

Subspaces

Oriented Area
and Volume

Permutations

MA-GY 7043: Linear Algebra II

Subspaces
Permutations
Alternating Multilinear functions

Deane Yang

Courant Institute of Mathematical Sciences
New York University

February 2, 2026

Outline I

Subspaces

Oriented Area
and Volume

Permutations

Subspaces

Oriented Area and Volume

Permutations

Subspace and its Dimension

Subspaces

Oriented Area
and Volume

Permutations

- ▶ A subset T of a vector space X is a **subspace** of X if for any $p, q \in \mathbb{F}$ and $a, b \in T$,

$$pa + qb \in T$$

- ▶ If a subspace has at least one nonzero vector, then it is itself a vector space
- ▶ Define the dimension of a subspace S as follows:
 - ▶ If $S = \{\vec{0}\}$ then $\dim S = 0$
 - ▶ If $S \neq \{\vec{0}\}$, then S is a vector space and $\dim S$ is its dimension as a vector space

Kernel, Image, Rank of a Linear Map

Subspaces

Oriented Area
and Volume

Permutations

- ▶ Associated to any linear map $P : Z \rightarrow Y$ are the following subspaces
 - ▶ The **kernel** of P is defined to be

$$\ker P = \{z \in Z : P(z) = \vec{0}\}$$

- ▶ The **image** of P is defined to be

$$P(Z) = \{P(z) : z \in Z\} \subset Y$$

- ▶ The **rank** of P is

$$\text{rank}(P) = \dim P(Z)$$

Example 1

- ▶ Define $Z : \mathbb{F}^2 \rightarrow \mathbb{F}^3$ to be

$$Z(x, y) = (x, y, 0), \text{ for all } (x, y) \in \mathbb{F}^2$$

- ▶ In other words,

$$Z \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- ▶ $\ker Z = \{0\}$
- ▶ $Z(\mathbb{F}^2) = \{(x, y, 0) : x, y \in \mathbb{F}\} \subset \mathbb{F}^3$
 - ▶ A basis of $Z(\mathbb{F}^2)$ is $\{Z(e_1), Z(e_2)\} = \{(1, 0, 0), (0, 1, 0)\}$
- ▶ Therefore,

$$\dim \ker Z = 0$$

$$\text{rank } Z = 2$$

Example 2

- ▶ Define $W : \mathbb{F}^2 \rightarrow \mathbb{F}^3$ to be

$$W(x, y) = (y, 0, 0), \text{ for all } (x, y) \in \mathbb{F}^2$$

- ▶ In other words,

$$W \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- ▶ $\ker W = \{(x, 0) : x \in \mathbb{F}\}$
 - ▶ A basis of $\ker W$ is $\{(1, 0)\}$
- ▶ $W(\mathbb{F}^2) = \{(y, 0, 0) : y \in \mathbb{F}\}$
 - ▶ A basis of $W(\mathbb{F}^2)$ is $\{(1, 0, 0)\}$
- ▶ Therefore,

$$\dim \ker W = 1$$

$$\text{rank } W = 1$$

Example 3

- ▶ Define $U : \mathbb{F}^2 \rightarrow \mathbb{F}^3$ to be

Subspaces
Oriented Area and Volume
Permutations

$$U(x, y) = (0, 0, 0), \text{ for all } (x, y) \in \mathbb{F}^2$$

- ▶ In other words,

$$U \begin{pmatrix} [x] \\ [y] \end{pmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- ▶ $\ker U = \mathbb{F}^2$
- ▶ $U(\mathbb{F}^2) = \{(0, 0, 0)\}$
- ▶ Therefore,

$$\dim \ker U = 2$$

$$\text{rank } U = 0$$

Example 4

- ▶ Define $U : \mathbb{F}^3 \rightarrow \mathbb{F}^2$ to be

$$U(x, y, z) = (y, z), \text{ for all } (x, y, z) \in \mathbb{F}^3$$

- ▶ In other words,

$$U \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

- ▶ $\ker U = \{(x, 0, 0) : z \in \mathbb{F}\}$
 - ▶ A basis is $\{(1, 0, 0)\}$
- ▶ $U(\mathbb{F}^3) = \mathbb{F}^2$
- ▶ Therefore,

