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1, Introduction,

By a cohomology theory for spaces (complexes) we mean
a triple (Hp 1 ,S) derined on a olass ¥ of apaces (com~-
plexes) such that

(1) Por each pair (X,A) in Ty 1,8, X, A €2 and
A ¢ X, and each integer p > 0 there 48 an attached abelian
group Hp(x.A). |

(11) If (X,A) and (Y,B) are pairs in € ang g is a
continuo_ua function (simplicial mapping) of (X,A) into
(Y,B), there ig &n attached homomorphism r*: HP(Y,B)-—->

Hp(x,A), called the induced homomorphism,

(111) Por each pair (X,A) in € and each integer p > 0

U +
there 18 a homomorphism § ; HP(A.z)-—->Hp J‘(x,A)’, called

the coboundary opera tor, |

' C» #
Two cohomology theorjl.ea (lﬂp,lf ,18) and (aﬂp,ar ,28)

defined on the same class ¥ of topological spaces (conm-

- Plexes) are sald to be equivalent if and only if for each
pair (X,A) in ¥ and each integer p > 0 there is an iso~

morphism X of 1Hp(X,A)wonto gnp(x,a) such that the

_

1



commutativity holds in the diagrams: :
Cw

h & . -

B wPx,) T e S P (x4
x @ x | TK | TK
R L L

+1

5 ¥

Mhny.derinitionslhavg been given eitending tﬁe co=
holeogy theory rrom.opmpléxea to spaces, The theories
moat commonly used are. the Cech, the singular and the
Alexander-xolmosororr_thedriea—{63537], It is well-known
that finiteness oondiﬁiona (e.8., finite dpen coverings)
lead to non~intuitive results for very simple apacéa.' In
order to avoid this situation (as well as for other rege
sons) it is customary to introduce compactness in some form,
compact supports, compact cohomologies and so on, This,
however, introduces difficulties in applications, Very
Lfew function.apaces, for example, are provided with a
surficient'number of compact subsets, For reasons now
familiar the singular theory is inadequate, Even for
locally compact connected finite-dimensional groups satige
factory results about regularity in the small have not yet

teed'dﬁtainé& id suffieient amount to permit application

L
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of the singular theory% One is then 1nc11ned toward the
Eeéh theory (using quite'arbitrary covéringa] (2] or the
Alexande;-xolmogororr theory, Dowker (2] haa shown that
the unrestricted 5ech cohomology theory ror general spacea
satisfies the Eilanherg-ﬁteenrod axioma 1413 thererore b §
has an:advantage in oertain applications, But unfore
tunately an elaborate macﬁinery of compiexes, orientation
{or orderlﬁg} and limit-groups is essential to éveﬁ the
definitioﬁ of the Eeoh g¥oups. _ However, the Alexander-
‘Kolmogororf theory is more immedlate and direct, The
Eilenberg-Steenrod axioms éxcept the homotopy axiom are
known‘to be satisfied in this theory with no restrietions
at all on-the spaces and mubhlmore is known {11)] when the
space is fully normal (9,p,63], It is only recenfly [1;
10311] that the usefulness of fully normal spaces in
algebraic topology;haa been recognized, We note that this
category of spﬁces contains both metric and_oqmpact
Hausdorff apaéeq. Further, A, H, 8tone [8] has shown that
for Hausdorff spaces full normality is the same as para-

compactneaa. Thererore it 1s desirable to have & sultable

-

L . - o
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cohomology theory on this category of apaces,

. In this paper it is shown that, for fully normal spaces,

the unrestricted Cech cohomologx theoryiig aqu1Va1ent.32

the Alexander-Kolmogoroff ¢ohomology theory, Hence for

fully normal spaces the Alexander-Kolmogoroff theory is a
reasonable choice, since 1t has the advantage of a simple
definition and it has all the properties the Sech theory

may have,

An immediate corollary of our result is that for
compact Hausdorff spaces the Alexander-XKolmogoroff co-
homology theory is equivalent to the restricted éeeh co=
homology theory {73, Morerer, we obtain the homotopy
theorem for the Alexander-Kolmogoroff theory over fully
normal spaces by using Dowkgr'a result, iherefofe the groups
of convex subsets of linear metric spaces and thus the groups
of Euclidean spaces all are trivial, Purther, we see at
once that’if a fully normal space has Lebesguo dimension
[5,p,4] at most n, then its groups in dimensions above n

all vanish, Looking at our result from another direction

£ % _
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we also know that the extension and reduction theorema [11]
hold for the unrestrioted Cech cohomology theory over fully

normal apacea, Hence the map excision theorem holda.

Section 2 contains a brief uketch or the ordered

. eohomology theory or aimplicial eomplaxea, The Filenberg-
‘ steenrod axioms for guch a theory are atated, SEctiop 3 N
deals withldirect ayetgms or groups and aomelelementary

properties are given,

Both Sections 2 and 3 ars used to develop the machinery
to define the unrestricted Sech cohomology theory which is
given in Section 4, Our treatment is essentially the game

88 Dowker's because of Eilenberg's wesult [3.p,41§]~

In Section 6 we sketch the Alexanhernxolmogoroff co-
homology theory and state some results which we need in
Section 7, (5,9) is exactly the lemma 9,1 in Spanier [7];

however we atate in a manner nuitable ror'our'purpoae,

-

Section 6 ias preparation for the following section,

Ve discuss full normality and eertain homomorphisms between

B n £ % - Fad e e



[_ s ]
the cochains of a simplicial complex and the cochains of g
space, In order to avoid the confusion which maj arise in
the défigition of é'canonical covering aelwell as‘in—sdmé

places in Section 7, a ﬁora'prepiae definition of a cover

(i,e,, an open covering) of a spaces is used 1n-thia‘paper;

Finally, the main theorem and several corollaries are

proved in Section 7,

In the'appendix‘we give\q proof of the homo topy theorem
for the Ale#anderwxolmogoroff theory over fully normal
spaces without involving anj simplicial ecomplexes, Ve
prove also an analogue of Eilenberg's result for the
Alexander-Kolmogoroff theory, that 1s, the theory based on
"ordered' cochains is equivalent to that based on alter-

native cochains,

This investigation was conducted under the supervision
of Professor A, D, Wallace to whom the author is much- ine
debted for his valuable suggestions and assistance during

the preparation of this paper, The author is also indebted

| to Professors J, L, Kelley and J, D, Newburgh for the care |
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with which they resd the various drafts and their kindness

in suggesting aimplifications and clarifying modifications,
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2, Cohomology Theory of Simplicial bdmplexés@

Let 8 be a set, A non-null finite subset of 38 is

called a simplex in 8, A collection K of simplexes in S isg

8ald to form a simplicial complex if and only if any none
null subset of a simplex of K is also a simplex of X, The
union of the simplexes of K will be denoted by S(X), 4

subcomplex of a simplicial complex K is a subcolliction of

K which is also a simplieisl complex, A pair (K,L) of
complexes consists of a simpliclal complex K and a sube

complex L of X,

Let XK be a simplicial complex and let p be a none
p+l
negative integer, Denote by 8(K) the (p+l)~fold carte=
sian product of S(K) with itself, Then every element of
p+l :
S(K) is an ordered (p+l)=-tuple (no,,...ap) with 1ts
- p+l

coordinates ao.....ap in 3(K) and 8(K) consista of all
these ordered (p+l)-tuples, There is a funetion on

%
S(K)p } into the subsets of S(K) defined a8 follows:

. p+l

Whenever § € 8(K) its image |§| 1s the set of coordi-

nates of § , An element § of 8(K)p*1 i» an ordered

L ]
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p-simplex of K if |§| 418 a simplex of K, The set of all

the ordered p-simplexes of K will be denoted by X(p),

Let @ be a fixed dddit;vg abelian group used as eoefe

ficient group throughout this paper,

An ordered p-cochain of a'simplieiai‘ééhplax Kis a
function from K(p) t0 G, The set of all the ordered p-
cochains of K is a group Gp(K)'with funetional addition as

its group operation,

There 1s a homomorphism & : ¢P(k) —->cp*1(x) defined

by
i @ 3 . | N g o ) :
(2-1) ‘ (S‘P‘)‘aol-..lap*;) al Ef:o(“l) ?(aoloqo!a\iltoctap*l)'

)u

Where (aoiooola ) G K(p"'l) and ‘aotnco!aiitaolap+l

(Bon.... qe 1.31*1.....3 +1)' which ia elearly in K(p) |
Strictly apeaking,_s is a homomorphiam dependent on K and
< But in this paper we rollow the usual convention

that bhe eame notation s nmy denote any one of theae

homomorphiams. (aee, ror examplea, [6,p,116]. t?,p,409],

ete,)

_



- ¥ ‘ N
Let 55 be the composite funetion of '5: cp(x) —
¢® (%) ana 5 P Lx) —> P (k) dorined vy 55¢= 3(59),

Then
{2.2) 5% = o0,

Let (K,L) be a pair of complexes, Then L(p) is s sube-
set of K(p), An ordered p-cochain ¢ of K ig called an.
ordered p-cochain of X.mod L if. Y = O on L['p)-._- -The set of
@11 the ordered p-cochains of K mod L form a subgroup

GP(K,L) of cp(x).,. Ob'&ioualy weé have

(2.3)  ¢P(r,1) < P k,1,

The group zp(K,.L} of ordered p~cocycles of K mod L is

defined by
(2,4) zp(x,_r.) = {¢|ve cP(x,1) and 59 = 0},

The group Bp( K,L) ofvordered p=coboundaries of Kmod L is

defined by

g = 5C" T(K,L) if p>0,-
(2,6) B(K,L) '{ T
{.0} ifpe 0.

