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System of Linear Equations

▶ Consider a system of n equations with m unknowns,

a11x
1 + · · ·+ a1mx

m = y1

...
...

an1x
1 + · · ·+ anmx

m = yn

▶ Usually, there is no solution
▶ And, even if there is a solution, it is usually not unique
▶ Basic examples

▶ 1 equation in 1 unknown

3x = 1

▶ 1 equation in 2 unknowns

x + y = 1

▶ 2 equations in 2 unknowns

x + y = 1

x + y = 2
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Matrix Equation

▶ Given A ∈ Mn×m(C) and y ∈ Cn, we want to solve for x ∈ Cm

such that
Ax = y

▶ The matrix A defines a map A : Cm → Cn

▶ There is a solution if and only if y ∈ imageA

▶ If a solution exists, then it is unique if and only if kerA = {0}
▶ It is possible that y /∈ imageA, because A and y are from

inexact measurements

▶ Instead, we look for best possible approximation
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Quasi-Solution with Least Error

▶ Given x ∈ Cm, define the error to be

ϵ = L(x)− y ∈ Cn

▶ Goal: Solve for x that minimizes the magnitude of the error, ∥ϵ∥
▶ An x ∈ X that minimizes ∥ϵ∥ is called a quasi-solution

▶ If y ∈ image L, then a quasi-solution is a solution

▶ A quasi-solution need not be unique
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Geometric Perspective

y

imageA

0

y − Ax

Ax

kerA∗

▶ If Ax is closest to y , then
▶ y − Ax is orthogonal to imageA

▶ Recall that (imageA)⊥ = kerA∗

▶ Therefore, A is closest to y if

A∗(y − Ax)) = 0

or, equivalently,
A∗Ax = A∗y
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Example

▶ Consider the system of equations

x + y + z = 3

x + y = 3

z = 3

▶ Equivalently, 1 1 1
1 1 0
0 0 1

xy
z

 =

33
3


▶ There is no solution
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Quasi-Solution

▶ Let

A =

1 1 1
1 1 0
0 0 1


▶ (x , y , z) is a quasi-solution if

A∗A

xy
z

 = A∗

33
3


=⇒

1 1 0
1 1 0
1 0 1

1 1 1
1 1 0
0 0 1

xy
z

 =

1 1 0
1 1 0
1 0 1

33
3


=⇒

2 2 1
2 2 1
1 1 2

xy
z

 =

66
6


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Quasi-Solution Via Row Reduction

▶ (x , y , z) is a quasi-solution if2 2 1
2 2 1
1 1 2

xy
z

 =

66
6


=⇒

1 1 2
0 0 3
0 0 0

xy
z

 =

66
0


=⇒

1 1 0
0 0 1
0 0 0

xy
z

 =

22
0


=⇒ x + y = 2

z = 2
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Quasi-Solution Error

▶  x
2− x
2

 is a quasi-solution to

1 1 1
1 1 0
0 0 1

xy
z

 =

33
3


▶ The error of the quasi-solution

ϵ =

1 1 1
1 1 0
0 0 1

 x
2− x
2

−

33
3

 =

42
2

−

33
3

 =

 1
−1
−1


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Error Comparison

▶ The error for any other (x , y , z) is

ϵ =

1 1 1
1 1 0
0 0 1

xy
z

−

33
3


=

x + y + z − 3
x + y − 3
z − 3


=

 1
−1
−1

+

x + y + z − 4
x + y − 2
z − 2


▶ The error magnitude squared is

ϵ2 =

∥∥∥∥∥∥
 1
−1
−1

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
x + y + z − 4

x + y − 2
z − 2

∥∥∥∥∥∥
2

≥

∥∥∥∥∥∥
 1
−1
−1

∥∥∥∥∥∥
2
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Quasi-Solutions of L(x) = y

▶ L(x) is closest to y if

L∗L(x) = L∗(y)

▶ For any y ∈ Y , there is always a quasi-solution x , because

image(L∗L) = image L∗

▶ Recall that ker(L∗L) = ker L
▶ Therefore, since L∗L is self-adjoint,

image(L∗L) = (ker L∗L)⊥ = (ker L)⊥ = image L∗

▶ If v ∈ ker L∗L = ker L, then x + v is also a solution
▶ The quasi-solution is unique only if ker L = {0}

▶ Because the domain and range of L∗L have the same dimension
▶ If dimX > dimY , this is not possible, because

dim ker L = dimX − dim(image L) ≥ dimX − dimY > 0
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Error Comparison

▶ A quasi-solution of the equation L(x) = y satisfies

L∗L(x) = L∗(y)

and therefore L∗(L(x)− y) = 0
▶ The error of the quasi-solution x is

ϵ = L(x)− y

▶ The error of any x ′ ∈ X is

ϵ′ = L(x ′)− y = L(x ′ − x) + L(x)− y = L(x ′ − x) + ϵ

▶ On the other hand,

(L(x ′ − x), ϵ) = (x ′ − x , L∗(ϵ))

