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Subspace and its Dimension

▶ A subset T of a vector space X is a subspace of X if for any
p, q ∈ F and a, b ∈ T ,

pa+ qb ∈ T

▶ If a subspace has at least one nonzero vector, then it is itself a
vector space

▶ Define the dimension of a subspace S as follows:
▶ If S = {0⃗} then dimS = 0
▶ If S ̸= {0⃗}, then S is a vector space and dim S is its dimension

as a vector space
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Kernel, Image, Rank of a Linear Map

▶ Associated to any linear map P : Z → Y are the following
subspaces
▶ The kernel of P is defined to be

kerP = {z ∈ Z : P(z) = 0⃗}

▶ The image of P is defined to be

P(Z) = {P(z) : z ∈ Z} ⊂ Y

▶ The rank of P is
rank(P) = dimP(Z )
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Example 1

▶ Define Z : F2 → F3 to be

Z (x , y) = (x , y , 0), for all (x , y) ∈ F2

▶ In other words,

Z

([
x
y

])
=

1 0
0 1
0 0

[
x
y

]
▶ kerZ = {0}
▶ Z (F2) = {(x , y , 0) : x , y ,∈ F} ⊂ Fn

▶ A basis of Z(F2) is {Z(e1),Z(e2)} = {(1, 0, 0), (0, 1, 0)}
▶ Therefore,

dim kerZ = 0

rankZ = 2
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Example 2

▶ Define W : F2 → F3 to be

W (x , y) = (y , 0, 0), for all (x , y) ∈ F2

▶ In other words,

W

([
x
y

])
=

0 1
0 0
0 0

[
x
y

]
▶ kerW = {(x , 0) : x ∈ F}

▶ A basis of kerW is {(1, 0)}
▶ W (F2) = {(y , 0, 0) : y ∈ F}

▶ A basis of W (F2) is {(1, 0, 0)}
▶ Therefore,

dim kerW = 1

rankW = 1
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Example 3

▶ Define U : F2 → F3 to be

U(x , y) = (0, 0, 0), for all (x , y) ∈ F2

▶ In other words,

U

([
x
y

])
=

0 0
0 0
0 0

[
x
y

]
▶ kerU = F2

▶ U(F2) = {(0, 0, 0}
▶ Therefore,

dim kerU = 2

rankU = 0
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Example 4

▶ Define U : F3 → F2 to be

U(x , y , z) = (y , z), for all (x , y , z) ∈ F3

▶ In other words,

U

xy
z

 =

[
0 1 0
0 0 1

]xy
z


▶ kerU = {(x , 0, 0) : z ∈ F}

▶ A basis is {(1, 0, 0)}
▶ U(F3) = F2

▶ Therefore,

dim kerU = 1

rankU = 2
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Example 5

▶ Define U : F3 → F2 to be

U(x , y , z) = (z , 0), for all (x , y , z) ∈ F3

▶ In other words,

U

xy
z

 =

[
0 0 1
0 0 0

]xy
z


▶ kerU = {(x , y , 0) : x , y ∈ F}

▶ A basis is {(1, 0, 0), (0, 1, 0)}
▶ U(F2) = {(z , 0) : z ∈ F}

▶ A basis is {(1, 0)}
▶ Therefore,

dim kerU = 2

rankU = 1
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Example 6

▶ Define U : F3 → F2 to be

T (x , y , z) = (0, 0, 0), for all (x , y , z) ∈ F3

▶ In other words,

T

xy
z

 =

[
0 0 0
0 0 0

]xy
z


▶ kerU = F3

▶ U(F3) = {(0, 0, 0)}
▶ Therefore,

dim kerU = 3

rankU = 0
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Normal Form of a Linear Map

▶ Let L : V → W be a linear map

▶ Lemma: There exists a basis (e1, . . . , em) of V and a basis
(f1, . . . , fn) of W such that for each 1 ≤ k ≤ m,

L(ek) =

{
fk if 1 ≤ k ≤ r

0W if r + 1 ≤ k ≤ m
,

where r = rank(L)

▶ In particular,

ker(L) = span of {er+1, . . . , em} and L(V ) = span of {f1, . . . , fr}

▶ The matrix of L with respect to this basis is

M =

[
Ir×r 0r×m−r

0n−r ,r 0n−r ,m−r

]
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Proof of Existence of Normal Form

▶ Let s = dim ker(L) and r = dimV − dim ker(L) = m − s

▶ If s > 0, there exists a basis of ker(L), which will be denoted

(em−s+1, . . . , em)

▶ This can be extended to a basis (e1, . . . , er , er+1, . . . , em) of V

▶ For each 1 ≤ k ≤ r , let fk = L(ek)

