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Assignments

Course

Requirements » All homework assignments and exams will be handled using
Gradescope

» Homework
> Every one or two weeks
» Provided as Overleaf project and Gradescope assignment
» Solutions must be typed up using LaTeX
» Submissions uploaded as PDF to Gradescope

» Midterm and Final
> In person
» Format to be determined

» 150 minute written exam
» 30 minute oral exam
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Grading Policy

Course
Requirements

» Course grade

» Homework: 20%
» Midterm: 30%
» Final: 50%
> Tweaks
» Homework and Exams

» Partial credit for correct and relevant logical reasoning

» Full credit for correct and relevant logical reasoning and correct
answer

» No credit for correct answer but incorrect logical reasoning

» Incorrect logic and calculations wil be severely penalized
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Course Information

Course
Requirements

» Web Pages
» My homepage
» Course Homepage
» Course Calendar
> Textbook
» Yisong Yang, A Concise Text on Advanced Linear Algebra,
Cambridge University Press
» PDF available in Ed Discussion Resources
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https://math.nyu.edu/~yangd/index.html
https://math.nyu.edu/~yangd/MA-GY7043Spring2026/index.html
https://math.nyu.edu/~yangd/MA-GY7043Spring2026/MA-GY7043Spring2026Calendar.html
https://edstem.org/us/courses/72129/resources

Functions and Maps

» We will use the following notation when defining a function or
map:

Notation function : domain — codomain

input — output

» When doing calculations and proofs, It is important to keep
track of the domain and codomain of a function

» Given maps F: X = Y and G: W — Z, then F can be
composed with G,

GoF: X—=Z

if and only if Y C W,

» |If you make sure that each input to a function really is an
element of the domain and each output really is treated as an
element of the codomain, you will catch 90% of your errors
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Logical Symbols

Notation

» Y means for each or for any or for all

» 1 means there is at least one or there exists at least one
» ! means there is exactly one or there exists exactly one
>

(assumption) = (conclusion) means

» f (assumption), then (conclusion)
» (assumption) only if (conclusion)
» (conclusion) if (assumption)

» <= means if and only if
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Abstract Vector Space

» Let IF be either the reals (denoted R) or the complex numbers
(denoted C)

» A vector space over [ is a set V with the following:
Abstract Vector

Spaces > An element called the zero vector, denoted 0, Oy, or simply 0
» An operation called vector addition:

VxV-=>V

(V17 V2) = vi+w
» An operation called scalar multiplication:

VXF—V

(vyr)—=rv=vr

such that the following properties hold
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Properties of Vector Addition

> Associativity
(i+w)+vi=vi+(va+ wn)
et Vecter » Commutativity
n+w=wn-+wn
» Identity element:
v+0=v

» Inverse element: For each v € V, there exists an element,
denoted —v, such that

v—&—(—v)zﬁ
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Scalar Multiplication

» Properties
> Associativity
Abstract Vector
Spaces (ﬁfz)vzﬂ(fév)
> Distributivity

(f+h)v=fiv+hHy
f(Vl + V2) = fVl + fVQ

> Identity element
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Consequences

»
Ov=0v+v—v
=0v+1lv—v
Abstract Vector - (0 + 1)V —V
Spaces
=v-—v
=0
| 2
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Valid and Invalid Expressions

» Valid expressions

(vector) + (vector)

Abstract Vector (Scalar) (Scalar)
o (scalar)(vector)
(vector)(scalar)

)

(scalar)(scalar

» Invalid expressions

(vector) + (scalar)
(scalar) 4 (vector)

(vector)(vector)
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Abstract Vector
Spaces

Linear Combination of Vectors

» Given a finite set of vectors vq,..., v, € V and scalars
fl....,f™ the vector

flvi+ -+ My,

is called a linear combination of vy,..., v,

» Given a subset S C V, not necessarily finite, the span of S is
the set of all possible linear combinations of vectors in S

[S]=
{fl'vi4+- +fM, V.. ., f"cFand v,...,vm €S}

» A vector space V is finite dimensional if there is a finite set S

of vectors such that
[S]=V

» In this course vector spaces are assumed to be finite dimensional
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Basis of a Vector Space

> Aset {vi,..., v} C Vis linearly independent if
flvy 4 My =0 = fl=...=f"=0,
> A finite set S = (v1,..., V) C V is called a basis of V if it is
Abstract Vector linearly independent and
Spaces
[S]=V
» For such a basis, if v € V, then there exist a unique set of scalar
coefficients (at,...,a™) such that
vV = akvk

» In other words, the map
F" -V
(Fl  f™ s v+ M,
is bijective
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Dimension of a Vector Space