$$\dim \ker U = 1$$

$$\text{rank } U = 2$$

Example 5

- ▶ Define $U : \mathbb{F}^3 \rightarrow \mathbb{F}^2$ to be

$$U(x, y, z) = (z, 0), \text{ for all } (x, y, z) \in \mathbb{F}^3$$

- ▶ In other words,

$$U \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{pmatrix}$$

- ▶ $\ker U = \{(x, y, 0) : x, y \in \mathbb{F}\}$
 - ▶ A basis is $\{(1, 0, 0), (0, 1, 0)\}$
- ▶ $U(\mathbb{F}^2) = \{(z, 0) : z \in \mathbb{F}\}$
 - ▶ A basis is $\{(1, 0)\}$
- ▶ Therefore,

$$\dim \ker U = 2$$

$$\text{rank } U = 1$$

Example 6

- ▶ Define $U : \mathbb{F}^3 \rightarrow \mathbb{F}^2$ to be

$$T(x, y, z) = (0, 0, 0), \text{ for all } (x, y, z) \in \mathbb{F}^3$$

- ▶ In other words,

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- ▶ $\ker U = \mathbb{F}^3$
- ▶ $U(\mathbb{F}^3) = \{(0, 0, 0)\}$
- ▶ Therefore,

$$\dim \ker U = 3$$

$$\text{rank } U = 0$$

Normal Form of a Linear Map

- ▶ Let $L : V \rightarrow W$ be a linear map
- ▶ Lemma: There exists a basis (e_1, \dots, e_m) of V and a basis (f_1, \dots, f_n) of W such that for each $1 \leq k \leq m$,

$$L(e_k) = \begin{cases} f_k & \text{if } 1 \leq k \leq r \\ 0_W & \text{if } r+1 \leq k \leq m \end{cases},$$

where $r = \text{rank}(L)$

- ▶ In particular,

$$\ker(L) = \text{span of } \{e_{r+1}, \dots, e_m\} \text{ and } L(V) = \text{span of } \{f_1, \dots, f_r\}$$

- ▶ The matrix of L with respect to this basis is

$$M = \left[\begin{array}{c|c} I_{r \times r} & 0_{r \times m-r} \\ \hline 0_{n-r, r} & 0_{n-r, m-r} \end{array} \right]$$

Proof of Existence of Normal Form

- ▶ Let $s = \dim \ker(L)$ and $r = \dim V - \dim \ker(L) = m - s$
- ▶ If $s > 0$, there exists a basis of $\ker(L)$, which will be denoted

$$(e_{m-s+1}, \dots, e_m)$$

- ▶ This can be extended to a basis $(e_1, \dots, e_r, e_{r+1}, \dots, e_m)$ of V
- ▶ For each $1 \leq k \leq r$, let $f_k = L(e_k)$
- ▶ (f_1, \dots, f_r) is linearly independent
- ▶ It can be extended to a basis (f_1, \dots, f_n) of W
- ▶ It follows that

$$\begin{aligned}\dim \ker L + \operatorname{rank} L &= \dim \ker L + \dim L(V) \\ &= s + r = m \\ &= \dim V\end{aligned}$$

Corollary: Rank-Nullity Theorem

Subspaces

Oriented Area
and Volume

Permutations

- ▶ Theorem: $\dim \ker(L) + \text{rank}(L) = \dim V$
- ▶ Proof: The normal form shows that if $\dim V = m$ and $\text{rank}(L) = r$, then $\dim \ker(L) = m - r$

Injective and Surjective Maps

Subspaces

Oriented Area
and Volume

Permutations

- ▶ Consider a linear map $L : V \rightarrow W$
- ▶ $\dim \ker L = 0 \iff L$ is injective:

$$\begin{aligned} L(v_1) = L(v_2) &\iff L(v_2) - L(v_1) = 0_W \\ &\iff L(v_2 - v_1) = 0_W \\ &\iff v_2 - v_1 \in \ker L = \{0_V\} \\ &\iff v_2 = v_1 \end{aligned}$$