▶ (f1, . . . , fr ) is linearly independent

▶ It can be extended to a basis (f1, . . . , fn) of W

▶ It follows that

dim ker L+ rank L = dim ker L+ dim L(V )

= s + r = m

= dimV
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Corollary: Rank-Nullity Theorem

▶ Theorem: dim ker(L) + rank(L) = dimV

▶ Proof: The normal form shows that if dimV = m and
rank(L) = r , then dim ker(L) = m − r
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Injective and Surjective Maps

▶ Consider a linear map L : V → W

▶ dim ker L = 0 ⇐⇒ L is injective:

L(v1) = L(v2) ⇐⇒ L(v2)− L(v1) = 0W

⇐⇒ L(v2 − v1) = 0W

⇐⇒ v2 − v2 ∈ ker L = {0V }
⇐⇒ v2 = v1

▶ rank L = dimW ⇐⇒ L is surjective:

rank L = dimW ⇐⇒ dim L(V ) = dimW ⇐⇒ L(V ) = W
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Bijective Maps

▶ It also follows that

L : V → W is bijective

⇐⇒ dim ker(L) = 0 and rank(L) = dimW

⇐⇒ dimV = dimW and dim ker L = 0

⇐⇒ dimV = dimW = rank L
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Example (Part 1)

▶ Consider the map L : F3 → F2 given by

L

v1

v2

v3

 =

[
1 2 3
0 0 4

]v1

v2

v3

 =

[
v1 + 2v2 + 3v3

4v3

]

▶ ker L = {(v1, v2, v3) : v1 + 2v2 = 0}
▶ A basis of ker L is {(−2, 1, 0)}
▶ A basis of F3 is {(0, 1, 0), (0, 0, 1), (−2, 1, 0)}
▶ A basis of L(F3) is

{L(0, 1, 0), L(0, 0, 1)} = {(2, 0), (3, 4)}
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Example (Part 2)

▶ If

[
e1 e2 e3

]
=

 0 0 −2
1 0 1
0 1 0

 and
[
f1 f2

]
=

[
2 3
0 4

]
▶ Then[

L(e1) L(e2) L(e3)
]
=

[
f1 f2 0

]
=

[
f1 f2

] [1 0 0
0 1 0

]
▶ And given any vector v = e1a

1 + e2a
2 + e3a

3,

L(v) = L(e1)a
1 + L(e2)a

2 + L(e3)a
3 = f1a

2 + f2a
3 = FMa,

where

M =

[
0 1 0
0 0 1

]
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Parallelogram in Vector Space

av1 + bv2

0 v1

v1

v2 v2

▶ Let V be a 2-dimensional vector space

▶ Let P(v1, v2) be the parallelogram with sides v1, v2 ∈ V .

P(v1, v2) = {av1 + bv2 : 0 ≤ a, b ≤ 1}.
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Area of Parallelogram

e2

e10 v1

v1

v2 v2

▶ Let (e1, e2) be a basis of V
▶ Assume that the area of the parallelogram P(e1, e2) is

A(e1, e2) = 1

▶ Let
v1 = we1 and v2 = ae1 + he2

▶ With respect to this basis,
▶ Height of P(v1, v2) is h
▶ Width of P(v1, v2) is w

▶ The area of P(v1, v2) is

A(v1, v2) = |h||w |
▶ The absolute values makes this formula hard to use
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Oriented Area of Parallelogram

e2 e1

0 v2

v2

v1 v1A(v1, v2) > 0

e2 e1

0 v1

v1

v2 v2A(v1, v2) < 0

▶ Define oriented area of P(v1, v2) to be

A(v1, v2) =

{
hw if v2 lies counterclockwise of v1

−hw if v2 lies clockwise of v1

▶ Oriented area, as a function of v1, v2 ∈ V has nice properties
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Oriented Area of Parallelograms with Parallel Bases

w

w

w

v1 v1

v2 v2

v1 + v2 v1 + v2

▶ If v1 and v2 both point upward relative to w , then

A(w , v1 + v2) = A(w , v1) + A(w , v2)
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Oriented Area of Parallelograms with Parallel Bases

w

w

w

v1 + v2 v1 + v2

v2 v2

v1 v1

▶ If v1 points upward and v2 points downward relative to w , then
A(w , v2) < 0 and

A(w , v1) = A(w , v1 + v2)− A(w , v2)

and therefore

A(w , v1 + v2) = A(w , v1) + A(w , v2)
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Area of rescaled parallelogram

w

w

w

v v

cv cv

A(w , cv) = cA(w , v)
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Area of reflected parallelogram

w

w

w

v v

−v −v

A(w ,−v) = A(w , v)
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Area Versus Oriented Area

▶ Definitions of area and oriented area require a basis (e1, e2),
where we assume that

A(e1, e2) = 1

▶ The oriented area of a parallelogram satisfies

A(v ,w) = −A(w , v)