I_ Using (2,2), (2,3), (2,4) and (2,5) it %8 trivial

_
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that Bp(K,L) c zp(K,L), that is, Bp(K,L) is a auSgroup of
zp( KoL) Ve may therérore 1ntr6ducé 'tﬁe factor group

(2,6) H(K,L) = 2P(x,1)/BP(k, 1),

It is known as the p=th ordered cohomolcﬁ Ex-oup of K mod L,

end its elements as the p-th ordered eohbmologx classes of

K mod L,
If L -‘ " ('The' nyxﬁbol # will be used to d‘enot‘e the null
' set), then ¢ (K,n) a2 G (K)., The groupa zp(x,z), B (K,ef)

and ol (K,z') will be reapectively designated by 2 (K), B (K)

and HP(X),

Let (K,L) and (Kl.L ) be two paira of' complexes, A

simplicial mapning J: K --—*K is a function from S(X) to

s(xl) auch that whenever G ¢ K, J(e) € E‘.l

mapping Jz‘ (K,L) —> (Kl.Ll) is a aimpl;cial map'ping Ji1 K

A simplicial

--)Kl such that whenever a ¢ L, J({o) ¢ LJ. Therefore
L 3

every simplicial mapping j: (X,L) —> (Kl.l’..'l) induces a

s

simplicial mapping (J|L): L —-)Ll defined by (Jj|L)(a) =

j(a), a € 8(L), If K c l&. and L ¢ Ll’ then the injection

[_of 8(K) into 8(K ) defines a simplicial mapping i: (x,L) |
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—— (Kl.Ll), cal).e@ the injection of {X,L) into (Kl,Ll).*
The injection of (K,L) into itself ig called the identity
mapping, |

- Let J3 K'_)\Kl‘ be a simplicial mapping, Then § induces
& function Jyt K(p) — Kl(p) defined by J#[ao,.\,,_,ap) =
(J(ao)“°“'”ap))" (aott".alap) € K(p’).‘_,_ . Therefore J induces
a homomorphism §%; c"(xl) — ¢”(K) definea vy (S%0)(5) =

P348)s P € C°(X)) and Fe K(p), or

(.2.,7) ( J#T) (aouqo.oﬂp) af( J(ﬂo) ...'.,.J(a'pil )s (aol e .pap)

- 18 an element of K(p),

The composite functions 5% and §#5 from cp{xl)' to

Gpﬂ(K) are homomorphiamq and

(2,8) FJ%a g¥5,

If J1 XK — Kl and jlx Kl--) K2 are simplicial mappings,

then 8o is Jlj:‘K—>K2._ Using (2,7), we have

(2,0) (3, % ¥,

If L 1s a subcomplex of X and if 1 is the injection of

IL—in'co K, we can easily verify ' | __]



(2,10) ¥, Gp(K)—-—) OPIL) ig_ onto and the kernel of

1* 15 cP(x,1),
Hoy let § be a éimplicial mnppj.ng_or {K,L) into (51'1‘1)'

Then J#L(p) < Llﬂp) and hence o

32)  ME L) < i,

Prom (2,4), (2,6), (2,8) and (2.11) we infer that

(2.12) J#ZP(KI.LI) <251,  MP(x,L) c 5P (x,m

It rollowa rrom t.he 1nduced hoxnomorphiam theoz-em th.at there

is a unique homomorph;l.am HP(K .L ) “ H‘p(}:{ L)
j $ HP(K ,L )—-Hip(K,I.) ; Tn ' B T‘(
such that . ~ Zp(I{I.Li)._-—i.-‘ﬁ—-— zp(K,L) .

T ca.,_lsi ER AL LTS Ly ).' |
where 7: 2 (K,L)—#HP(K,L) and ‘( i z (i& 2L )—-) .

H (Kl.z. ) are natura]. homomorphiama, J 1a the 1nduced

homomorphism of .J-

B (L) —— L
. T* '
P *  w-1p 3

2 (L)e——- 1" "z (L) —_— Z 1(K,~L)
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| Let (K,L) be a pair of complexes and let 1 be the ine
Jection of L into K, Then, by (2,10), the induced homoe

morphism i¥; cp (K)QOP(L) is onto. Therefore
BP(L) = pa¥s# 1P,

1r ¢ ¢ ¥ 12P(1), then i#'{’é zP(1) and 1*89= F1%¢ = o
it follows by (2,10) that §‘[" € cp*l(K,L). Uaing {2,2) and
(2.4), 59 € 22" (x,1), Homee 51*"1.P(5) ¢ 2" Mx,n), 1o
e € E°(L) and @00, ¢ 1*1 8 te, thenrorpuO,SUP ‘P) €
3% 1%L = 5¢° (X,L) = Bi(K, L) and for p » 0, S~ 7,) €
51*'13 (L) = S 15cP" (1) ¢ s #L ML) » $0), Hetce
gg;pl = Xs% where X 1s the na tural homomorphiam of
{K,L) onto Hp (K.L) conaequently there is a unique-

+ .
homomorphism 9 ; Hp(L)—er, 1(K,L) such that

(2.14) Sp* =y on #LP(y,.

& 1s .the coboundary operator,
The following definitions will be needed, Let K be a
slmplicial complex and-M a subset of K. We denote

St = {oc|oc€Kand o> o' for some o' € u},

L_ Cl¥= {c|c€Kand orco' for some o' € M3, _]
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- ¥ is sald to be open or closed (in K) according to St M= M

or Cl M= }f, A sequence of groups and homomorphisms |
n h’ h h h
Gl'_—l_'*‘ 02"'_2 —Psee '—'p'l"ap'——'p- _*Gp*l——p'*l-*_.f.‘

is said to be an exact. aequence ir the kernel of b lequals

the 4image of. hp for all p> 0 and if the ‘kernel of b‘l is {0},

On,the clasg of aimplicial ,comp;éxes. | the omered coho=
mology gréups, t}:_xe induced hompmorphisms and the coboundary
operators defined respectively by (2,6), (2,13) and (2.14).
form a ecohomology theory in the sense of Sect;pn 1, Thias

theory satisfies the rollbwing Eilenberg-&teenrod axiomsi

(2,16) Algebraic axiom 1, If 1: (K,L)—>(X,L) is the
identity mapping, then 1": HP(K,L)—» 5P(K,L) is the iden-

tity isomorphism,

(2,16) Algevraic axiom 2, If §u (K,L)—> (K ,L) and

le (Kl'Ll)—_’(Ke’:La) are simplicial mappings, then

i L -
(3,07 = 3 %3

(2,17) Algebraic axiom 3, IL 35 (K L) — (K ,L,)

Lﬂ simplicial mapping, then J“B = 8(J|LJ*,, __]
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(2,18) Homotopy axiom, If § and Jl are simplicial

mapoings of (K,L) into (Kl,l:.l) such that whenever . ¢ ¢ K,

j(c)UJlt&) € Kl and whenever o €L, J(G)Ujl(c) € I'J.’ then

J* = JI*Q_.

(2._19)' Exactness axiom, . Given (K,L) and the injec-

tions 1: (L,#)—>(K,”) and J¢ (K,¢)— (K,L) the groups

and homomorphisms

i o 1% -
P —si®m 2, P Py,
i . # ’ S
g £ ity ¢ % T AP

form an exact sequence, called the cohomology sequence of

‘K’L). ‘

(2,20) Execision axiom, Given {K,L) and an open subset

K of K with C1 M ¢ L, the injection Js (K'-M,IPM)-—)(K,L)

3 ‘ %
induces isomorphisms J Hp(K,L)-—-> Bp(K-M,L-M) for each

pzo,

(2,21) Dimension axiom, If K { a simplicial complex

Sy Gt

with S(K) consisting of a single element, then Hp(K) = {0}

for each p» 0,

g - ]
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The verification of these axloms will be omitted, since
there 1s no difficulty in doing it by following the idea. as

indicated in Spanier (7],

Rerark, In this section we deal with only the ordered

[ J
ecohomslogy theory (Hp,J »8)- of simpliecial complexes, If we

useé orientation instead of ordering, an oriented conciology
~D it '

theory (HP,J »0) of simplicial complexes can be established

in a similar way, According to Eilenberg [3,p,418], these

two ecohomology theory are equivalent, since Eillenberg has

constructed isomorphisms
11 P50 = 1k,

and according to his construction it is easily seen that

the following permutability conditions hold:

17 = 'y 4% =54
o 3t i : “
L) im0 —S P,
R T ST AU |
ok -~ €1
N L L2 W TR P S e

A parallel result holds for the Alexander-Kolmogoroff

[_fohomology theory which will be given in the Appendix,
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S, Direet Systems,

A directed set iAs>] consists of a set A and a binary

.(order) relation > such that (1) MON and Y>> u mply

P >m and (11) for any two elements AyMm of A there is
a third element » guch that P>m and P x, 1If /\1 is &
aubset of A, /\l is cofinal im {A,>} whenéver for every

N € A\ there is come A, € /\1 such that Aj> A,

A direct system is a quadruple {Hzgm,)} such that

(1) {As>} 18 a directed set; (11) for each X € A there
is glven an abelian group H, 3 and (11i) given any X\ , u

€A there is given a homomorphiem _?:“ »f H\—>H, such that

M>x and P> imply §, = SonSue

Let E' be the weak produect of the system {H, |ne /\}.
that is, the group of all the functions £ on A to
UTH,|n€ A} such that £(x) ¢ H, for all A and £ s

finitely not zero, For each m € A Jlet P. be the natural

-~

function on g ' into E' defined by, for e, € Hﬂ,
X =
,U-
L G 0 otherwise, _

18
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 Clearly each p,. is an isomorphism gr H, into E' and every
no_n-zero element of E'_ ha_a a unique repreéentatién |
2’\ P p,\:e,\,_ where P ;q e finite aubs;et of /\ and each e,
16 a non-gero element of H,, Let K'' be the subgroup of B'

generated by elements of the form

P&, = F,u%..,?o\ for ANomEN, ,}k?-’\ » €, € Hy,
'The factor group E= E'/E'' 1g the limit-group of the
direct system {H;%;A,>}, written

E= ln {H:8:5A, 51,

' Let T be the natural homomorphism of E' onto £, Let
In = TP,» the natural homomorphism of H A into E, ‘When~
ever e, € H, and m>X we have ’7,\9,\??9,\9,\'* TP, 8\

"TPu 508 T TRuS8a = YuE, 00 Hence

(3,1) I = 2.;3;“,\ (m>x),

(3.2) For each e € E there is some %€ A and some

e, € H, such that @ = .9)\9.\‘

(3,3) Let e, €H, 5% = O if and only if §‘N\e'\= 0

L;_q_z_: BOME D>,

_
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‘The proofs of (3,2) and (3.3) are omitted; see, for

example, [6,p,57],

(3.4) let {H;E&:A, >} are {ﬁ;%’z?{,$} be direct systems

and E and E their respective limit-grougs For some pairs

(», er) with X E A and o € A there is given a homomorphism

' 'SM,: 'ﬁ}'—> 1& ~let Z be & set of these homomorphisms, Ve

S DN G B

write X %6 whenever there exists IR - z,

If the following econditions hold:

(1) For each @ € A there is some » € A such that
Aro .
{11) mw>areSe implles u¥ @, Arp , Sy

§/A}.\v 800 Syum -\Q“gcf'

Then 2 induces 2 unigue g_omomorphism % .%’——)E such that

7)A-g*c= -517 for all Ay O where ’9‘\_: H,\—»E and 70,.