- ▶ $\text{rank } L = \dim W \iff L$ is surjective:

$$\text{rank } L = \dim W \iff \dim L(V) = \dim W \iff L(V) = W$$

Bijective Maps

Subspaces

Oriented Area
and Volume

Permutations

- ▶ It also follows that

$L : V \rightarrow W$ is bijective

$$\iff \dim \ker(L) = 0 \text{ and } \operatorname{rank}(L) = \dim W$$

$$\iff \dim V = \dim W \text{ and } \dim \ker L = 0$$

$$\iff \dim V = \dim W = \operatorname{rank} L$$

Example (Part 1)

Subspaces

Oriented Area
and Volume

Permutations

- ▶ Consider the map $L : \mathbb{F}^3 \rightarrow \mathbb{F}^2$ given by

$$L \begin{pmatrix} v^1 \\ v^2 \\ v^3 \end{pmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} v^1 \\ v^2 \\ v^3 \end{bmatrix} = \begin{bmatrix} v^1 + 2v^2 + 3v^3 \\ 4v^3 \end{bmatrix}$$

- ▶ $\ker L = \{(v^1, v^2, v^3) : v^1 + 2v^2 = 0\}$
- ▶ A basis of $\ker L$ is $\{(-2, 1, 0)\}$
- ▶ A basis of \mathbb{F}^3 is $\{(0, 1, 0), (0, 0, 1), (-2, 1, 0)\}$
- ▶ A basis of $L(\mathbb{F}^3)$ is

$$\{L(0, 1, 0), L(0, 0, 1)\} = \{(2, 0), (3, 4)\}$$

Example (Part 2)

► If

$$[e_1 \ e_2 \ e_3] = \left[\begin{array}{c|c|c} 0 & 0 & -2 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right] \text{ and } [f_1 \ f_2] = \left[\begin{array}{c|c} 2 & 3 \\ 0 & 4 \end{array} \right]$$

► Then

$$[L(e_1) \ L(e_2) \ L(e_3)] = [f_1 \ f_2 \ 0] = [f_1 \ f_2] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

► And given any vector $v = e_1a^1 + e_2a^2 + e_3a^3$,

$$L(v) = L(e_1)a^1 + L(e_2)a^2 + L(e_3)a^3 = f_1a^2 + f_2a^3 = FMa,$$

where

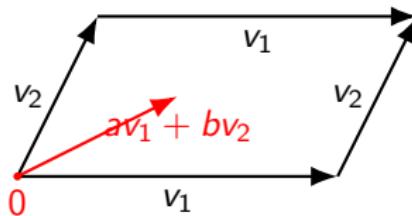
$$M = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Parallelogram in Vector Space

Subspaces

Oriented Area
and Volume

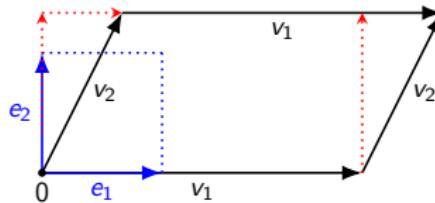
Permutations



- ▶ Let V be a 2-dimensional vector space
- ▶ Let $P(v_1, v_2)$ be the parallelogram with sides $v_1, v_2 \in V$.

$$P(v_1, v_2) = \{av_1 + bv_2 : 0 \leq a, b \leq 1\}.$$

Area of Parallelogram



Subspaces

Oriented Area and Volume

Permutations

- ▶ Let (e_1, e_2) be a basis of V
- ▶ Assume that the area of the parallelogram $P(e_1, e_2)$ is

$$A(e_1, e_2) = 1$$

- ▶ Let

$$v_1 = we_1 \text{ and } v_2 = ae_1 + he_2$$

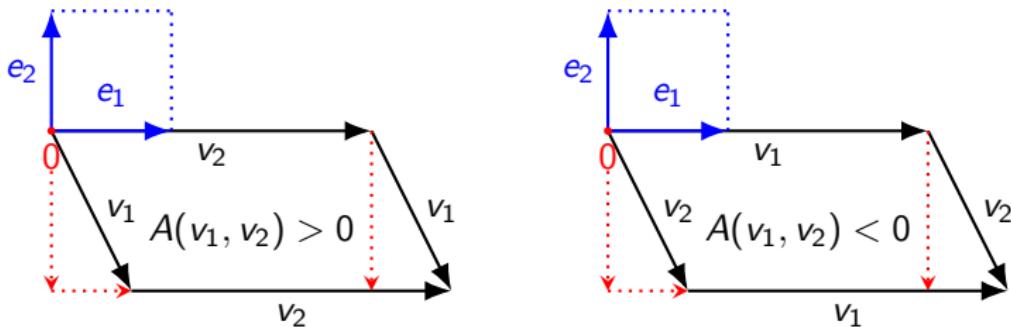
- ▶ With respect to this basis,
 - ▶ Height of $P(v_1, v_2)$ is h
 - ▶ Width of $P(v_1, v_2)$ is w
- ▶ The area of $P(v_1, v_2)$ is