= (x ′ − x , L∗L(x)− L∗(y))

= 0

▶ Therefore, ∥ϵ′∥2 = ∥ϵ∥2 + ∥L(x ′ − x)∥2
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Quasi-Solution when L∗L : X → X is Invertible

▶ If x is a quasi-solution, then

L∗L(x) = L∗(y)

▶ If the map L∗L : X → X is invertible, then the unique
quasi-solution is

x = (L∗L)−1L∗(y)
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Solution with Minimal Magnitude

▶ Suppose x ∈ X is a solution (not just a quasi-solution) of

Ax = y

▶ If v ∈ kerA, then x + v is also a solution,

A(x + v) = y

▶ There is a unique solution x with minimal magnitude
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Minimal Magnitude Solution Via Orthogonal
Projection

▶ For any x ′ ∈ X , there is a unique way to decompose x ′ into a
sum

x ′ = x + (x ′ − x),

where x ∈ (kerA)⊥ and x − x ′ ∈ kerA

▶ If x ′ is a solution to
Ax ′ = y ,

then
Ax = A(x − x ′) + Ax ′ = y

▶ If x1, x2 ∈ (kerA)⊥ are both solutions, then

x1 − x2 ∈ (kerA)⊥ and x1 − x2 ∈ kerA,

because
A(x1 − x2) = Ax1 − Ax2 = y − y = 0

Therefore, x1 − x2 = 0
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Quasi-Solution with Minimal Magnitude

▶ A quasi-solution to
Ax = y

is a solution of
A∗Ax = A∗y

▶ There is a unique quasi-solution x ∈ (kerA∗A)⊥ = (kerA)⊥
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Example

▶ The quasi-solutions of the equation1 1 1
1 1 0
0 0 1

xy
z

 =

33
3


are  x

2− x
2

 , x ∈ C

▶ The magnitude squared of each quasi-solution is∥∥∥∥∥∥
 x
2− x
2

∥∥∥∥∥∥
2

= x2 + (2− x)2 + 4 = 2((x − 1)2 + 3)

▶ The magnitude is minimized when x = 1 and therefore the
Moore-Penrose quasi-solution is (1, 1, 2)
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Moore-Penrose Quasi-Inverse Operator

▶ Let X and Y be inner product spaces and L : X → Y be a linear
map

▶ There is a map L+ : Y → X such that for any y ∈ Y ,
x = L+(y) is the unique quasi-solution with minimal magnitude
of the equation

L(x) = y

▶ The map L+ is called the Moore-Penrose quasi-inverse of L
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Moore-Penrose Quasi-Inverse Operator

▶ The map
L|(ker L)⊥ : (ker L)⊥ → image L

is an isomorphism.

▶ Let

π : Y → image L

be orthogonal projection

▶ The Moore-Penrose quasi-inverse operator is the map

L+ : Y → X ,

given by

L+(y) =
(
L|(ker L)⊥

)−1

(π(y)) ∈ (ker L)⊥ ⊂ X
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Quasi-Inverse of Diagonal Matrix

▶ Let Σ : Rm → Rm be the diagonal matrix such that for each
1 ≤ k ≤ m,

Σ(ϵk) =

{
skϵk if 1 ≤ k ≤ r

0 if r + 1 ≤ k ≤ m

▶ Therefore,

Σ(ϵ1v
1 + · · ·+ ϵmv

m) = ϵ1s1v
1 + · · ·+ ϵr srv

r

▶ The quasi-inverse of Σ satisfies the following:

Σ+(ϵ1v
1 + · · ·+ ϵmv

m) = ϵ1s
−1
1 v1 + · · ·+ ϵr srv

r

▶ In particular,

Σ+(Σ(ϵ1v
1 + · · ·+ ϵmv

m)) = Σ+(ϵ1s1v
1 + · · ·+ ϵr srv

r )

= ϵ1v
1 + · · ·+ ϵrv

r

= πr (v),

where πr : Rm → Rm is orthogonal projection onto the subspace
spanned by (ϵ1, . . . , ϵr ) 21 / 39



Quasi-Inverse Via Singular Value Decomposition

▶ Let the singular value decomposition of L : X → Y be

L = WΣV ∗,

▶ For each 1 ≤ k ≤ m, let ek = V (ϵk)

▶ For each 1 ≤ j ≤ n, let fj = W (ϵj)

▶ Then for any x = e1x
1 + · · ·+ emx

m ∈ X ,

L(x) = L(e1x
1 + · · ·+ emx

m) = f1s1x
1 + · · ·+ fr srx

r

▶ Therefore, for any y = f1y
1 + · · ·+ fny

n ∈ Y ,

L+(y) = L+(f1y
1 + · · ·+ fny

n) = e1s
−1
1 y1 + · · ·+ er s

−1
r y r

▶ In other words,
L+ = WΣ+V ∗
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Image of Unit Ball

▶ The closed unit ball centered at the origin in Rn is

B = {x ∈ Rn : x · x ≤ 1}

▶ Consider the image of B under a linear map A : Rn → Rn

▶ If A is diagonal, then

y =


y1

y2

...
yn

 = A


x1

x2

...
xn

 =


r1 0 · · · 0
0 r2 · · · 0
...