L

: ~>E are natural homomorphisms

Proof, Let %". £ ks 'I\,-:","F,“"., ?)'q. be the analogues of

N e oay
I

E', E'1, E, To p,» 9 for {H; ;A,g}. Fix an e ¢ ?{'u.,

~~

o ¢A, By (1), there is some ‘XN € A such that Lx)-c';

therefore 7,4  e_€ E, If >»%¢ and M. ¥ @, there is, by
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the directedness of A>3, an element » of A\ such that
P>X e&nd P>m, It follows by (ii) that MNeste =

Wi Bac * Wies = Evp.'gﬂo-eo- = Jm%uotye Hence a ho-

momorphism 43 E'—» E is defined by, for each e ¢ ﬁ,,

(3.5) 1(Peee) = 03,8 (A>o),

Since E'' 1s generated by elements of the form P e -

Befeets for o, P A, p So, eq € H,, and for each Beey =
~ o ~ Lol ~
Pp8pefr We have 1(prey « Fplpec,) = DnBace = DdSae oo
=0 (X+pSo), 1t follows that 2(E'"') = 0, Hence there

is a homomorphism *‘5’: ﬁ—-)E such that <, = ‘\i'}". If x>0,
then %5:_: ‘E'?-'fa'v_ = ‘;ﬁ', = ),%.¢s By (3.,1), every element e
of E has a representation e = i,e, for some o ¢ 7\ and

some e, '€ ﬁ;, It follows that ie = {ﬁre.-ﬂ "7,{5,\,.e¢.

Hence ‘z is unique, Q,E,D,

(3.6) Let 3H;§iN,>} be a direct aystem and E 1ts

limit-gz_:oug. Lét K be a subset of A with {?\',)} being

directed and let {Higi?\',>} be the direct subsystem

attached to {A,>} end E its 1imit-group, Then there is

& unigue homomorphism X: F—spg Buch __t!’_la_f_ "= 7‘3; for

L _
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A
all A € ?\' » Bhere % : H,—>E and Dt H,\-—)fﬂ' are natural

homomorphisms, Moreover, ir 7\' is cofinal _5_.3{/\. >}‘ »

then % 1.3 an isomorphism onto,

| Proor. Let Z u{gml:\e/\,ﬁel\ and x>,u} fIhen the
condition& (1) and (11) of (3,4) hold, It follows that Z

induces a unique homomorphism %: §E—E such that for

each M € K, L3/ ’7,3)*, Yo (N€A ana x>,u.)

' o 3 ~ . * . ~

Now suppose that A is cofinal in A, >, letec¢ X
be such that e = O, By (3.2), there is some N€EA and

: oy | : a . ~r
some €, € H, such that e = 7x€x.. Then ¥, 6, = xy.e, = %e
- o, Ii rol‘lows by (3,3) that there 18 some ,Q.)J\, MEAN,
such that §, e, = 0, Si.nce A is cofinal in {/\,)},
there is some V ¢ /\ such that P>, Therefore E SN

§,ﬂ 5urEa = O and e = ?],‘e,\ur y,,gue,\_. 0. This proves

that % 1s 1-1, Given any e ¢ E there is, by (3.2), some
A€ A and some e, € H, such that e = ), 6, Let € A
be such that M >A, Then e = Dresm™ yA§ AT xgﬁ%e,\

k Ay
=Xe'with e' = )3 e, €T, Hence % 1s onto, Q,E,D,

l_ (3,7) let {H‘“;gu);/\u).>“)3 be direct systems
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| (1) ,
with limit-groups '/, 1 = 1, 2, 3, let {/\,)3 be a

divected set and let there Eg_given, for each i, _g funetion

ti: f\'——b/\( } s8atisfying the following conditions: For'

each X € A we denote t,(A) =A0 1= 1,2, 3,

1
(1) If m>X, A, €N, then Ay >( }'\1’

.(11) k- (A) is cofinal in {A (“ >“,‘)3.

: (111) For ea¢h X € A there are._given homomorphisms .

_ L2) (2) (2) (3)
cog,t H_M———-pﬁ&: and .t H‘,\:“'——H‘\3 such

that (a) the kernel 9_{‘ r, is thelimage of qQ

and {b) whenever MP>Ns Ao M E/\. we have -

(2) (3) (2)
g/“g’\; /"g 'kl and g/“s&} ‘M'gﬂ.l.‘\l

let Q be the set of homomorghisms of the forms q (2)

A? iPx SN
q)xg(Al‘:" 3(:1) -)s;il) M_ )\EAI o€ /\( )9 'PE /\2)

,\ >u) f>(2))\2, and let R be the set of homomorphisms

3 (2) 3 2
of t:he. forms r,, §£‘&ir)\, rkga\;w §(n)3&§gu)r with N€e A,

q € /\{2). PeN ). )\ >‘2}o' P>‘5)J\3. Let q: E(l)

E(2) and r; E(ZL__)E(S) be the respective induced

homomorphisms of Q and R in the sense of (3.5),' Then the

kernel of r is egual to the imag?a of q,

L - Proof, We note that (111), (b) 1s meaningful because___] :



of (1) and the funetions q and r are well=-defined because of
(11) and (111), (b), Denote by Ifq) the image of q and by

K(r] the kernel of r, For each X € A 1ot 9 ve tne

natural homomdrphiem'of iii&) into E“), 1= ‘1. 2, 5,

'(1)

(2) (2) (1) (1) ¢

Let_e € I{q], say e "= qe "’ with =}

By (11) and (3,2) t.here is some )\. € /\ and some e(l).

(A.') auch thab e(l) m {1) (:), Applying (3,8), we have
T Waneld) - o,

Hence Ifq] < Kfr],

Lét‘e(a) € K[r]. By (11) and (3,2) there is some >~. €N
(2) ( )
ha

and ‘some e, such that e e{?) y£ )e(z) Since

U(s)r é'(g) = 'rp(z)ei_z) = re‘a) = 0, it follows by (i1) and

(3,3) that there is some m>x, M€ A » such that

§S‘iis r, e ig) = 0, or r,, /“* 12) =0, :By hypothesis, there

is some ei_) € H/(“l_l) such that q g e( ) §j§l‘ (f), Let

R I T ¢ qr Ml vf)ﬂf,})

v)f)gizlef):; (2)3&2) = 9(2}. Hence K(r] < Ifq], Q.E.D,
2



4, Unrestricted decn Cohomology Theory,

Let X be a topological spaea and q(x) the collection
of all the open subsets of x Lat A be a aubset of X, A
cover {)\ N } of A in X conaists of a set )\ and a
function .xo on )\1 to Q(X) suen that v {-\O(u) \ u 6)\1}_
S A, A cover of X is a cover of X in X, Let {xo:: -\1}
and {m ;M 3} be covers of X, By Mg ml > {XO:)\I}

we mean that there exists a function p: My )\1 such that

for each v € Mys M (V) c A (p(v)),

By a pair (X,A) we mean a topological space X and a

subset A of X, A covering , = {,\ L Y ,)\2‘3 of a pair

(X,A) consists of a set )\ 17 @ subset )\ of )\1 and a

function N5 )\1-—> Q(X) such that {)\ 1). is a cover.
of X and {"o \)\2; )\23 is a cover of A in X, Denote by

A (X,A) the class of all the coverings of (X,A), If A » M
€ A(X,A), M>X\ will mean that there exists a function

P Ml—? )\1 such that (1) for each v E/ul, /“o(v) c
)\o(p(v))' #nd {(11) p(/ua) c N, It 1é c¢lear that, if

2
MOx and PO, N M, » € A(X,4), then P> N, Given

L | | . _

26
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any two X, M € /\(X,A) let Dlu )\lx/u.l, ))aa )\ex,u.e
(cartesiean products) and define l)oé Pl——> Q(X) vy

P (u,v) = Nol®) M (V)5 (u,v) € AN X M. Then D=
iv,? Pqe Pzg € A\(X,4) and‘ﬂ>)\, P>/4l, Hence -

A (%,4), >3 1e & atrected set,

Let A = {)\0; X #x,} bea covering of (X,A), A

finite non=null subset O of )\1 is a simplex of K, if and

Conly if N {)\o(u) \ u 6:0"} ¥ #, Clearly K, is a simpli- _
cial complex, Let L, be the subcolle;:tion of X, such
thﬁt G 1is in L, 1if and only if o c )\2 and AN
(n{)\o(u) | u €0} ) #, Then L, is a subcomplex of Lo i
The pair & ‘“L,k) of complexes is called the nerve of A ,
No{;e that S(K, )= {ulu E N, 8nd X (u) -;b %} and

8(L, ) = {ulutﬁ J\‘z and A N J\'o(u)¢ 23,

‘Let X\ and M be coverings of (X;A) with M>N, Then

there is a funetion ‘p:Ml—'—> PN such that (1) for each

i

Ve, (V) c")\otp(v')) and (11) p'(/ua) c 4\2.' I.i’ v €

S(K/A): then Motv) # 2, Therefore J\o(p(v)) # Z, op

p(v) € S(K, ), Hence there is a function Tarn: S(Ku) —

N | e e
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3(X, ) defined by %X(v) = p(v), v ¢ S(Ky), If G ¢ K.
then O{u (v) |v €0} # 9, Therefore n IN (v | v
€T3} # 2, or Talo) € K., Similarly, if o ¢ L., then

“Mn(®) € L,, Hence T, 1s a simplicial mapping, called

a projection, of (KM, ax ) inte (K, oL, ), By (2,13),

W
induces a homomorphlam Tux # p(K,‘ N )——)HP(K sLude

In geneml, there mn be many projeetions of (K L,u)

into (K, ,L,\ 1o IF 11-”\ 1s a second choice, t.hen for any
o€ K» we have (ﬂ{.\( (v))lvEO'}) ﬂ(ﬂ{)\('lrM,\(V))\
v € 0-3) > n iu (V) | ve o-} # # and hence (o) U ! (¢)
€ Ky, Similarly for each O ¢ Lu » (o-) U ’ll;:x{u-) €L,

3 |
It follows 'by_(2.18) that ’IT#A = TI,'“ o Conaequently, for

aach ,u>.\. ,\,,u € /\(X,A). ther-e is a uniqua homomoz-

phism
*
W, Hp(K,\ Ly ) — HP(KM’LA)

induced by the projections ofr(Kﬁ,LM) into (K, »L, ).