Abstract Vector

Spaces » Every finite dimensional vector space has a basis
» Any two bases have the same number of elements

» The dimension of a vector space is defined to be the number of
elements in a basis

» The dimension of V is denoted dim V
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Definition of an Abstract Matrix

» An m-by-n abstract matrix M is a table of symbols with m
rows and n columns

» The element in the j-th row and k-th column is labeled
Abstract Matrix
Notation

» Therefore,
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Row and Column Matrices

» A row matrix is a matrix with 1 row,

R=[R - R
Abstract Matrix
Notation

> A column matrix is a matrix with 1 column
Cl

C=|:

Cm
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Product of Row and Column Matrices (Part 1)

> Let R be a row matrix with m columns and C be a column
matrix with m rows,

Cl
R=[Ri -~ Rm| and C=

m
Abstract Matrix C
Notation

» Suppose that for each 1 < k < m, the product

R C
is well defined, e.g.,
Ri,...,Rm, C,...,C"€F (1)
Ri,...,RmeVand C},...,C"€F (2)
Ri,...,RmeFand C},...,.C" eV (3)



Product of Row and Column Matrices (Part 2)

» The matrix product of R and C is defined to be the 1-by-1
matrix

Abstract Matrix

: Cl
Notation
RC=[R - Rul| :|=RC 4 +RnC"
Cm

» If (1) holds, then RC is a scalar-valued 1-by-1 matrix
» If (2) or (3) holds, then RC is a vector-valued 1-by-1 matrix
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Product of Two Matrices

> Let RY,..., R™ denote the rows of an m-by-k matrix
Mo M} R1
M=| =1
Mp M Rm
Abstract Matrix » Let Cy,..., C, denote the columns of a k-by-n matrix
Notation N
N=|: =G e G
Nf oo NP

» The product of M and N is defined to be the m-by-n matrix,
denoted MN, where for each

1<j<mand 1< k<n,
the element in the j-th row and k-th column is
(MNY, = RICy
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Properties of Abstract Matrix Multiplication

» If A, B are m-by-k matrices and C is a k-by-n matrix, then

(A+ B)C = AC + BC

Abstract Matrix
Notation

> If Ais an m-by-k matrix and B, C are k-by-n matrices, then
A(B+ C)=AB+ AC
» If Ais an m-by-j matrix, B is a j-by-k matrix, and C is a k-by-n

matrix, then
(AB)C = A(BC)
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Matrix Notation for Vector with Respect to Basis

» Let (by,...,bn) be a basis of a vector space V
» For each v € V, there are unique coefficients c*,...,c™ € F
such that

v=bc+- +byc™

Abstract Matrix - [bl e bm]

Notation

= BC,
where the basis is written as a row matrix of vectors
B = [bl bm]

and the coefficients are written as a column matrix of scalars

C:
Cm
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Abstract Matrix
Notation

Matrices of Matrices

> Let M be an abstract m-by-k matrix

My M}
M= | 5
Mp My,

where each M/ is itself an p-by-p matrix

Therefore, M is an mp-by-kp matrix, broken up into p-by-p
blocks

Let N be an abstract k-by-n matrix

/\/11 /\/,%
N=1": :
/\/f /\/,l;7

where each Nf is itself an p-by-p matrix
Then the abstract matrix product A = MN is the same as the
standard matrix product A = MN
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Change of Basis of Formula

» Let E =(eq,...,e,) be a basis of V and
v=ale +---+a'e,

> If F=(f,...,f,) is another basis, then there is a unique matrix
M such that for each 1 < k < n,

Change of Basis
fu = Mley + -+ Mle,
» v can also be written with respect to the basis F,

v=>b'f+-- 4 bf,

> How are (al,...,a") and (b%,..., b") related?
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Standard Basis of 3

» Denote the standard basis vectors of F3 by

1 0 0
ee=|0]|, &= (1], es=10
0 0 1

» The basis can be written as a row matrix of column vectors:

Change of Basis

E=[a e e|=

O O

0]0
110 | =1
01

» Any vector v = (v, v2 v3) € F can be written as

vl vl
v= |V} =evi+ev’+eavi=[a e 6] |v?| =Ev
v3 v3
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Change of Basis Example on [F3

» Consider a basis of F3,

1 (010
F=[h f f]=| -1|1]0
1 |11
> Given a vector v = (v1,v2 v3), there are coefficients b!, b?, b3
Change of Basis SUCh that
1
v= V2| = hb! + kb + AP
V3
1 5 .
= |-1| bt + |1]| B2+ |O| B> = Fb
|1 1 1