...
. . .

...
0 0 · · · rn



x1

x2

...
xn

 =


r1x1

r2x2

...
rnxn


▶ Therefore, y ∈ AB if and only if

1 ≥ (x1)2 + · · ·+ (xn)2 =

(
y1

r1

)2

+ · · ·+
(
yn

rn

)2
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Ellipse

y1

y2

r1

r2

▶ If

y =

[
y1

y2

]
=

[
r1 0
0 r2

] [
x1

x2

]
= Ax

then

x ∈ B ⇐⇒ (y1)2

(r1)2
+

(y2)2

(r2)2
≤ 1
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3-Dimensional Ellipsoid

y3

y1y1 y2y2

(y1)2

(r1)2
+

(y2)2

(r2)2
+

(y3)2

(r3)2
≤ 1
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n-Dimensional Ellipsoid in Rn

▶ Given r1, . . . , rn ̸= 0,

E =

{
(y1, . . . , yn) ∈ Rn :

(y1)2

(r1)2
+ · · ·+ (yn)2

(rn)2
≤ 1

}
is called an n-dimensional ellipsoid

▶ If A is a diagonal matrix with nonzero diagonal entries
r1, . . . , rn, then

AB = E

= {y ∈ Rn : (A−1y ,A−1y) ≤ 1}
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Ellipsoids in Inner Product Space

▶ A subset E of an n-dimensional real inner product space is an
n-dimensional ellipsoid if there is a unitary basis (u1, . . . , un)
and nonzero scalars r1, . . . , rn such that

E =

{
y1u1 + · · ·+ ynun :

(y1)2

(r1)2
+ · · ·+ (yn)2

(rn)2
≤ 1

}
▶ A subset E of an n-dimensional realinner product space is an

k-dimensional ellipsoid if there is a unitary set (u1, . . . , uk) and
nonzero scalars r1, . . . , rk such that

E =

{
y1u1 + · · ·+ ynuk :

(y1)2

(r1)2
+ · · ·+ (yk)2

(rk)2
≤ 1

}
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Unitary Transformation of Ball is Ball

▶ If X and Y are inner product spaces with the same dimension, a
map U : X → Y is a unitary transformation, if, for any v ∈ X ,

(U(x),U(x))Y = (x , x)X

▶ Therefore, if
BX = {x ∈ X : (x , x) = 1},

then
U(BX ) ⊂ BY

▶ On the other hand, if y ∈ BY , then U∗(y)) ∈ BX and
U(U∗(x)) = x , which implies

BY ⊂ U(BX )

▶ It follows that U(BX ) = BY
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Singular Value Decomposition

▶ Let X and Y be real inner product spaces such that
dim(X ) = m and dim(Y ) = n

▶ L : X → Y be a linear transformation

▶ The singular value decomposition of L can be described as
follows:
▶ There exists a unitary basis (e1, . . . , em) of X and a unitary basis

(f1, . . . , fn) of Y such that if r = rank(L), then

L(ek) =

{
sk fk if 1 ≤ k ≤ r

0 if r + 1 ≤ k ≤ m
,

where s1, . . . , sn are the singular values of L
▶ In particular, (e1, . . . , er ) is a unitary basis of (ker(L))⊥ and

(f1, . . . , fr ) is a unitary basis of image(L)
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Linear Transformation of Ball is an Ellipsoid (Part
1)

▶ The unit ball is

B = {x1e1 + · · ·+ xnen : (x1)2 + · · ·+ (xn)2 ≤ 1}

▶ If x ∈ B, then

L(x) = x1L(e1) + · · ·+ xnL(en)

= s1x
1f1 + · · ·+ srx

r fr

= y1f1 + · · ·+ y r fr ,

where

(y1)2

(s1)2
+ · · ·+ (y r )2

(sr )2
= (x1)2 + · · ·+ (x r )2 ≤ 1
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Linear Transformation of Ball is an Ellipsoid (Part
2)

▶ The set

E =

{
y1f1 + · · ·+ y r fr :

(y1)2

(s1)2
+ · · ·+ (yn)2

(sr )2

= (x1)2 + · · ·+ (x r )2 ≤ 1
}
⊂ image(L)

is an r -dimensional ellipsoid in Y such that

L(BX ) ⊂ E
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Linear Transformation of Ball is an Ellipsoid (Part
3)