T s Mux 8are pro-

-

Jections, then M, T, is & projection of (K,, ,L,,) 1into

(KEn »Lx )o By (2, 15),

L Towe = (T = 1,10, , _
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L
Hence {Hp;‘tr s A(X,4),>) 1s a direct system, The limite

group

fi'xp('x,a) = linm {1250 A(X,n),>}

i1s the p«th unrestricted Seen cohomolog Eoug‘ of X mod A,
The natural homomorphlism of _Hp(K& sLx)s XN€ A(X,4), into
AY ' ' EP

d (X,A) will be denoted by Oh. If A= g, (X,2) will ve

designated by MP(x),

Le‘t (‘X,A) .and (Y;B) be pairs, By a Eunction £ (X,A)‘
" —> (Y,B) we‘ mean a function £ from X to Y such that
£{A) ¢ B, A mapping £: (X,A) —>(Y,B) ia a funétion from
(X,A) to (Y,B) with f: i-—-ﬂf continuous, Let f: (x,n’)-—%
(Y,B) be a mapping, Given any o ¢ A(Y,B) let If-lc's |
{f'l%“'i"’a}f then 1o ¢ A(X,A)e By x»0, X €A(X,4),
0 € A(Y,B) we mean lthat A D> r"la-._ If _1\'>- 0, there is a
function 602 S(Kx)—> S(Kq4) guch that (1) for each
u € 3(K, ), “\o(u) c r'lwotfm(u))).- or f»\O(u) €0 faglul,
and (11) £, (S(L,)) eS8(Lg). dJust o Wori Bo Ay &

8lmplicial mapping, called an f-projection, of (K',\; L,)

into (Kg ,Lg ), Using (2,18), we can easlly show that all

L ]
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the f-projections of (Ky oL, ) 4nto (KT’I’U') induce the
same homomorphism

fie ¢ H(Kq oLy ) — (K, ,L, ),

Let F= {f35 | A € A(X,4), o € A(Y,B) and Arel, we

¢laim

(4,1) P induces a unique homomorphism 3 ﬁp(Y,B)—-—)
vD o v
H (X,A) such 9, £, = £ for all A >0 , Where 7
HO(Kx »Ly ) — EP(X,A) and 7, : H (Kg Lo ) —> H'(Y,B) are

natural homomorphisms,

Proof, It is sufficient to show the conditions (1),
(11) of (3.4), .Given any o € A(Y,B), f-lo'E A(X,A) and
f-lo- > 6, proving (1),_ If M>A >0 and Tus 48 a proe
jectlion of (K, ,L.) into (Ky sLy ) and f,0 18 an f-
projection of (KJ\ »Ly ) into (Ko sLg ), then for each v ¢
S(Ku )y Mo(V) € X (T, () € £76, (£, M (v)))) and
O Tan(8(Luwd) € £,5(8(L, ) © 8(L,), Therefore %o

-

and £, ‘W, 1s an f-projection of (KM,L/“) into (K, ,L, ),

Bence

" & P
I—- t;ulr’ ‘r)w"fax) = WL nge _.I
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L2 * % _,
Similarly, if A»o0> P, ‘then A»f and ILap = fao Tep

Hence (11) is proved, Q,E.D,

Lef; (X,4) be a pair and le(tli be thg_ injection Qr (A,2)
into (x.ﬁ). Given any. xle A (X,4) we_denote_xo =_1u1()\°\xé)
and £ = {Koz xz.ﬁ} 3 then X € A(A,#). Ve can easily see
that S(L, ) = S(Kx ). and the injeetion O, x s'(!I'.k} iy S(K;)
is a simplicial mapping of L, into Eie LBt X € A'(X’A).
and ¢ €_/\(A,ﬁ). By Aro we mean I}o*. Let X o
and let, &, : HP(LA R Hpﬂ(K'\ »L, ) be the coboux_;dg;-y _'
operator defined ‘o} (2.3:4),; Then

' &+ %
(4.2) S = 3, 0.x Mo
¥ o
is a homomorphism of Hp(Ko. ,Lw) into Hp .:L(KA oLy ). Let

A= {SM,.I NE A(XA), & € A(a,n) and At vi, We assert

" 2 ; ° . v " -
(4.3) A induces a unigue homomorphism § : Hp(A)

ﬁpﬂ(x,.q) such that pASw=§po_ for all Awo , Where %,:
‘ ' +1 +1
; HP(KA alig Yoy ﬁp(x,A) and 7 ; HP AEBg yLg ) —> 1P —(a)

are naturasl homomorphisms .

Proof, Ve have only to show the conditiong (1) and |

_ S o
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and (1i) of (3,4), Iet o ¢ A(A,2), Let uo be an element
not contained 1n ¢, end let A, = G’l and ,\1 e P iu },
Define a function A :)\l——bQ(X) (the collection of all

the open ‘subsets of X) such that x (u ) = X and, for each

u exa, X, (u) =ang (u). Then xa {A ;Ll.x 3 € A(x A)
and A o _ . Henee (1) is proved '

-

!

If Aro> p, then X >0>p and hence X>Pa or XkFf.

By (4. 2) we have SM.TT = 8‘ G ‘rr_ ‘n'ﬂ,s SAG,;TI‘;_", = 80,

H"*"'/V P+l LA o n)lf'"-
(E‘\’LA)‘—-LZ A(KA'I‘A)""&A‘"Z ar(Kﬂ’I’u)__’H (K ’I‘A)
5 § . : T
. i ».
| 1N 2P, )——’~—>f‘“ 2P
Y By T - 5.
. v ) ! #
22, )— T gP(p
P : \
t ¥ A s
4
3%
O
g
e — Hp(K;J
kS
P al
H(X_,L,)

Ef A >N\ -0, then }2 >x >0 and hence >0, or /ut-o‘.._l
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Let Mux be & projection of (KM»L») into (K'\.L‘\) and
let 41 : L —-rK,\ and i,: L,— K, be the injections,

Define "lTMa TualLu, Then 1,'m,, = TMuala and hence
2 LI A CIearly 'wh2P(L,) ¢ 2P(r,) ana
w* 2P (k,,1,) < 2P* (KA,L#). since t¥ H Py ) o

AT ) -« R P,) e 2P, TP, «

'#lp

2°(L,). Moreover, S ,M= Mt‘é- o« It follows by

(2,14) that T BABIL = Tun VoS = LuTob = Y, S My
# # #* # # 1
B Bu 1/4-133 = ST Ix = SaMuapuil om 13 2P Ly)»

ﬂ'

+
or M 0% = SuMe M., induces a projection Ay

%
Kﬁ - Kx such that ﬂ-ﬁieﬂﬁs 8, % 1‘:4‘»}\ o Hence O -T--

‘Mo Oz

o Slnce Wz, M., “'xa- are projectlons,
| # #

’IT-- ’n'-sv.a Moo o Hemce M, % = m, S, 0 ’T['-c. s
sﬁ- ‘TA‘\ G.x'i ’ﬂ'x o 8 GM)-\- M;’ITXU' = § GM,-A-’"fA-r = SMU'o

The condition (i1) is proved, Q.E,D,

v
Remark 1, The systen (Hp, £, §) is the unrestricted

Cech cohomology theory for general spaces,

-

3%
the ordered cohomology theory (Hp o

If we replace

§) by the oriented

P i A
cohomology theory (H‘p,J » 2 ) (see the Remark of Section 2),

[_then Weé can establish a new ¢ohomology theory for general__]
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spaces, i,e,, the Cech cohomology theory based on infinite
éoverings in Dowker [2], Using the remark of Section 2
%% { s ~iE A
(Hp;j » 8 ) and _.(HP,J.. 5 ) are equivalent; hence, by Dowker's
| v n : vp v oy

result, the unrestricted Cech cohomology theory (H »£, %)
for general-apaces‘aétiaﬁea the Eilenbérg-Steénrdd axioms

The folloiﬂ’ngl(i,ﬂ is a fundamental lemma used to prove:

the homo topy axiom and (4,5) 48 the exactness'axiom,i'

(4.4) Let (X,A) be a pair and let I be the closed

interval from 0 Yo 1 with the usual topology, If hi 2 (X,4)

—>(XxI,AxI) is defined by hi_(x) = (x,i), 1= O, 1, then

"4 v
h
ho = - g

(4.5) Let (X,A) be & pair and let i: (A,s) — (X,0)

and J: (X,2) — (X,A) be the infjections, Then the sequen-

¢e. of groups and homomorphisms "

B(x,0) =5 P2 .., P 25 2P
"-S-»Hpﬂ(x,.q) --?’—).'.‘.;

-

is exact,

i Lo

Froof, We prove only that the kernel of i: E(p{x)——a»

-
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i’ip(A) is equal to the image of I ﬁp(x,A)-—-—) ﬁp(x). All

the rest can be proved in a similar way,

" Let {A,>3 = {A(X,A),>] and define £ N —>

A(X,4),. tez A 4—9-'/\(}(,;#),' '1:5': AN— /\(A.B)\reapectively

T~

by, fér x.=.{xo;»\l.,\2; I S

t ()\) = {A ol Ay oAs3 s Ct(A) . INGIA 273
t,(\) = {’)‘Cosxe.ﬁ; "

It 1s'easily seen that, if M >X, X\, 4 ¢'A, then i:i( ) >
t,(N), 1= 1, 2, 3, proving (1) of (3,7), & 1(A) = AX,1),
Given any M:x {/u‘o'/‘l’”ag € /\(x,ﬁ) let )\lu-,ul, )\
{vlv € M and (v) N A+ #} and define X Ay
Q(X) by A -9 = Mge Then X = {x '*1'*23 €A\ and ¢ (x) =
{2 .xl,a‘j S {/u ,).&,}123 . Hence t (/\) is cofinal in
MX2),>3,  Similarly, t,(A) is cofinal in iN(a,m), >3,
(i1) of (3,7) is proved, Fix a A\ ¢ A; it is clear that
the nerves of tl(x),uta(x), -ts()\) are (X,,L,), (K,,2),
(Ly,2), Let 1,: (L, .2) = (K, .ﬂ) and j,: (K,,2) — (K NN,

be the 1njectiona, then, by (2,19), the kernel of 1,\

" -
Hp(K\) — H (L) is equal to the image of I Hp(K,\,L,\) -—

L A
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E(K), Let m>x, X, €A, Ten, by (2,16) and (2,17),
the commutativity relation holds in each square of the

followling diagram:

"~

# : #*
B (Kl —32 5 Py e e
. R
Te Gty (a) N2 TRICR LRI
% | P ) iﬂ'
H (K, ,Ly) I 5wk, 25 8P(1,)

Hence (1i1) of (3,7) holda, It follows by (3,7) that the
kernel of i 1s equal to the imsge of j§, Q.E, D,
‘Remark 2, Let (X,A) be a pair, A covering A =

be
Uo"*i"*ai of. (X,A) is said toAfinite if and only if A

1
is finite, Denote by K(X,A) the set of all the finite

) covéringa of (X,A), Then /.\(X,A) is a subset of A {X,A)
and {/o\(x‘,A),‘>3 is directed, If we replace A(X,A) by
;\(X,A} in the preceding discussi_on, then we ean develop

another cohomology theory (fip,f‘, '3) for general spaces,

that ig, the restricted leech cohomology theory, Usually

the restricted Cech cohomology theory is established by

using the oriented cohomology theory of simplieisal

L . . N

R
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complexes, But 1t is equivalent to (ﬁp.f, s ) becsuse of

~ the Remark of See¢tion 2

"
L)

(4,6) For compact Heausdorff spaces the unrestricted

Cech cohomologv theory ia equivalent Lo the restricted

eeh cohomolo ogy theory,

Froof, Let (X,A) be a pair, Then
B(X,a) = 1m {85775 AGx,4), >3e
#(x,4) = 1m {H" i3 AX,a); >3,
[] . Yy
By (3,6), there 1aAhomomorphiam X HP(X.-.;&) — ,H‘p(x',A). such

that for any X ¢ ;\(x,‘A), UNE x;)A,' where 7,3 Hp(K,‘,-L,-‘)

;s -—g.ﬁp(){.a) and :"3,": Hp(K,\,LA) ——s%p(X‘,A') are natural homo=

morphisms, Let f£: (X,A) — (Y¥,B) ’oé' a mapping; we asser?t
that §x - 7(,;., Giveﬁ any e € Hp_(Y;B) there'j;a, by (3,2)
some O € /o\(Y.'B) and some e € H (K,,Lo,) such that e =
JeCos 1O )\. = £ lo-n {,f 0‘ ,cr » Ty 3 H tnen A E /\(X.A):
and M'-(r- B‘y (3,6) and (4 1), we have xres ‘X,fp,,.e,
= x'gkf‘we = ‘)Af,“,e = f?,.e = i“X.’Q,.e,,.-n f;(,e Hence

'x,f = f}c. Similarly we have ‘xS = S'}(, &

L Now let (X,A) be a -Pair of compact Hausdorff 8paces, __]
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that is, X is compact Hausdorff and A, with the relative

topology, 1s also compact Hausdorf:, Then 4 is closed in
X and A(X,A) 1s cofinal in {A(X,4),>), By (3,6), X:

ﬁp(x,A) A ﬁp(x,ﬁ), Hence (4,6) is proved, Q.E,D,
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&, Alexander~Kolmogoroff Cohomology Theory,

let X be a topological space and let p be a non-
negative‘integer. For each cover {j ;,\l} of X,

o+
v {J\ (u) Iu € X 3 1s a neighborhood of Axp L in x° 1,

denoted by {)\ PA }‘p ), 'v;here axP™ 46 tne diagonal of

P et A be s subset of X and let 1 be the injection

of A into X, 1If {A iN3 18 a cover of 4 in X, then

{flxouli is a cover of A (in itaelt‘) and U{(i" J\ (u))pﬂ"

u € A 3 is a neighborhood of AA (the diagonal of Apﬂ

+1
}(p )

)

<
in ﬁp_l

» denoted by {1‘ Agih o If {,\o;.\lg and

1
{Fo;/ﬁ;_are covers oi_‘ A in X, we de;‘ipg )\OA /uo: - ,\ 3 M
._.,.Q(}’) ()\ X Ml is the cartesian product of )\1 and,Ml
Q(X) 4is the eollection of open aubaets of X) by -

(XA u )(u,v) = A (w) A m (v, (.u.vi G A QX M, Then

TN AM,E Sh '“13 18 a cover of A ia X,

Let (X,A) be a pair A p-cochain of X ia a function

+1
fronm Xp

t;o G (G is the coefficient group) 'Ihe set of
all the p-cochains of x is a group c (X) with functional

uddition as ita group operation A p-eochain \f of X is __]

38
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a p-cochain of X mod A.if—and'only ir there is a cover

{ %o ,\13 ofﬂ.inXauch that 'quon {1 N ﬁ}(pﬂ}
(1 is the injection or A lnto k). We can easily show that
the set of all the p—oochains of X mod A is a aubgroup ‘

c (X,A) of C (X).

. There 1s a homomorphism §.= Cp(X)-—?-cp*ltx) defined

by

(5 l) (8"?)(3 PeserX *1) = Ziﬁl ‘1} ‘f(x !o-ilxi!ouolx : )t

p+l
The following are immediate:
(6.2)  §§ = o
| g P
(5.3)  ScP(x,a) e Px,a),
e
C(X,h) = 67(X,X);
. . —l. + :
27(x,8) = § P x,4) 0 oP(x,a);
» S P Y (x,4) +C2(X,4) 1 p>o,
B {0} | if p= 0,

It follows by (5.3) and (5.2) thas Bpix,A)'ia a subgroup

_
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of Zp(x,A). A (X,A) is the group of p-cocxcles of X mod A

and B (X,A) is the group of p-coboundaries of X mod 4,

The factor group
BP(X,4) = zP(x,a)/8P(x,4)

is known as the p~th Alexander-Kolmogoroff cohomology group

of X mod A and its elements as the pP=th eohomology classes
P P

of X mod A, If A= @, then C (X,2) = ¢°(X), The groups

Z (x,zf), B (X,2), Hp{x,z) will be reapectively designated

vy 2°(x), B®(x), 8°(x),

If f: X—>Y 1s a function, then there is g homomor—

phism * c (Y)-—-)C (X) defined by
i
(5.4) (f ‘P)(xol.--!xp) = q(r(xo)lonolf(xp))

+
for ¢ C°(¥) and (x,...0x ) € XP™, By (5,1) ana (5.4)
we can easily verify that £* = §£¥ jow suppose that
{X;A), (Y,B) are pairs and f; (X,A)——»(Y,B) 1s a mapping,
# P P
Then £ C(Y,B) ¢ ¢ (X,A) and * o (Y,B) cC (X,A) There-
fore ;E' Z (Y,B) <z (X.A) and f#B {Y,B) c B (X,A), Conse-

quently there ia a homomorphism f : Hp(Y.B)—-pr(X,A)

l_sueh that | __]
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W
£% = ve¥ on 2P(y,m),
where ¥: ,zp(x,a)—q HP{X,A) and ‘(1: zp(Y,B)——av Hp(Y,B)
: i
are natural homomorphisms, £ 48 the induced homomor=-

phism of the mapping f in the Alexander=Kolmogoroff

cohomology theory,

Let (X,4) be a pair and let i be the injection of A
into X, 4As (2,14), there is homomorphism O : HP(A) —

Hpﬂ(x.A) such that
sp1*= ¥5  on 1*71P(y,

+ o
where @ : zp(A)—>Hp(A) and Y: Zp ltx,a) —-‘!»Hp IIX,A)

-

are natural homomorphisms, © 4is the coboundary operator

in the Alexander-Kolmogoroff cohomology theory,

According to Spanier [7], the Alexander-Kolmogorof?
+*
c¢ohomology theory (Hp,f » ©) for general spaces satisfies
the Eillenberg-Steenrod axioms except the homo topy axiom,
The homotopy axiom was proved by Spanier only when the

Spaces are compact Hausdorff, This will be generalizged 1

(7210},

L
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uontinuous) from (X,A) to (Y,B) and ¢ ¢ ZP(Y,B), Let

SRR NIT AT A

Here we state several results without proof which are

needed in Section 7, For more details, see Spanier (7],

(5.5) (Algebraic axfom 1) If 4: (X,A) —s(X,A) is the

identity mapping, then 1“: Hp(X,A)-——)Hp(x,A) is the

identity isomorphism,

(5.6) (algebraic axiom 2) If £: (X,A)—(Y,B) and

3 L
g: (¥,B)—>(2,0) are mappings, then (31’)# = £ g*.

(5,7) (Exactness axiom) ILet 4: {(A,8)—> (X,2) and

§3 (X,2) —> (X,4) be the injections; then the sequence of

groups and homomorphisms

- & .u.- ;
B (x,0) = 2°(x) 2 P25 . d#Px)

+#+
—1""’Hp(;\) _8"'-" Hp*l‘xlA) _J_—).og

is exact,

(5,8) (Dimension axiom) If X contains & single point,

then B (X) = {0} for all p> 0 and K(X) == G,

(6,9) let £ and g be two funetions (not necessarily

]
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1953033 Do o cover of Yand {fif} a2 cover of B (1n
& ~ (p+1) ey
itself) such that Y= 0 on _{po,‘pl; Y and §P= 0 on
{p+2) . |
10oi033 " . If there 15 & cover {x ia;} of X and a

function P A —)0’1 such that for each u ¢ A 1 f'(x (u)) U

g(.\ (u)) c o’ (p(u)), and 1if there is cover {}‘ ’}‘13

and a funetion q: /u.l——-> P, such that for each v G /u

Tlu(V)) U glu (V)) < P (a(v)), then t*e, g*tl’ € z°(x,8) and

%9 « g0 = 0 g_g S*P + according top=Oorp> 0,

where ¥ € ¢®Y(x,a)’ with ‘Paoon i '/“13(p). s

+1
\P' E.C:(X,A) with \P' - 02_12 {Koia\l}(p ‘). -

('5,9) is a slight irarliation of the lemma 9,1 in Spanier

f’?;pﬁl&]; but their proofs are exactly the same,

[
L
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6, Full Normality and Some Lemmas

Let X be a topological spaée and '{J\O; ;3 8 cover of
" ‘
X, Define a function )\o: )\l——s Q{X) by, for each u ¢ J\l,
Y .
' ' [
A(@) = U {x (u) |u, ¢ Nyend X (w) X (u) # g3,
(] * _*'
Thefn {_“\o’ )\1} = {)\o,xlg 1s also a cover of X, Similarly
: it 4 L2
we have {x iA} = ‘{"o"‘ﬁ) = {xo.:xlj » Where

i

'\o :_,\1—>Q(x) is defined by, for each u ¢ )\1,_

% # . P :
X, Fu) = U {)\O(ul) ‘ u € N, and X (u) 0 A (u) ¢ 2,

g {'\o;'\lj and {#o;/ﬁj ere covers of X with {/“o;’ﬁ?'