A(v1 + v2,w) = A(v1,w) + A(v2,w)

A(cv1, v2) = cA(v1, v2)

▶ The area of the parallelogram P(v ,w) is |A(v ,w)|
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Oriented Area is Bilinear and Antisymmetric

▶ If w is held fixed, A(v ,w) is a linear function of v

A(v1 + v2,w) = A(v1,w) + A(v2,w)

A(cv ,w) = cA(v ,w)

▶ If v is held fixed, A(v ,w) is a linear function of w

A(v ,w1 + w2) = A(v ,w1) + A(v ,w2)

A(v , cw) = cA(v ,w)

▶ Such a function is called bilinear
▶ For any v ∈ V , the parallelogram A(v , v) has height 0 and

therefore
A(v , v) = 0 (1)

▶ Any bilinear function A : V × V → F that satisfies (1) is called
antisymmmetric

▶ If A is antisymmetric and bilinear, then for any v ,w ∈ V ,

A(w , v) = −A(v ,w)
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2-Dimensional Antisymmetric Bilinear Function

▶ Let
[
e1e2

]
be a basis of V

▶ Let
A : V × V → F

be an antisymmetric bilinear function such that

A(e1, e2) = 1

▶ If v = ae1 + be2 and w = ce1 + de2, then

A(v ,w) = A(ae1 + be2, ce1 + de2)

= A(ae1, ce1) + A(be2, ce1) + A(ae1, de2) + A(be2, de2)

= bcA(e2, e1) + adA(e,e2)

= ad − bc
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2-Dimensional Antisymmetric Bilinear Function

▶ This can be written as follows

A
([
v w

])
= A

([
e1 e2

] [a b
c d

])
= A

([
ae1 + be2 ce1 + de2

])
= A(e1, e2)(ad − bc)

= ad − bc

▶ The determinant of a square 2-by-2 matrix is defined to be

det

[
a b
c d

]
= ad − bc
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Determinant of a 2-by-2 Matrix is Equal to
Oriented Area

▶ Let (e1, e2) be a basis where the oriented area of P(e1, e2) is 1,

A(e1, e2) = 1

▶ The oriented area of the parallelogram P(v ,w), where

[
v w

]
=

[
e1 e2

] [a b
c d

]
,

is

A(v ,w) = det

[
a b
c d

]
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Parallelopiped spanned by 3 Vectors in 3-space

a⃗
b⃗

c⃗

e3

he3

0

▶ Three linearly independent vectors a⃗, b⃗, c⃗ span a parallelopiped
P(a⃗, b⃗, c⃗)

P(a⃗, b⃗, c⃗) = {sa⃗+ tb⃗ + uc⃗ : 0 ≤ s, t, u ≤ 1}
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Volume of a Parallelopiped

a⃗
b⃗

c⃗

hn⃗

0

n⃗

▶ Fix a basis (e1, e2, e3) of V
▶ Assume the volume of P(e1, e2, e2) is 1

▶ Assume a⃗, b⃗ lies in the subspace spanned by (e1, e2)
▶ Therefore, c⃗ = he3

▶ If h > 0, then volume of parallelopiped is height times the area
of the base:

vol(P(a⃗, b⃗, c⃗)) = h|A(a⃗, b⃗)|
▶ Again, we want to avoid the absolute value
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Oriented Volume of a Parallelopiped

a⃗
b⃗

c⃗

▶ Define the oriented volume of Pa⃗, b⃗, c⃗) to be

vol(a⃗, b⃗, c⃗),

where
▶ vol(e1, e2, e3) = 1
▶ | vol(a⃗, b⃗, c⃗)| is the volume of P(a⃗, b⃗, c⃗)
▶ vol is an antisymmetric multilinear function

32 / 40



Subspaces

Oriented Area
and Volume

Permutations

Oriented Volume is Determinant of Matrix

▶ Suppose v1, v2, v3 ∈ V , where, using Einstein notation,[
v1 v2 v3

]
=

[
ekA

k
1 ekA

k
2 ekA

k
3

]
=

[
e1 e2 e3

] A1
1 A1

2 A1
3

A2
1 A2

2 A2
3

A3
1 A3

2 A3
3


= EA

▶ The determinant of A is defined by the equation

vol(v1, v2, v3) = E detA

▶ In particular, since vol(e1, e2, e2) = 1,

det I = 1
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Permutations

▶ A permutation is a bijective map σ : {1, . . . , n} → {1, . . . , n}
▶ Let Sn be the set of all permutations of order n

▶ For any σ1, σ2 ∈ Sn,
σ2 ◦ σ1 ∈ Sn

▶ For any σ1, σ2, σ3 ∈ Sn,

(σ3 ◦ σ2) ◦ σ1 = σ3 ◦ (σ2 ◦ σ1)

▶ Let ι denote the identity map

▶ For any σ ∈ Sn,
ι ◦ σ = σ ◦ ι = σ

▶ Since σ is bijective, there exists a unique σ−1 ∈ Sn such that

σ ◦ σ−1 = σ−1 ◦ σ = ι

▶ Sn is a group, where group multiplication is composition
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Transpositions

▶ A transposition is a permutation τ that switches two elements
and leaves the others unchanged.