» Therefore,
b=F1lv
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Change of Basis Example on [F3

» Consider a basis

1]0]0
F=[A  A]=| -1|1]0
111

» Given a vector v = (1,2, 3), there are coefficients b*, b2, b such
that

Change of Basis

(1,2,3) = b'(1,-1,1) + b*(0,1,1) + b3(0,0,1)
= (b', —b 4 b, b + b + b%)
or, equivalently,
bt =1
—bt 4+ b2 =2
b'+ b2+ b =3
» Unique solution is (b, b2, b%) = (1,3, —1)
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Change of Basis on Abstract Vector Space

» Consider two different bases of an n-dimensional vector space V/,
E=le, - e andF=1[f - #£]

» Since E is a basis, we can write each basis vector of F as a
linear combination of the vectors in E

Change of Basis F:[fl"" ‘fn]
=] eMi+ - +eM |- | &M+t e,MI ]
Moo M
o e z
MP o MP
=EM

)

where M is a square matrix of scalars
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Change of Coefficients

» Any vector v can be written as either a linear combination of the

basis E,
St
_ 1 n__ . _
v=ea 4 +ea = [e en] | | =Ea
an
or as a linear combination of the basis F,
Change of Basis b]'
v=Abl 4+ b = - f] |1 =Fb
bn

» Since F = EM,

v =Fb=(EM)b= E(Mb)
» Therefore,
a=Mband b=M"1a
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Change of Basis Formula

v

Let E and F be bases of V such that
F=EM,
» |f v = Ea = Fb, then

a=Mband b= M3

Change of Basis

» The matrix that transforms old coefficients into new coefficients
is the inverse of the matrix that transforms the old basis into the
new basis

» Equivalently, the matrix that transforms the old basis into the
new basis is the matrix that transforms the new coefficients into
the old coefficients

» WARNING: This works only if you write a basis as a row matrix
of vectors and the coefficients as a column matrix of scalars
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Linear Functions

» If V is a vector space, then a function
£:V—>TF
is linear, if for any vi, v, € V
U(vi+ v2) = L(v1) + {(v2)
Linear Functions and for any v € V and s € FF,

l(vs) =£(v)s

» Consequences:
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Properties of Linear Functions

» If /1, {5 are linear functions, then so is /1 + /5
» If 0 is the zero function, it is linear and for any linear function ¢,

{+0=/
» |f s € F and £ is a linear function, then the function s/, which is
defined by
(s0)(v) = s(€(v)),

Linear Functions |S a|SO a |ineal’ funCtiOn
and Maps
> If we denote —¢ = (—1)¢, then

(+(=0)=0

» |t is straightforward to verify that these operations satisfy the
properties of vector addition and scalar multiplication

» |t follows that the set of all linear functions on V/, denoted V*,
is a vector space

It is called the dual vector space of V

v
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Linear Maps

» If V and W are vector spaces, then
L:V—>W
is a linear map, if for any v,v;,vo, € Vand s € F,

L(V1 + V2) = L(Vl) + L(VQ)
Linear Functions
and Maps L(SV) == SL(V)

» Consequences:
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Properties of Linear Maps

> If K:U— Vand L:V — W are linear maps, then so is
LoK:U—->W

» If L:V — W is bijective, it is called a linear isomorphism

Linear Functions

and Maps » If L:V — W is a linear isomorphism, then so is

L™t w—= v
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n-Dimensional Vector Spaces are Isomorphic

Let dimV =dimW =m

Let E = (eq,...,en) be a basis of V
Let F =(f,...,fm) be a basis of W
The map

vvyyvyy

LE7FZV—>W

::\Zﬁ\;\;;:dions elal _|_ ‘e _|_ emam — flal + [P + fmam

is a linear isomorphism

» Given any basis (e1,...,en) of V, there is a linear isomorphism
LV F" >V
(a',...,a") = eat + - +epa”
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Space of Linear Maps

» Let Hom(V, W) denote the set of all linear maps with domain
V' and codomain W
» It is straightforward to check that if Ly, L, L € Hom(V, W) and
s € F, then
Ly + Ly,sL € Hom(V, W)

Linear Functions

oo Mape are also linear maps from V to W

» It is also easily checked that these operations satisfy the
properties of vector addition and scalar multiplication

» |t follows that Hom(V, W) is itself also a vector space
» Observe that V* = Hom(V,F)
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Endomorphisms and Automorphisms

» The space of endomorphisms of V is defined to be
End(V) = Hom(V, V)

Linear Funcions » An endomorphism L: V — V is an automorphism if it is
" bijective

» The space of automorphisms of V is denoted Aut(V)
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Matrix as Linear Map