$$A(v_1, v_2) = |h||w|$$

- ▶ The absolute values makes this formula hard to use

Oriented Area of Parallelogram

Subspaces
Oriented Area and Volume
Permutations



- ▶ Define oriented area of $P(v_1, v_2)$ to be

$$A(v_1, v_2) = \begin{cases} hw & \text{if } v_2 \text{ lies counterclockwise of } v_1 \\ -hw & \text{if } v_2 \text{ lies clockwise of } v_1 \end{cases}$$

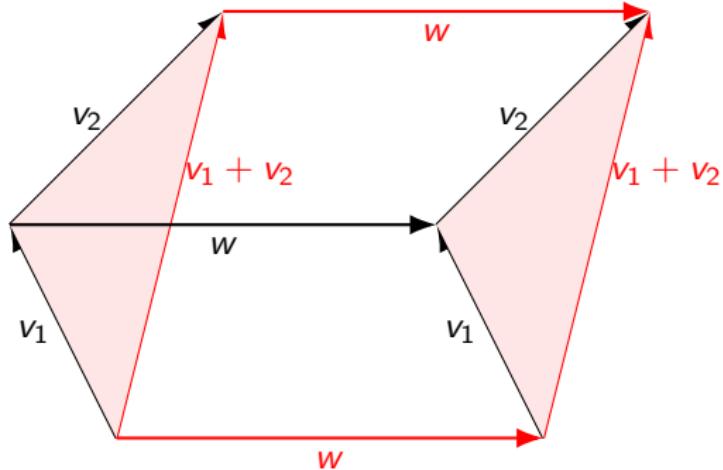
- ▶ Oriented area, as a function of $v_1, v_2 \in V$ has nice properties

Oriented Area of Parallelograms with Parallel Bases

Subspaces

Oriented Area and Volume

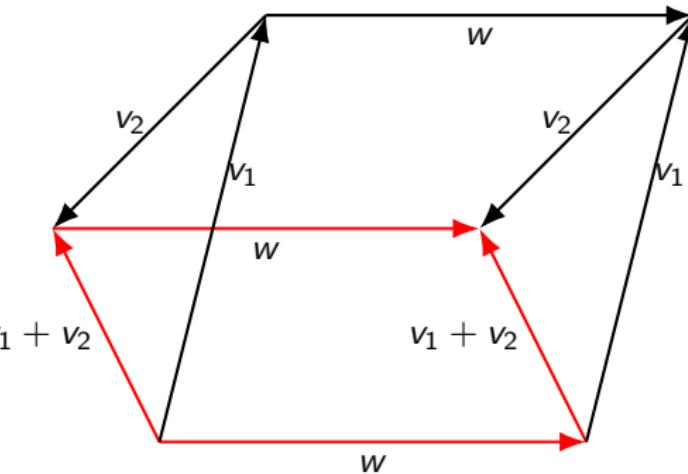
Permutations



- If v_1 and v_2 both point upward relative to w , then

$$A(w, v_1 + v_2) = A(w, v_1) + A(w, v_2)$$

Oriented Area of Parallelograms with Parallel Bases



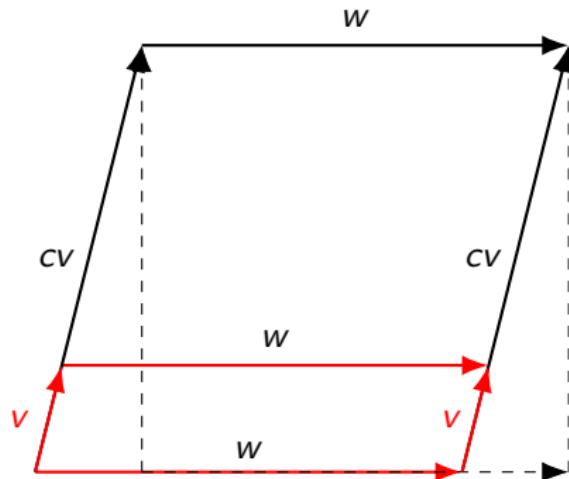
- ▶ If v_1 points upward and v_2 points downward relative to w , then $A(w, v_2) < 0$ and