▶ Example: τ : {1, 2, 3, 4} → {1, 2, 3, 4}, where

τ(1) = 1, τ(2) = 4, τ(3) = 3, τ(4) = 2

▶ For any 1 ≤ j , k ≤ n, let τjk be the transposition where for any
1 ≤ i ≤ Sn,

τjk(i) =


k if i = j

j if i = k

i if i ̸= j , k

▶ Observe that
τ ◦ τ = ι

and therefore
τ−1 = τ
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Any permutation is a composition of transpositions

▶ Given σ ∈ Sn, denote σ0 = σ
▶ If σ1 = τ1,σ0(1) ◦ σ0, then σ1(1) = 1
▶ If σ2 = τ2,σ1(2) ◦ σ1, then

σ2(1) = 1, σ2(2) = 2

▶ Given 1 ≤ k < n, assume that σk satisfies

σk(1) = 1, σk(2) = 2, . . . , σk(k) = k

▶ If σk+1 = τk+1,σk (k+1) ◦ σk , then

σk+1(1) = 1, σk+1(2) = 2, . . . , σk+1(k + 1) = k + 1

▶ By induction,

τn,σn−1(n) ◦ τn−1,σn−2(n−1) ◦ · · · ◦ τ1,σ0(1) ◦ σ0 = ι

and therefore

σ = τ1,σ0(1) ◦ τ2 ◦ · · · ◦ τn,σn−1(n)
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Parity or Sign of a Permutation

▶ If j ̸= k , call τj,k a nontrivial transposition
▶ Given any permutation σ ∈ Sn, its parity or sign, which we will

write as ϵ(σ), is defined to be
▶ 1 if σ is the composition of an even number of transpositions
▶ −1 if σ is the composition of an odd number of transpositions

▶ Easy consequences
▶ ϵ(ι) = 1
▶ If 1 ≤ j ̸= k ≤ n, then ϵ(τj,k) = −1
▶ For any σ, τ ∈ Sn, ϵ(σ ◦ τ) = ϵ(σ)ϵ(τ)
▶ For any σ ∈ Sn,

ϵ(σ−1) = ϵ(σ),

because
1 = ϵ(ι) = ϵ(σ−1 ◦ σ) = ϵ(σ−1)ϵ(σ)
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Existence and Uniqueness of Sign Function

▶ This is the consequence of the following:
▶ A permutation is never both the composition of an even number

of transpositions and the composition of an odd number of
transpositions

▶ There are straightforward elementary proofs

▶ There are also many sophisticated proofs
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Endomorphisms of {1, . . . , n}

▶ Let End(n) denote the space of all maps

ϕ : {1, . . . , n} → {1, . . . , n}
▶ Let Aut(n) denote the space of bijective maps in End(n)
▶ Observe that Sn = Aut(n)
▶ The sign function ϵ : Sn → {−1, 1} can be extended to the

function
ϵ : End(n) → {−1, 0, 1},

where, if ϕ ∈ Sn, then ϵ(ϕ) is defined as before and

ϵ(ϕ) = 0 if ϕ /∈ Sn

▶ The extended sign function satisfies the following properties:

ϵ(σ1 ◦ σ2) = ϵ(σ1)ϵ(σ2)

ϵ(ι) = 1

ϵ(σ) = −1 if σ is a nontrivial tranposition
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Alternating Multilinear Functions

▶ Let V be an n-dimensional vector space
▶ Let T : V × · · · × V → F be a function of n vectors
▶ T is multilinear if for each 1 ≤ k ≤ n, v1, . . . , vn,wk ∈ V ,

a, b ∈ F,

T (v1, . . . , avk + bwk , . . . , vn)

= aT (v1, . . . , vk , . . . , vn) + bT (v1, . . . ,wk , . . . , vn)

▶ T is alternating if for any v1, . . . , vn ∈ V and σ ∈ Sn,

T (vσ(1), . . . , vσ(n)) = ϵ(σ)T (v1, . . . , vn)

or, equivalently, for any v1, . . . , vn ∈ V and σ ∈ End(n),

T (vσ(1), . . . , vσ(n)) = ϵ(σ)T (v1, . . . , vn)

▶ Let ΛnV ∗ denote the set of all alternating multilinear functions
on V

▶ Each T ∈ ΛnV ∗\{0} is also called an oriented volume
function of V
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