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Unitarily Equivalent Matrices

◮ M1,M2 ∈ gl(n,F) are unitarily equivalent if there exists a
unitary matrix U such that

M2 = UM1U
∗

◮ Since U∗ = U−1, unitarily equivalent implies similar
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Unitary Equivalence to Diagonal Matrix

◮ Recall: A matrix D is diagonal if and only if the standard basis
vectors are eigenvectors

◮ Given a matrix M, the following are equivalent:
◮ M is similar to a diagonal matrix D, i.e., there exists an

invertinble matrix S such that M = SDS−1

◮ There exists a basis of eigenvectors
◮ If this holds, then the columns of S are a basis of eigenvectors
◮ In particular, a matrix M is unitarily equivialent to a diagonal

matrix if and only if there is a unitary basis of eigenvectors
◮ For each 1 ≤ k ≤ n, let fk = U(ek)
◮ For each 1 ≤ j , k ≤ n,

(fj , fk) = (U(ej),U(ek)) = (ej , ek) = δjk

◮ Moreover, if Dek = λkek , then

Mfk = UDU∗Uek = UDek = U(λkek) = λkUek = λk fk

◮ Therefore, (f1, . . . , fn) is a unitary basis of eigenvectors
◮ Converse is even easier
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Hermitian Inner Product With Respect To Basis

◮ Let V be a complex vector space and let (b1, . . . , bn) be a basis
of V

◮ Any inner product on V is uniquely determined by the matrix A,
where

Aij = (bi , bj)

◮ The matrix A satisfies the following properties
◮ Hermitian:

Aij = (bi , bj) = (bj , bi ) = Āji

(In particular, since Aii = Āii , it follows that Aii ∈ R)
◮ Positive definite: For any nonzero v = akbk = Ba ∈ V ,

0 < (v , v) = (ajbj , a
kbk) = aj āk(bj , bk) = aTAā

◮ Conversely, given the basis (b1, . . . , bn) of V , any positive
definite Hermitian matrix A defines an inner product where

(bi , bj) = Aij
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Schur Decomposition of a Real Linear Map

◮ Let V be a finite dimensional real inner product space

◮ Theorem: Given any linear map L : V → V with only real
eigenvalues, there exists an orthonormal basis E = (e1, . . . , en)
of V such that for each 1 ≤ k ≤ n, L(ek) is a linear combination
of e1, . . . , ek ,

L(ek) = ekM
k
k + · · ·+ enM

n
k

◮ In other words, there exists an orthonormal basis E such that

L(E ) = EM,

where M is a lower triangular matrix.

◮ Corollary: Given any real matrix M with only real eigenvalues,
there is an orthogonal matrix O such that the matrix OtMO is
lower triangular
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Schur Decomposition of a Complex Linear Map

◮ Theorem:
◮ Let V be an n-dimensional Hermitian vector space over F
◮ Let L : V → V be a linear map with n eigenvalues in F,

counting multiplicity

Then there exists a unitary basis U = (u1, . . . , un) of V such
that for each 1 ≤ k ≤ n, L(uk) is a linear combination of
u1, . . . , uk ,

L(uk) = ukM
k
k + · · ·+ unM

n
k

◮ In other words, there exists a unitary basis U such that

L(U) = UM,

where M is a lower triangular matrix

◮ Corollary: Given any complex matrix M, there is a unitary
matrix U such that the matrix U∗MU is triangular
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Proof (Part 1)

◮ Proof by induction
◮ Theorem holds when dimV = 1
◮ Suppose theorem holds when dimV = n − 1
◮ Consider a linear map L : V → V , where dimV = n with

eigenvalues λ1, . . . ,λn

◮ Let un be a unit eigenvector for the eigenvalue λn, i.e.,

󰀂un󰀂 = 1 and L(un) = λnun

◮ Let
u⊥n = {v ∈ V : (v , un) = 0}

◮ Recall that the orthogonal projection maps onto [un and u⊥n
respectively are

π : V → [un]

v 󰀁→ (v , un)un

π⊥ : V → u⊥n
v 󰀁→ v − un(v , un)
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Proof (Part 2)

◮ If (v1, . . . , vn−1) is a basis of u⊥n , then (v1, . . . , vn−1, un) is a
basis of V

◮ Let M be the matrix such that for 1 ≤ k ≤ n − 1,

L(vk) = v1M
1
k + · · ·+ vn−1M

n−1
k + unM

n
k

and

L(un) = v1M
1
n + · · ·+ vn−1M

n−1
n + unM

n
n
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Proof (Part 3)

◮ Since L(un) = λnun,

M1
n = · · · = Mn−1

n = 0 and Mn
n = λn

and therefore M is of the form

M =

󰀵

󰀹󰀹󰀹󰀷

M1
1 · · · M1

n−1 M1
n

...
...

...
Mn−1

1 · · · Mn−1
n−1 Mn−1

n

0 · · · 0 Mn
n

󰀶

󰀺󰀺󰀺󰀸

◮ Let

󰁥M =

󰀵

󰀹󰀷
M1

1 · · · M1
n−1

...
...

Mn−1
1 · · · Mn−1

n−1

󰀶

󰀺󰀸

◮ It follows that

pL(x) = det(L− xI ) = det(M − xI = det( 󰁥M − xI )(Mn
n − x)

◮ In particular, the eigenvalues of 󰁥M are eigenvalues of M
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Proof (Part 4)

◮ Let L⊥ : u⊥n → u⊥n be the linear transformation given by

L⊥(v) = π⊥
󰀓
L|u⊥

n
(v)

󰀔

◮ By assumption, L⊥ has a Schur decomposition, i.e., a unitary
basis u1, . . . , un−1 and a lower triangular matrix 󰁥M such that for
each 1 ≤ k ≤ n − 1,

L⊥(uk) = uk 󰁥Mk
k + · · ·+ un−1

󰁥Mn−1
k

and therefore

L(uk) = uk 󰁥Mk
k + · · ·+ un−1

󰁥Mn−1
k + unM

n
k

◮ Also,
L(un) = λnun

◮ Therefore,

L(uk) = Mk
k uk + · · ·+Mku

n−1un−1 +Mn
k un, 1 ≤ k ≤ n,

where Mn
n = λn

◮ This proves the theorem
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