$$A(w, v_1) = A(w, v_1 + v_2) - A(w, v_2)$$

and therefore

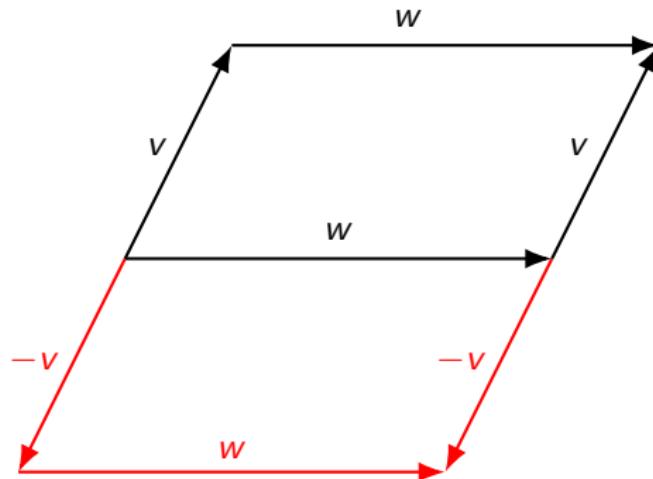
$$A(w, v_1 + v_2) = A(w, v_1) + A(w, v_2)$$

Area of rescaled parallelogram



$$A(w, cv) = cA(w, v)$$

Area of reflected parallelogram



$$A(w, -v) = A(w, v)$$

Area Versus Oriented Area

Subspaces
Oriented Area
and Volume

Permutations

- ▶ Definitions of area and oriented area require a basis (e_1, e_2) , where we assume that

$$A(e_1, e_2) = 1$$

- ▶ The oriented area of a parallelogram satisfies

$$A(v, w) = -A(w, v)$$

$$A(v_1 + v_2, w) = A(v_1, w) + A(v_2, w)$$

$$A(cv_1, v_2) = cA(v_1, v_2)$$

- ▶ The area of the parallelogram $P(v, w)$ is $|A(v, w)|$

Oriented Area is Bilinear and Antisymmetric

- If w is held fixed, $A(v, w)$ is a linear function of v

$$A(v_1 + v_2, w) = A(v_1, w) + A(v_2, w)$$

$$A(cv, w) = cA(v, w)$$

- If v is held fixed, $A(v, w)$ is a linear function of w

$$A(v, w_1 + w_2) = A(v, w_1) + A(v, w_2)$$

$$A(v, cw) = cA(v, w)$$

- Such a function is called **bilinear**
- For any $v \in V$, the parallelogram $A(v, v)$ has height 0 and therefore

$$A(v, v) = 0 \tag{1}$$

- Any bilinear function $A : V \times V \rightarrow \mathbb{F}$ that satisfies (1) is called **antisymmetric**
- If A is antisymmetric and bilinear, then for any $v, w \in V$,

$$A(w, v) = -A(v, w)$$

2-Dimensional Antisymmetric Bilinear Function

Subspaces
Oriented Area
and Volume

Permutations

- ▶ Let $[e_1 e_2]$ be a basis of V
- ▶ Let

$$A : V \times V \rightarrow \mathbb{F}$$

be an antisymmetric bilinear function such that

$$A(e_1, e_2) = 1$$

- ▶ If $v = ae_1 + be_2$ and $w = ce_1 + de_2$, then

$$\begin{aligned} A(v, w) &= A(ae_1 + be_2, ce_1 + de_2) \\ &= A(ae_1, ce_1) + A(be_2, ce_1) + A(ae_1, de_2) + A(be_2, de_2) \\ &= bcA(e_2, e_1) + adA(e_1, e_2) \\ &= ad - bc \end{aligned}$$