» lLet E = (ey,...,en) be a basis of V
» let F =(f1,...,f,) be a basis of W

» For each M € gl(n,m,F), let L: V — W be the linear map

where
V1<k<m, Lle) =AM} + -+ F,M]

and therefore for any v = eja! + - - - e,a™ = Ea,

Lirear Funcions L(v) = L(eta* +---+ epa™
=L(e)a' + -+ L(en)a™
= (AM] + -+ HMD)al + o4 (AMg + -+ fM7)a"
= Ai(Mia' + -+ Mpa™) o fy(M{al - Mfa™)
= h(Ma)t + - + f,(Ma)"
= FMa

» This defines a linear map Ig r : gl(n, m,F) — Hom(V, W)
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Linear Map as Matrix

Let E = (ey,...,em) be a basis of V

Let F =(f,...,f,;) be a basis of W

Let L: V — W be a linear map

For each er, 1 < k < m, there exists (I\/I,l, ..., M) € F" such
that L(ex) = fll\/l,} + M7

» Therefore, for any v = ejal +--- +ena™ € V,

vvyyvyy

L(v) = L(era* + --- 4 epa™)

= L(el)a1 o Lem)e”
=AM} + - fMP)ar + -+ (AME + - 4 £,M7)a™
=fA(Mial +---MLa™) - 4 F(MPAY + -+ M7a™)
= fl(/\/la) + -+ f(Ma)”

» This defines a linear map Jg r : Hom(V, W) — gl(n, m, )
> Since JgF = IE_lF and lgF = JE},

dimHom(V, W) =dimgl(n,m,F) = nm
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Linear maps from " to F" are Matrices

» Let gl(n, m,F) denote the vector space of n-by-m matrices with
components in F
» dimgl(n,m,F) = nm
> Let gl(n,F) = gl(n, n,F)
> Let gl(n) = gl(n,R)
e anetions » If E is the standard basis of F™ and F is the standard basis of
F", then Jg r is a natural isomorphism

Hom(F™ F") = gl(n, m,F)
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Concrete to Abstract Notation

Linear Functions
and Maps

Mi

= FMa
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Change of Basis Formula for a Matrix

» Let E =(ey,...,en) be the standard basis and F = (f;,..., )
be another basis of F

» Let M be an m-by-m matrix and L : F” — F™ be the linear map

where
L(E)=FM

» There also exists a matrix N such that L(F) = FN

» The change of basis matrix from E to F is an invertible matrix
Linear Functions B SUCh that )
and Maps F = EB, i.e., fk = eJ-B{(

It also follows that E = FB~1!
» |t follows that

FN = L(F) = L(EB) = L(E)B = EMB = FB~'MB
and therefore the change of basis formula for linear map L is

N=B"'MB
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Change of Basis Formula for Linear Map

» Let E =(ey,...,en) be a basis of V
» let F =(f,...,fm) be another basis of V
» There is a matrix B such that F = EB, i.e.,

fk = ejB{(

» Consider a linearmap L: V — V
» There is a matrix M such that

L(ex) = M ie., L(E)=EM
and a matrix N such that
L(f) = fiM, ie., L(F) = FN
> It follows that
FN = L(F) = L(EB) = L(E)B = EMB = FB~*MB
and therefore N = B~1MB
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Change of Basis Formula for a Matrix

» Let E =(ey,...,en) be the standard basis and F = (f;,..., )
be another basis of F

» Let M be an m-by-m matrix and L : F” — F™ be the linear map

where
L(E)=FM

» There also exists a matrix N such that L(F) = FN

» The change of basis matrix from E to F is an invertible matrix
Linear Functions B SUCh that )
and Maps F = EB, i.e., fk = eJ-B{(

It also follows that E = FB~1!
» |t follows that

FN = L(F) = L(EB) = L(E)B = EMB = FB~'MB
and therefore the change of basis formula for linear map L is

N=B"'MB
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Composition is Matrix Multiplication

» Consider vector spaces U, V, W and linear maps
K:U=V,L:V—>W

> Let (eq,...,ex) be a basis of U
> Let (f1,...,fm) be a basis of V
> Let (g1,...,8n) be a basis of W
» There is an m-by-k matrix M such that
K(e) = fp/\/’f7 1<j<k
i » There is an n-by-m matrix N such that

L(f,) =gN3, 1<p<m
» There is an n-by-k matrix P such that
(LoK)(e) =8P, 1< <k
» On the other hand,
(Lo K)(¢g) = L(K(e))) = L(FLMP) = L(£,)M] = g NgMY
> Therefore, P{ = N,jMf.
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