> {)\O;)\l}, that 13,. there is a function p: /ul—--))\l
such that for each v ¢ /Al, /U.O{v) c ,\o(‘p(v)), then for
each v ¢ Ml we have ,u:(v) c )\:(p(v)) and ,u:*(v) -c
;\:ﬂ'(p(v)), Therefore {AO:#IB* > {Ao;,\lg’” and {Ao;#l}w
> {,\O:)\l}#‘*, For any cover {,\O;)\l} of X we hafre ime

b &3k
mediately {A A3 > Poingd > Poirgd

Let {,\O;,\lg and {,qo;,ul} be covers of X, {;{0;/.;1}

is & refinement, or a %-refinement, or a #s#=pefinement of {J\")\‘}
accordj.ng = {’“o;ﬁl} & {)‘o; 13’ ‘or {Mo;’ulz > .{)‘o;*lz )

44
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°rf§/“o*.ﬂ11 > {)\o;xli‘ - A topological spaces of which

every cover has a @#=refinement is fully normal,

According to Tukey [9,p,53] we‘ha"ve_ .

(6,1) Compaét Hausdoprff gpé.ces and metric spaces are’

fully normal,

Let (X,As be a éair an;i ie'c‘ 1 be the ;.njec;:ion of A
into X, For éaéh covering A\ == {‘)\ ”\1’)\23 of“ {X,4),;
{_)\ 3 X } 15 a cover of X and hence {A ,xl}

{)\ ,1\1} are well-defined, Let 7_\0 = 1 -(.\o\ )\2); then
{‘Ko;)‘ei is a cover. éf A (in itself) and hence_ {xo;’\af
- {xo;)\z}ware also we}l-deﬁned, Let As M be
coverings of l(X,A). By m> N\ we mean that there 1s a

such that p(u_) c A_ and for each

fune .fiogx- o+ ,Ml—-» )\1 | o 5

ve M, MUv) e X _(P(V))e M 18 a refinement of A if
| of

and only if M>x, is a *-refinement ALf and only if

,u>)\ {m .,u13 > {rgix 1 ana {/u ,,uz} > {X, 0.

M 13 a w-refinement of X\ 1if and onl;s,r ifr M->»\.

IO N {Ao:xl; and {_ ,,ug > {Ao;)\a;.

_ . S
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A pair (X,A) is fully normal if and only if X is fully

normal and A, with the relative topology, 1s also fully

normal,

(6,2) If (X,a) is ‘fullz normai; 'then every covering of

(X,4) has a #=refinement and hence '3_ *%-refinement,

Proof, Let X\ = {xo;xl,xg; be a covering of (X,4),
Then {"o”‘ﬁ is a cover of X and it has & #=prefinement

. L N L]
{tro,c-l}, Horeover, {"\o"‘\zi is a éover of A and it has &
#-refinement {PO;P:L}, Define a function P;: Pl——§ Q({X)
such that for cach w ¢ Pl' Pé(w) = AN P;(w), Then
/{?é;?l}_ is a cover of A in X, Let M_ = ’\2”"1" Pl and

2
/U.l-a 0'1 U ()\2:&0"1: '?l)' Define /uoa /ul—->Q(X} byl

. ’
ﬂ°|¢1= c'o — ﬂol(’\a‘u_-l“ Pl) = )\QAWOAPO. that is,

for each v ¢ o'l we have ,uo(v) = u-a(v) and fgr each

(u,v,w) ¢ Ay X @3 x P, we have M (0, v,w) = xg(u)ﬁo;(v)nf’;(w)__

| Then u = {Mo;"ﬁ.’)‘a'} is a covering of (X,A) and clearly

- 3 W ey 2%
MEN s Q,uomli > 055033 >{x°;xl§ and {,uo:,qz;

o
{PO;P].} > {3\/0;)‘23’ Hence s\ is a #-refinement of A e

' I_U-aing this process, s. has a #erefinement Y, Therefore 11_]
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is a #rerefinement of A

(6,3) Let (X,A) be fully normal,

(1) For each ¢ ¢ zp(x,A) there is a covering of

(X,4) suen that @ = 0 on ( {X ; 23 pﬂ) and §'~P= 0
, i (p+2) _
on ({A it ) .
(11) g‘_q_z_- each ¢ ¢ Bp(x,A), P > O, there _;_é a ‘covering.

-] '
XN Of (X,4) and a ¥ € ¢®Y(X,A) such that ¥ = 0 on
(p)_

(X ixg3 )P ana ¢ = Y on CEIngin O P mere.
fore ¥Y= 0on ( {)\ ,\23 (pﬂ) and 59 = o on

s (p+") |
EEVEIVE

Proaf. (1) Since P ¢z (X,A), there is a cover
fo .5-3 of X and & cover {P e 3 or A 1n x such that
€=0o0n {1° P P 3(pﬂ) and §¢ = 0 on {o, w}(pﬂ), where

1 is the 1njection of A into X, Let Mo= O x P

/ula 0-1 v (0'1 X Pl) and define /u.oz Ml—-—)q(x} by
/*0\0'1:’ o, and /uo|.(0'lx Pl)u o—o/\Po, Then u =
.{)uo;/ui,/ue} is a covering of (X,A) sueh that Y= 0 on

{;’:g‘/‘lg}(pﬁ and 3% = 0O on {,u. ,ulg‘p ), By (6;2), M

hag a :tw-z-efi.nement S DN behavea as x-equired

L
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(11) since ¥ € B°(X,A), p >0, there is a Ve
p=-1 y ' 1 p -
v (J\,A) and a VY!' € ¢ (X,A) such that ¢ = Y + Y 1e¢
' (p 1)
{o ,0-11 be a cover of X such that VY'= 0 on {o- 0'}
and let {P .P13 be a cover of A in X such that ¥ = 0 on J
.p P} 0. .o
{1 Po'Fi; . Comstruct X\ as in (1), Then Y= 0 on

( {,)\:oixaiﬁ)(.p) and ¥ = SY on f{)\og.xljim)(pﬂ), ‘Since

(.{')\\’oila}**_)(pﬂ) < ({ix 5)\13**)(p+1), ¢ = 3Y = 0 on
({’5{ 5k 3”).(1”1)_ Mor-eover, it is clear that S‘P =55Y
= 0 on ( {k xli (P"’E! Q.E.D.l

Let (X A} be a pair, A covering \ = iA ,)\l,)‘ } is
canonical 1:‘ and only if the following conditions hold:

(1) u € X implies 4 0 )\é(u) + 2,

(1L) u ¢ Al- )\2 1mp1;ea‘ )\O(u) - A# 2,

(111) There exists a 1~-1 function 8, from S(K,;) to X

such tha't for each u € S(KA), . a)\(u) is con-

tained in A N )\o(u) or )\o(u) = A according

touE)\zorue,\i-xz,

Such a function 8, 1s a canonical funetion for A\, By

(1) and (1i) we have 8(Ky) = 'L.I. and S(.L,\) ".—-’\2- loreover,

lif A= o, then A, = 2, _ | ‘ __]
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(6,4) Every covering of (X,A) has a canonical refine-

ment,

Proof, TLe‘t )S‘ﬂ {J\o;,\l,,\ag ‘be a covering of (X,a),
Let M, = X, My = A and define a rgnction p: ,ul—-nl
such that p(/.{.a) c 1\2 and for each v ¢ Ml’ v € )\o(p(v)),
The exis tence of such a function p 1a obvious, ILet ,u =
)\op’; then M = {/u'o’ﬂl"uei is a covering of (X,4)
refining A\, If v ¢ /u » then v ¢ A N /u {(v) and hence
AN /uo(v):# g, Ifvw E/ul ,uz, then v € (X=-a) N A (v) =
/uo(v) = A and hgnce /u,g(v) =A% g, pefine. 8y 1 -Ml-—-»x
by s,.;(v) = VvV, V E,ul, Then S, is a canonical function

for M and A is a canonieal covering . of (X,a), QE.D,

Let X be a topological space and K a simplicial comn-

plex, If s 1is a funetion from S(K) to X, then s 1nduces a

#

homomorphism a*: ¢P(X) — ¢P(K) definea by

* =
(s ?)(aos....ap) *P(a(ao)....._a(ap))

A

for each Y ¢ GP(X) and each (ao,_.,,ap) € X(p), -Note that

8#5 = §8#,

- } 2355 o .
o g2 x -
o) 3 ¢ e3e
W w2 Se,
2
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If t is a function from X to 3(K), then ¢t induces a
H

homomorphism t¥: ¢P(k)—> ¢P(X) definea by

: ‘P(t(xo-)'locolt(xp)') ) 1f (t(xo)!-.olt(xp)
i 1’ 2 | e
(t?)(xoitoo’xp) . E K(p)’
0 othervise
for each ¢ ¢ cp(K) and each (xo,,,,,'xp) € 'xpﬂ', ‘In gene-

t#ﬁ"s gt#; but if (xo""'xpﬂ) € X

. s _
(t(xo).....t(xpﬂ)) € K(p+l), then (¢t S‘P)(xo.....x

pi2

ral such that

pi1) =

(§t*?)(x°""’xp+l) for every ¢ € CP(K).

{(6,5) Let N be a canonical ‘covering of (X,A) and s

& ganonical function for A,

(1) 1£ ¢, ¢' ¢ cP(x) such that ¢ = cff. on
P Ghen sfo= of @i

that b
(11) If‘? EC(X,A) such (P::Oon ({_,\ 'Ai)p )

(I3 "13 )

then SA? € C (K.X'L-\)

(111) It *? E Z (X A) such that ¢ = 0 on

o

L P

(X RIS bt dS‘?‘-*Oon Caging™ pf?’,me

P
ﬂ,\‘fé Z K .-Jx}

Proof, (1) If (w,...,u) €K (p), then A _(u)

-

[ 2]
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ees N }.o(up) # &, There s‘\(ui) € J\O(ui) c)\:;(uo) for all
i and thus ('s,\(uol.....a,\(up)) € ‘\:‘:(u‘))w:L c ({Ao;)\llﬁ)‘pﬂ).
Hence (sf?)(uoionolup) = ‘P‘SA(HO)!ocols/\(up)) f

‘f'(a)ﬁ(uo)’..'.sk(up)) = (sf%(uolto.lup).