2-Dimensional Antisymmetric Bilinear Function

Subspaces

Oriented Area
and Volume

Permutations

- ▶ This can be written as follows

$$\begin{aligned} A([v \ w]) &= A\left([e_1 \ e_2] \begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) \\ &= A([ae_1 + be_2 \ ce_1 + de_2]) \\ &= A(e_1, e_2)(ad - bc) \\ &= ad - bc \end{aligned}$$

- ▶ The determinant of a square 2-by-2 matrix is defined to be

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

Determinant of a 2-by-2 Matrix is Equal to Oriented Area

Subspaces
Oriented Area
and Volume

Permutations

- ▶ Let (e_1, e_2) be a basis where the oriented area of $P(e_1, e_2)$ is 1,

$$A(e_1, e_2) = 1$$

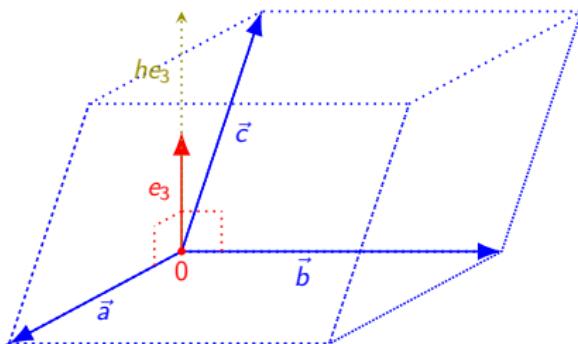
- ▶ The oriented area of the parallelogram $P(v, w)$, where

$$[v \quad w] = [e_1 \quad e_2] \begin{bmatrix} a & b \\ c & d \end{bmatrix},$$

is

$$A(v, w) = \det \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

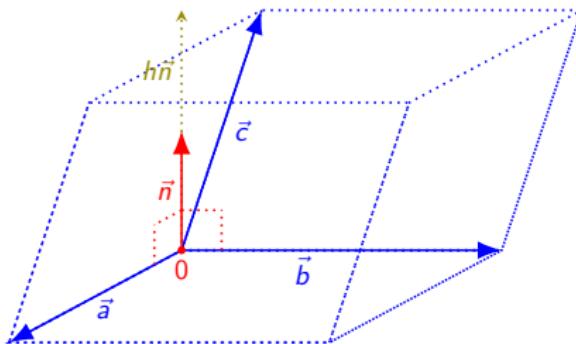
Parallelopiped spanned by 3 Vectors in 3-space



- ▶ Three linearly independent vectors $\vec{a}, \vec{b}, \vec{c}$ span a parallelopiped $P(\vec{a}, \vec{b}, \vec{c})$

$$P(\vec{a}, \vec{b}, \vec{c}) = \{s\vec{a} + t\vec{b} + u\vec{c} : 0 \leq s, t, u \leq 1\}$$

Volume of a Parallellopiped

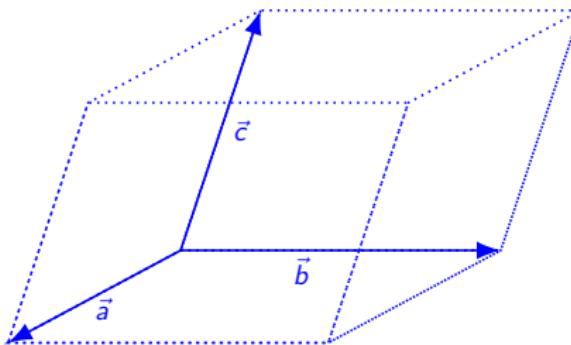


- ▶ Fix a basis (e_1, e_2, e_3) of V
 - ▶ Assume the volume of $P(e_1, e_2, e_3)$ is 1
- ▶ Assume \vec{a}, \vec{b} lies in the subspace spanned by (e_1, e_2)
 - ▶ Therefore, $\vec{c} = h e_3$
- ▶ If $h > 0$, then volume of parallellopiped is height times the area of the base:

$$\text{vol}(P(\vec{a}, \vec{b}, \vec{c})) = h |A(\vec{a}, \vec{b})|$$

- ▶ Again, we want to avoid the absolute value

Oriented Volume of a Parallelipiped



- ▶ Define the oriented volume of $P(\vec{a}, \vec{b}, \vec{c})$ to be

$$\text{vol}(\vec{a}, \vec{b}, \vec{c}),$$

where

- ▶ $\text{vol}(e_1, e_2, e_3) = 1$
- ▶ $|\text{vol}(\vec{a}, \vec{b}, \vec{c})|$ is the volume of $P(\vec{a}, \vec{b}, \vec{c})$
- ▶ vol is an antisymmetric multilinear function

