the standard basis
vectors are eigenvectors
Given a matrix M, the following are equivalent:
> M is similar to a diagonal matrix D, i.e., there exists an
invertinble matrix S such that M = SDS~!
P There exists a basis of eigenvectors

If this holds, then the columns of S are a basis of eigenvectors
In particular, a matrix M is unitarily equivialent to a diagonal
matrix if and only if there is a unitary basis of eigenvectors
For each 1 < k < n, let f, = U(ex)

For each 1 <j, k < n,

(fi, fi) = (U(g), U(ex)) = (e, &) = djx
Moreover, if De, = Axek, then
Mfk = UDU* Uek = UDek = U()\kek) = )\kUek = >\kfk

Therefore, (fi,...,f,) is a unitary basis of eigenvectors
Converse is even easier



Hermitian Inner Product With Respect To Basis

> Let V be a complex vector space and let (by,...,b,) be a basis
of V
» Any inner product on V is uniquely determined by the matrix A,
where
Ajj = (bi, bj)

» The matrix A satisfies the following properties
» Hermitian:

Aj = (bi, by) = (bj, br) = A;

(In particular, since A; = Aj, it follows that A; € R)
» Positive definite: For any nonzero v = by =BaecV,

0< (v,v) = (dbj,a"bx) = 43" (bj, bx) = a’ A3

» Conversely, given the basis (b, ..., b,) of V, any positive
definite Hermitian matrix A defines an inner product where

(bi, bj) = Aj



Schur Decomposition of a Real Linear Map

» Let V be a finite dimensional real inner product space
» Theorem: Given any linear map L : V — V with only real

eigenvalues, there exists an orthonormal basis £ = (e, ..., €,)
of V such that for each 1 < k < n, L(ex) is a linear combination
of er,..., e,

L(ex) = ek/\/l,f + -+ e,M]
» |n other words, there exists an orthonormal basis E such that
L(E) = EM,

where M is a lower triangular matrix.

» Corollary: Given any real matrix M with only real eigenvalues,
there is an orthogonal matrix O such that the matrix O*MO is
lower triangular
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Schur Decomposition of a Complex Linear Map

» Theorem:

P> Let V be an n-dimensional Hermitian vector space over F
> Let L:V — V be a linear map with n eigenvalues in F,
counting multiplicity

Then there exists a unitary basis U = (us, ..., u,) of V such
that for each 1 < k < n, L(uy) is a linear combination of
ur,..., Uk,

L(ug) = uxMF + -+ u, M}
» In other words, there exists a unitary basis U such that
L(U) = UM,

where M is a lower triangular matrix

» Corollary: Given any complex matrix M, there is a unitary
matrix U such that the matrix U* MU is triangular

~



Proof (Part 1)

vvyvyy

Proof by induction
Theorem holds when dimV =1
Suppose theorem holds when dimV =n—1
Consider a linear map L : V — V/, where dim V = n with
eigenvalues A1,..., A\,
Let u, be a unit eigenvector for the eigenvalue A, i.e.,
llun|l =1 and L(u,) = Apun
Let
ub={veV : (v,u,) =0}
Recall that the orthogonal projection maps onto [u, and u;-
respectively are
7wV = [un]
v (v, uy)up
V= ut

Vi v — up(v, up,)



Proof (Part 2)

» If (v1,...,V,_1) is a basis of u-, then (vq,..., v, 1,u,) is a
basis of V
> Let M be the matrix such that for 1 < k < n—1,

L(v ) = viMj + -+ v,,,lM,'(’*1 + u, M}
and

L(u,) = vll\/l,% + -+ v,,_ll\/l,’,’f1 + u,M;
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Proof (Part 3)

» Since L(uy) = Apun,

M:=...=M""t=0and M7=\,
and therefore M is of the form
M Mi_y | M;
M = :
M May | Myt
0 | Mmn
> Let
Mi_,
M = :
Mp~3

» |t follows that

o~

pr(x) = det(L — xI) = det(M — x| = det(M — xI)(M] — x)

» In particular, the eigenvalues of M are eigenvalues of M
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Proof (Part 4)

» Let L1 : uf — u be the linear transformation given by
LHv) =7 (Ll (V)

» By assumption, L+ has a Schur decomposition, i.e., a unitary
basis u1,...,u,—1 and a lower triangular matrix M such that for
each1 < k<n-1,

LJ'(Uk) = Uk/\//\,/f —+ -4 Unfll\ﬁ;(771
and therefore
L(uk) = ukl\//\l,f 4+ un,ll\7l,’(’71 + u, M|

> Also,
L(un) = Apup

» Therefore,
Lluk) = M,’:uk +o M"Y, + MZu,, 1<k <n,

where M| = ),
» This proves the theorem o