(11) 1r (uo,.,_.,up) € La(p), then u, ¢ A, for all &
and A Al /\o(uo) N es N )\o('up) # &, Therefore _8’\(“1) €
: ~ i
ANA(u)=X (u)c 'Xo(u°> for all 1 and thus

(sk(uo),“,,s,\(up)} ¢ ’X’:(uo)pﬂ c ‘{7\'03\23*)“”1)- Henco

(RO ) = Plax(idoeesantn ) = o,

(111) By (11), s¥¢ € c®(x,,L,). Since 59 = 0 on

+2)

({,\o;,\l}*)(p » 1t follows by (i) that sfﬁ"ﬂ? = 0, opr

Tsl¢= 0, .mence s¥¢ ¢ z2P(x,,L,). Q.E.D,

(6.,6) Let A = {)\0; l.)\ag be a covering of (X,#) and

@
8% {myim] be g cover of X such that {M ik} >{A A,

Let t, be a function from X to S(K,\) such that whenever

X € X, x € ,u.o(v) c M:(v) G J\O(tA(x)) for some v € U

-

(1) I ¥, € cp(x,\). then Tt¥¢ = XN on
(p2)

1M ’)ul} °

| (1) 1 9 e 2°(x,), then t¥9, ¢ 2°(x) witn Telda= 0]

1.



T M A TANREET 8 AN S TR oM B Ny

[ > ]

(p+2)
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Proof, Let (xyuuusx ) € {4 su} "), ey

. w2 s ‘

(xo,,..,xpﬂ} € /uo(v)p with v € Ml‘ Since x-1 € 'Mo(vi)
5% - : a 2P B o - = i o ¥,

Mo(vi) c}\o(t,‘(xi)) for soms vi E,ul, ,uotv) c ,uo(vi) c

)\o(th(xi)').' 4= 0,;.‘,};&1, Therefore j\o(tk(xo)) n n

*e 0

Nolta(X ) # 2 what Lo, (5i(x),uulsty(x 1)) € K,(po1),
Hence (é‘t:?’\).(xo.‘".'xp-}l) = (tfg-‘&)-(xolo'nulxp.‘_l)’ prrOV1ng

(1),

1z 9y € z°(x,), then §%= 0, It foliows that Sthe

o “”2) . ' i .
= t:S‘P,\ =Q‘on {Mo;ﬂlj(p ), Hence tftP,\E zp(x), proving

(a1},
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N T

Let (X,A) be fully normal, Given any P ¢ Zp(X,A)

there,i,.s, by (6,3),(1) and (6,4),' a canonical covering

of (X,A) such: that P =0 on ({.\ )\23 (p'l‘l) and -S-‘Pz 0
on  ({N\iN3 ) e (p .Since ({)\ )\2} ](pﬂ)
AR50 P ana (DA PR ¢ (g iy ),

it follows by (6,{5),{111), that s1¢ ¢ Z.(KN,L,\) and hence
VRN a,\‘-P E I (x 4), where 8, is a canonical function for A
and Y,: z (K,\,L,\) —> H'(K,,L,) and Wy HP(K‘\,L ) —

ﬁp(x A) are natural homomorphiams

.Let X and M be canonical eoverings of (X,A) such

# (p +1) L (pel)

that t{’e: 0 on ({)\ )\23 ({/u,o;/ue; ) land

)(p+2) :

592 0 on (€rging3 u ({pos/xlf*ﬁp"?’. then Yyhele

and U/“B'Mslf‘f are elements of ﬁp(x,A). By (6,4) and the

directedness of {/A(X,A),>}, there is a canonical covering

P of (X,A) such that P>\ and P>Uu, Then ¥ = 0 on
w3 (p+l) # (p+2) .

({50;»2} ) and 8¢ = 0 on (v 50 3* )

1 and

Y ¥ is an element‘o"f'Hp(x,A), If we can show that
/PN

D,X,ﬂﬁ‘?:: DAYAstP and similarly Vpr s)ftp = ’QMTM‘i«f‘P s then
-

o3
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th’xsfq’ = ’)»‘a’ﬁgf?. Hence a function X z_p(x.A) —»ﬁp(x,A)

is defined by
(7.1) X9 = 9X.s8¢ zfor each ¢ ¢ zP(x,a),

where N\ is a canonical covering of {X,A) such that ¥ = 0O

e (pﬂ) it (p*ﬁ)

on ({)\ L3 ) and 39 = 0 on ({xn; -k_Li

Let Wyn: (K,,L,) —>(K,,L,) be a projection, Define
a function g: X —>»X as follows:

(1) If x € X = 8,(P), then g(x) = x,

(1) If x € & (Pl ), there is & unique v € Plsuch that

X = sp(v) (for s, 1s 1-1), Then g(x) = 8, MuA(V) e

g(A) < A, 1In fact, let x € 4, If x ¢ s,(vl), then g(x) =
x € A, If x= 8g,(v) for somg v € PJ_, then by the definition
of a canonical function, v € P2,_ ~ Therefore n‘w\(v) € 1\2
and g(x) = 8xT,V) € A, Hence g 1s a function of (X,A)
1.nt'o, (ﬁ,A). Since P >\, there is function p: 91—9 z\l
such that p(vz) c,\aand for each v ¢ )’1, l)o(v} c )\o(p(v)),
Pix a v ¢ Pl and let x €7 Po(v), If x ¢ s,( Pli; then g(x)
= X € Po(.v) < J\o(p(v)) < )\:(p(v)), If x= g,(v') for some

v' € P, then x € P (V1) €A (m,,(v')) and g(x) = 8\, (v')

L
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€ A (M(v")). It follows that A S(P(V)) N A o (Tua (V')
# # and g(x) € )\ (p(v))., Hence for each ve Pl. g(y (v))

c A (p(v)) and g(P (v)) c )\ (p(v)) Similarly, for each

el

veD, ad(v) C?(o(p(ﬂ) end g(h (v)) X "(p(v)), By
(5.9), g#‘{?e zp(x,a)_ Koreover, if p= 0, then ¢ - g“'{n 0
and hence Y,s‘?qa B’psf,*g*tp., If p > 0, there is some Ve
(XA) such that \I/a-Oon {P P})(p) and Y- g*f Y
(p#1) |
on ({v i Y. 3 ) o By (6,8), (1) and (11), s¥y- spg
o sysl{!a S's \l-' and sﬁ‘l’ € cp._l(Ky.Lp)_ Therefore aft{'-
¢ ot shgt

g ? € B (K,.Lp) and ¥,s,9= ¥,57g"¢, Since g8y, = 8,M,,,

it follows by the definitions of g‘“, 85, %, MY that

s,,g = 11‘# #

ae Hence Xys‘, P = 3’,,11':; s}?\f = 1\";: '{Asr? , O
(7.2) Y, sf«f = wy"i K)\sfuf.

Y # % # &
Using (3,1), W¥,s,¢9= 2 Tn 68 % = 9,%87¢, proving our

assertion,

(7.3) %: 2°(X,4) — TP(X,A) defined by (7.1), is &

homomornhism and XBP(.X,A") ={0}, Hence X induces a homo-

% - 3
morphism XK Hp(X,A)-—bﬁp(x,ﬂ) such that X = X ¥, where

.'f: Zp(X.A) —»Hp(x,A) is the natural homomorphisgm,

_
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Proof, let ¢, ¢' € z°(X,A). Then Xf= v, el
and K¢' = Y)‘“)’Asj ¢' for some canonical coverings X\ and M
of {X,A) :(aee (7,1)), By (6.,4) snd the direc;edpess of
{’A(X,A),’)}, there is a canonical covering » of (X,A)
such that » > a;ﬁd P>u, Terefore 'Wfa Y,Yp8) ¢ and
wyY' = i),,.r,, sf@, By the definition of X, ¢ and ¢! vanish
on ({')‘fo;}’g}%)(p ?)
(9*2)

(12503 3 1t follows that ¢ + ¢' = 0 on
) (p¥1) '

and 59 and 3¢ vanish on-

and S(P+9') = 0 on. ({p';» y*%) (PH2)

({? 3}’23 o
Hence K{‘P‘*‘P)" Yy psp(‘P““f )=, ,;S,;‘?""),;Vy ¢ =

XY+ x¢',

XBP(X A) ={03 is trivini when p = O. Therefore we
ma'yaa ume thatp>0 Let «Pea(xa). By (6.,3), (11)
and (6 4), there is a canonical covering A of (X, A) and a

Y c®? (X,A) such that \lf = 0 on ({J\ .\1 )(p) | and ﬂPsS'-]'

on ({,\ )&}H (p l)_ We infex- by (6,5), (1) and (11),

that a,\*?u a*s?a Ssify ¢ 87 (K,‘,L,\). By (6.3), (11), ¢= 0

3 ) (p+l)

on ({-\ .l)\ Z d S‘F— 0 on ({X :)\13 (p.}e)

®

ence K¢ = 3,¥,sM¢ = 9%, 5*y = 0, .z,

L o ]
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(7.4) If £: (X,4) —(Y,B) is a mapping, then iYKﬁquf*.

Proof, The proof of (7,4) is similar to the justifi-
catlon of {7,1), Fixa ¢ ¢ 2°(Y¥,B) and let O be a canoe
nical cévering of (Y,B) such that Kk?w vr‘o’ws}*t?, Since £i¢

B =1l 1.-1 ' -
€ 2 (X,A) and £ 0= {£ %i0,50,3 is a covering of (X,4),
we can easily show that there 1s a canonicazl covéring A of
: S =1 # $afp o
(X,4) such that X\ > f ¢ and X£"¢= 9,%sfe¥o " our

assertién will followé from the commufativity as shown in

the following diagram:

v
v ;g 1 >
#(v,8) - 1P(x,4) (\
" A
a2 O\ O
HP(KU.,LU-) —2T HP(K,\:LA)
N
X Y ]\XA X
* #
X £
2" (K Lo) — 25 2%(x 1) x*
: 3
, :
\ . V8 g sf ,
z2(¥¢,B) > 2°(x,4)

\ lm | . 13’
3
. I{p(Y,B) 4 —> Hp{xsﬁ) / |

#*
The diagram is dependent on ; 2°(v,B)--%2-5 zP(x_,1)