Oriented Volume is Determinant of Matrix

- ▶ Suppose $v_1, v_2, v_3 \in V$, where, using Einstein notation,

$$\begin{aligned}[v_1 & \quad v_2 & \quad v_3] &= [e_k A_1^k & e_k A_2^k & e_k A_3^k] \\ &= [e_1 & e_2 & e_3] \begin{bmatrix} A_1^1 & A_2^1 & A_3^1 \\ A_1^2 & A_2^2 & A_3^2 \\ A_1^3 & A_2^3 & A_3^3 \end{bmatrix} \\ &= EA\end{aligned}$$

- ▶ The determinant of A is defined by the equation

$$\text{vol}(v_1, v_2, v_3) = E \det A$$

- ▶ In particular, since $\text{vol}(e_1, e_2, e_3) = 1$,

$$\det I = 1$$

Permutations

- ▶ A permutation is a bijective map $\sigma : \{1, \dots, n\} \rightarrow \{1, \dots, n\}$

- ▶ Let S_n be the set of all permutations of order n

- ▶ For any $\sigma_1, \sigma_2 \in S_n$,

$$\sigma_2 \circ \sigma_1 \in S_n$$

- ▶ For any $\sigma_1, \sigma_2, \sigma_3 \in S_n$,

$$(\sigma_3 \circ \sigma_2) \circ \sigma_1 = \sigma_3 \circ (\sigma_2 \circ \sigma_1)$$

- ▶ Let ι denote the identity map

- ▶ For any $\sigma \in S_n$,

$$\iota \circ \sigma = \sigma \circ \iota = \sigma$$

- ▶ Since σ is bijective, there exists a unique $\sigma^{-1} \in S_n$ such that

$$\sigma \circ \sigma^{-1} = \sigma^{-1} \circ \sigma = \iota$$

- ▶ S_n is a group, where group multiplication is composition

Transpositions

Subspaces

Oriented Area
and Volume

Permutations

- ▶ A transposition is a permutation τ that switches two elements and leaves the others unchanged.
- ▶ Example: $\tau : \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$, where

$$\tau(1) = 1, \tau(2) = 4, \tau(3) = 3, \tau(4) = 2$$

- ▶ For any $1 \leq j, k \leq n$, let τ_{jk} be the transposition where for any $1 \leq i \leq S_n$,

$$\tau_{jk}(i) = \begin{cases} k & \text{if } i = j \\ j & \text{if } i = k \\ i & \text{if } i \neq j, k \end{cases}$$

- ▶ Observe that

$$\tau \circ \tau = \iota$$

and therefore

$$\tau^{-1} = \tau$$

Any permutation is a composition of transpositions

- ▶ Given $\sigma \in S_n$, denote $\sigma_0 = \sigma$
- ▶ If $\sigma_1 = \tau_{1,\sigma_0(1)} \circ \sigma_0$, then $\sigma_1(1) = 1$
- ▶ If $\sigma_2 = \tau_{2,\sigma_1(2)} \circ \sigma_1$, then

$$\sigma_2(1) = 1, \sigma_2(2) = 2$$

- ▶ Given $1 \leq k < n$, assume that σ_k satisfies

$$\sigma_k(1) = 1, \sigma_k(2) = 2, \dots, \sigma_k(k) = k$$

- ▶ If $\sigma_{k+1} = \tau_{k+1,\sigma_k(k+1)} \circ \sigma_k$, then

$$\sigma_{k+1}(1) = 1, \sigma_{k+1}(2) = 2, \dots, \sigma_{k+1}(k+1) = k+1$$

- ▶ By induction,

$$\tau_{n,\sigma_{n-1}(n)} \circ \tau_{n-1,\sigma_{n-2}(n-1)} \circ \dots \circ \tau_{1,\sigma_0(1)} \circ \sigma_0 = \iota$$

and therefore

$$\sigma = \tau_{1,\sigma_0(1)} \circ \tau_2 \circ \dots \circ \tau_{n,\sigma_{n-1}(n)}$$