▶ Conversely, if y = y1f1 + · · ·+ y r fr ∈ E , then

L(x) = y ,

where

x =

(
y1

s1

)
e1 + · · ·+

(
y r

sr

)
en ∈ B

▶ It follows that E ⊂ L(B)

▶ Therefore, E = L(B)
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Operator Norm of Linear Map

▶ Let X and Y be inner product spaces and L : X → Y be a linear
map

▶ The operator norm of L is defined to be

∥L∥ = sup{|L(x)| : x ∈ BX}

▶ Let s1 ≤ s2 ≤ · · · ≤ sr be the singular values of L
▶ For any x = x1e1 + · · ·+ xmem ∈ B,

(L(x), L(x)) = (x1s1f1 + · · ·+ x r sr fr , x
1s1f1 + · · ·+ x r sr fr )

= (s1)
2(x1)2 + · · ·+ (sr )

2(x r )2

≤ (sr )
2((x1)2 + · · ·+ (x r )2)

≤ (sr )
2

▶ Moreover,
(L(er ), L(er )) = (sr fr , sr fr ) = (sr )

2

▶ Therefore, ∥L∥ is equal to the largest singular value of L
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Change of Basis Formula

▶ Let L : X → X be a linear endomorphism (codomain is domain)

▶ Given a basis E (e1, . . . , em) of X , there is a matrix M such that

L(ek) = M j
kej , i .e., L(E ) = EM

▶ If F = (f1, . . . , fm) is another basis such that

fk = Aj
kej , i .e.,F = EA,

then
L(F ) = L(EA) = L(E )A = EMA = FA−1MA
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Trace of a Linear Endomorphism

▶ If L(E ) = EM, then the trace of L is defined to be

trace(L) = M1
1 + · · ·+Mm

m

▶ If L(F ) = EN, then N = A−1MA, i.e.,

N l
k = (A−1)liM

i
jA

j
k

▶ Therefore,

N1
1 + · · ·+ Nm

m = Nk
k

= (A−1)ki M
i
jA

j
k

= Aj
k(A

−1)ki M
i
j

= δjiM
i
j

= M j
j

= M1
1 + · · ·+Mm

m

▶ The definition of trace(L) does not depend on the basis used
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Frobenius Norm of a Linear Transformation

▶ Let X and Y be real inner product spaces

▶ Let L : X → Y be a linear map

▶ Recall that the adjoint of L is the map L∗ : Y → X such that for
any x ∈ X and y ∈ Y ,

(L(x), y) = (x , L∗(y))

▶ The Frobenius norm or Hilbert-Schmidt norm of L is defined
to be ∥L∥2, where

∥L∥22 = trace(L∗L)
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Frobenius Norm With Respect to Basis

▶ Let (e1, . . . , em) be a unitary basis of X and (f1, . . . , fn) be a
unitary basis of Y such that

L(ek) =

{
sk fk if 1 ≤ k ≤ r

0 if r + 1 ≤ k ≤ m,

▶ The adjoint of L is given by

L∗(fk) =

{
skek if 1 ≤ k ≤ r

0 if r + 1 ≤ k ≤ n

▶ Therefore,

L∗L(ek) =

{
s2k ek if 1 ≤ k ≤ r

0 if r + 1 ≤ k ≤ m

▶ It follows that

∥L∥22 = trace(L∗L) = s21 + · · ·+ s2r

▶ Observe that the operator norm is always less than or equal to
the Frobenius norm,

∥L∥ = max(s1, . . . , sr ) ≤
√

s21 + · · ·+ s2r = ∥L∥2
and equality holds if and only if the rank of L is 1

▶ On the other hand,

∥L∥22 = s21 + · · ·+ s2r ≤ r(max(s1, . . . , sr ))
2 = r∥L∥2

, i.e.,
∥L∥2 ≤

√
r∥L∥,

where equality holds if and only if s1 = · · · = sr
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Solving a Linear System with Errors

▶ Let L : X → Y be a linear map between inner product spaces

▶ Suppose that, given y ∈ Y , we want to solve

L(x) = y ,

for x but the exact value of y is not known

▶ If the measured value of y is y +∆y and

x +∆x = L−1(y +∆y),

then
∆x = L−1(∆y)

▶ The relative error of x can ye estimated in terms of the relative
error of y :

|∆x |
|x |

=
|L−1(∆y)|

|y |
|y |
|x |

=
|L−1(∆y)|

|y |
|L(x)|
|x |

≤ ∥L−1∥∥L∥ |∆y |
|y |
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Condition Number of Linear Map

▶ ∥L−1∥∥L∥ is the condition number of the linear map

▶ It shows how sensitive the error in x is to the error in y

▶ A linear map is ill-conditioned if the condition number is large

▶ The condition number can be changed by changing the inner
product
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