Parity or Sign of a Permutation

Subspaces

Oriented Area
and Volume

Permutations

- ▶ If $j \neq k$, call $\tau_{j,k}$ a **nontrivial transposition**
- ▶ Given any permutation $\sigma \in S_n$, its parity or sign, which we will write as $\epsilon(\sigma)$, is defined to be
 - ▶ 1 if σ is the composition of an even number of transpositions
 - ▶ -1 if σ is the composition of an odd number of transpositions
- ▶ Easy consequences
 - ▶ $\epsilon(\iota) = 1$
 - ▶ If $1 \leq j \neq k \leq n$, then $\epsilon(\tau_{j,k}) = -1$
 - ▶ For any $\sigma, \tau \in S_n$, $\epsilon(\sigma \circ \tau) = \epsilon(\sigma)\epsilon(\tau)$
 - ▶ For any $\sigma \in S_n$,
$$\epsilon(\sigma^{-1}) = \epsilon(\sigma),$$

because

$$1 = \epsilon(\iota) = \epsilon(\sigma^{-1} \circ \sigma) = \epsilon(\sigma^{-1})\epsilon(\sigma)$$

Existence and Uniqueness of Sign Function

Subspaces

Oriented Area
and Volume

Permutations

- ▶ This is the consequence of the following:
 - ▶ A permutation is never both the composition of an even number of transpositions and the composition of an odd number of transpositions
 - ▶ There are straightforward [elementary proofs](#)
 - ▶ There are also [many sophisticated proofs](#)

Endomorphisms of $\{1, \dots, n\}$

- ▶ Let $\text{End}(n)$ denote the space of all maps

$$\phi : \{1, \dots, n\} \rightarrow \{1, \dots, n\}$$

- ▶ Let $\text{Aut}(n)$ denote the space of bijective maps in $\text{End}(n)$
- ▶ Observe that $S_n = \text{Aut}(n)$
- ▶ The sign function $\epsilon : S_n \rightarrow \{-1, 1\}$ can be extended to the function

$$\epsilon : \text{End}(n) \rightarrow \{-1, 0, 1\},$$

where, if $\phi \in S_n$, then $\epsilon(\phi)$ is defined as before and

$$\epsilon(\phi) = 0 \text{ if } \phi \notin S_n$$

- ▶ The extended sign function satisfies the following properties:

$$\epsilon(\sigma_1 \circ \sigma_2) = \epsilon(\sigma_1)\epsilon(\sigma_2)$$

$$\epsilon(\iota) = 1$$

$$\epsilon(\sigma) = -1 \text{ if } \sigma \text{ is a nontrivial transposition}$$

Alternating Multilinear Functions

- ▶ Let V be an n -dimensional vector space
- ▶ Let $T : V \times \cdots \times V \rightarrow \mathbb{F}$ be a function of n vectors
- ▶ T is **multilinear** if for each $1 \leq k \leq n$, $v_1, \dots, v_n, w_k \in V$, $a, b \in \mathbb{F}$,

$$\begin{aligned} T(v_1, \dots, av_k + bw_k, \dots, v_n) \\ = aT(v_1, \dots, v_k, \dots, v_n) + bT(v_1, \dots, w_k, \dots, v_n) \end{aligned}$$

- ▶ T is **alternating** if for any $v_1, \dots, v_n \in V$ and $\sigma \in S_n$,

$$T(v_{\sigma(1)}, \dots, v_{\sigma(n)}) = \epsilon(\sigma) T(v_1, \dots, v_n)$$

or, equivalently, for any $v_1, \dots, v_n \in V$ and $\sigma \in \text{End}(n)$,

$$T(v_{\sigma(1)}, \dots, v_{\sigma(n)}) = \epsilon(\sigma) T(v_1, \dots, v_n)$$

- ▶ Let $\Lambda^n V^*$ denote the set of all alternating multilinear functions on V
- ▶ Each $T \in \Lambda^n V^* \setminus \{0\}$ is also called an **oriented volume function** of V