[ tnatcates ¢ € 2°(¥,B) ana s¥¢ € 2P(x,,L.) ana ]
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Z5(Xy4) ==-2ee »2°(Ky,Ly) indicates £#¢ ¢ zP(x,4) ana

sxe¥g € 27(x,,1,),

Lét f,w.','be_an f-pro,jectioﬁ of (KA,L,‘)- into (KG.,LG.),
Define g: X —» Y as I,'o],-lbv.'s:‘
| i(i) If X € X = s"()\l)" then g(x) :Lr(x),
- {11) If x € S"‘U\l)’ there is a unique u € .ki such that
K= s,{u) (for s, 1s 1-1), Then g(x) = 8 fslu),
Then g{A) € B and g is a fﬁnction of (X,A) into (V,B),
Since A > f-.lq-, ‘there is a funetion p: A.—> . such that

i 5
P(J\z) & 0‘2 and for each u e )\l, Ao(u) c'f-lo'o(p(u)) | or
r.ko(u) c o‘o(p(u)j, | ﬁy the definitioh olf"g we c¢an easily
show that foé each u .E )\l, g{.,\o(u)} c o':(p(u)), Therefore
£0,(2) ¥ 8(A (W) €67 (p(u)) and nence O (2) U gl (w))
Gw(p{u)). s:lmilar:_l.y, for each u ¢ )\2., f('}'\:(u)).u

g(X_(w)) ¢ (s- (p(t})) . By (5.9), g¥y ¢ zp(x,g}. Moreover,

Qo

if p= 0, then £¥¢ - g*¢= 0 ana y,s¥s¥ CERIEN fgbo. 1

P > 0, there is some VY ¢ Cp- (X,A) sueh that Y =0 on
.r* § o L Ty 5 +1

(%, 1) ana ' - g% = §Y on (o sagh P,

By (6.5), s#f#‘-f- s#g P = s,\S‘{’--: ‘Ss,‘qf € *p(f{”L,‘} and

I_V,.a,\¢#«?= LN ¥gto  since gsfs 8 fw’ a)‘g'“= R g¥  we __J

MO d"
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n > N

: i
infer that V,sfr¥¢ = v, 2% sFy o faxe¥es¥e, By (4.1),
e v : w4 v
’ohr),sif#l‘r = Y, rxo'rvsﬁ‘f ™ f‘)q-’*}sf‘l’. or X f ‘Xl"“ =, fK(Tl‘P).

The proof 1s completed, Q.E,D,
(7.5) %X =w"8,

Proof,- Since Hp(A) = piai#'lzp(;x), where 1: A — X
is the injection and p: Zp(AS—-—)HP(A) iz the natural
homomorphism, it is sui‘ficient; to show that for each
¢ e 7Py, (a1t = X5(p1¥9), Pixa ¢ ¢ $*IP(),
and let G be a canonlcal covering of {(A,#) sueh £hat
xif¢ = v,x,sf.\i’. Let‘ a be an element ‘not contained in
Gy. Let J\zsf o, and let Jkl = 3\2 or A, U '{uo;_ according
ag A= X or A# X, \Dgfine 3_\0‘: XlﬁQ(x) such that for
each u € 0‘1, ‘_¢O(u) = A ﬂ__,\o(u) and in the case 4 # X we
haveof)\?;lj?q)) = X, Taen A\ = {)\O;)\l,)\z}' is a canonical
covering and a- canonieal funetion s, for X is defined
as follows: For each u ¢ 0"1, sx(ul__‘) = ac(u'} and

sA(uo) € X - 4 in the case A # X, Our assertion follows

from the commutativity as shown in the following dia-

[—gram: N | ]
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+1.: 8y
2P l(x,a)---.-*—-_-*z

[— 60 : -—]

ﬁzﬁpiﬁq : —s 1P ﬂf\x,A}f'\\
% | | A |
'al(Ko_)&‘Hp('L,\)' - S’S‘ — Hpﬂ(K,‘,L,‘)
ZP&KU.) —-»zpcnk)eg—ﬂ'izp(w —§—>Zpﬂ$:'{,\.L,‘) »
A S
\Zp(.A) ¢ < 1#'1|zp(A) —%.—)zpﬂ(!x,m/
T
\HP(A)_ S B - %Kpﬂ(xm)—/

The diagram depends on ¢, _zp(A) s O ZP(K ) indicates
| | #
1%¢ ¢ 2P(n) ana &"1%¢ € 2P(xy, %P4 S L R

indicates © ¢ ¥ 7'2P(4) ana s¥¢ ¢ & “32%(L,) ana

N | R |
+ = +1,.
P (KauLy) indteates 5P ¢ zP*i(x,a)

= +1
and sX8¢ € 277 (K,,L,), All these indications will be

Justified,

since x1¥9= 1 v s¥ite, o*1%¢ ¢ 2P(k ) ana Fitea o

## (p2)

on ({6,303 ) « By the definition of A, {)\O;J\E‘ﬁ -

*)(p-*e)

; . X syt - 3 ¥y (p2)
{6,50,3 end hence ({,\O,J\zi = ({o‘o,(rli ) .

l_'I‘hen' on ({%;,\21#%)(13*2),‘ 'E"f = 1%§‘? w gi#?a 0, _J
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lloreover, 9%(5Y) = 0 on ({J\O;xli ) (p 3). Hence sfs%
27 (K,,L,\) end X5¢= ¥, 859, Let i,: L,—>K, be the
injection and define O,;: L,—>K; by 6,,(u) = u for each
w € 8(Ly) (=X, =0, = 5(Ks)). Then, by (2,14), (4,2) and

- -] %
| {4.3), ?,\(3,\13*\ = ¥,8 on 1’; ZP{LA), O = B0, and
§37¢= D Ore o 1850, = 8,1, , since for any u ¢ )\2 we have
185 Oz(u) = 1a,(u) = sy (u) = s,(u) = s, 4,(u), Therefore
omroni® = 1358, stnce sptte ¢ ZP(xy), Pe¥e- o stite
#~1 e
; ' € ZP(L}\). Hence s,‘fCP € 1, zp(Lﬂ’ and S,\p,\ifsf\? = x,jsf‘?,
3 % %o - %= -
Consequently X 5(pi"Q) = X ¥§9= X§¢ = 9, ¥, 8759y = URINEN
. 4 )

= DB IRENY = 1, 5,8, 6% sh 19 = 1, 5,69, of 1¥¢ =

Ndae¥osft¥ 9= Eyr sfite = §xi¥o = §x"(pa¥), q.E.D,
(7.6)° W& H(X) a F(x).

. .
Proof, (i) X is 1l=1, It is sufficient to show that
the kernel of ¥K: Zp(x)-——}vﬁp(x) is contained in Bp{x),

Fix a 4 1in the kernel of X and let X be a canonical

"- ~ covering of (X,z) such that XY = ‘qu,\sf«f. Since Y),Jasf“?”
X¢= 0, it follows by (3,3) and (6,4) that there is & cano~

nical covering m of (X,#) such that m>X\ and ‘TT:,J,‘sf&P

L | |
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= 0, That 1s,by (7.2), Y.sh¢= 0, or st¢ ¢ BP(x,).

Le_t {vo;pl} be a #=-refinement of {/uo;/ul} and define

tu: X —>S(K,) such that whenever x ¢ X, x €. Qo(w) c

v:(w) < /uo(tM(x)) for some w. € Pl. If p=.0, then,sﬁcfa 0.
It follows that gﬁsﬁ?s 0, Ir p > O, then there is some

Yo € ¢®7H(K,) such thet s%¢= V.. By (6.6), (1), tFe*

AL S sues a B/a e LM Y( ™ )’ ( )’ t)LS/“'P '

= t35%= 5th ¥, on {po;plg(p*.l), Hence thsfw ¢ BP(x),

By the definitions of sj. and t,f it is easily seen that

+1
tjsjtpa (sﬁtﬁ)#cp on {)Jo;vl}(p -), Hence (th#)#'-P €

Bp(}{}, Since f_uo;vlg > {}Loiﬂli » there is a funetion

p: ))1 -—-wul such that for each w ¢ ))1, Potw) c,uo(p(w)),

Fix a w € vl. If x € vo(w), then x e,uo(p(w)) ﬂ/uo(tﬂ(x))
and s0 sut,(x) e/uo(g‘_(x)} c/u:(p(w)), Therefore for each
w € Pl,-sﬂgu(l)olw)) #Mj(ﬂ‘ﬂ). Since $Y = 0 on

. (pe2 3 - ,
w)(p ) = ‘iﬁoiﬂli-*)(pﬂ)b ({Iuomlz*)(p-:e)’.

({J\oh\l}
it follows ._-by (5,9) that ¢ =« (slutﬂ)#‘-f € Bp(x). Hence.
¢ € 8°(x),

-~

(11) X 1s onto, 'We have only to show that X :
Zp(}{)—-sﬁp(x) is onto, Given any e ¢ ﬁp(x) there 1s, by

[_(_3,2), a covering a of (X,o) and a ‘PﬁE zp(KNLﬂ) such __]
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that e = 9, ¥ 9, Let i»3 be a cover of X such that
# ' : :

{)JO;)?13 > {,uo;,ul} and define ft# as in (1), Let @ =

t%,; then, by (6,6), (11), @ € zP(X) and 39= 0 on

(p*z).. By‘ (6,2) and (6,4), there is a canonical = |

{vo;»lg
covering X\ of (X,#) such that {Ao';.\13 *> {posplz. Then
= s ¢ 3k 2) ‘ 4 ” ;
%= 0 on ({.\O;.\l} J(p ) and hence XY = yAYAsftpz

B B r By afal, ' :
IahaSxtufue Fix'a u ¢ )\l, By the definition of t,,
s‘\(u) € po(w) e po(w) CMO(ELBA(“)} for some:w € Pl, Since
{)\0;)\1} > {po;plg, there is some w' ¢ 1)1 such that s, (u)

Ll * =] (]

€ ,\o(u) c po(w ). Therefore )\o(u) po(w N - Do(w) ¢
Mo(,tMa,\(u)),, This proves that tus,: Ky — K, is a

projection, Hence (t,s, Wom s¥t¥ ana x¢ = UA‘(A(tMs,\’)#LP

e ; gy “
= Ao Guh= vMYM‘PMn €. Q.E,D,.

) . e
(7.7) X : H?(J&..A)-Rw{ ﬁp(X,A),__
Proof, In order to make the argument a little
] < £

clearer, we denote by 'K(X,A)' xx" and KA the respective
y P,, .. {P ; P D '
homomorphism from H (X,A) to ! {(Xp4), from H'(X) to H (X)
and from H'(A) to H'(A). By (7.4) and (7.5) the commuitas

tivity holds in every square of the following diagram:
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r : T
v v v v

(M—i-éﬁ (A)——S—> ool (x,A)——+ i (X)—i—h‘i (a)

2% : - ] ik %

X X b4 x

X A IK(X,A) X ] A
N ' % ;

(%) s BP" Y1) 2, 2(x,0) =4 2P(x) 2 1P(4)

VP‘

gP~1

7 i |
By (7,.6), Kx and K" are lsomorphisms onto, Hence

#_stm]l . delv es N ~z.«-1v :a- v % Sl
X - 8 d %= )
. X KA » J Ry 48 (hgdy = (X A) “a e
(1) K is 1-1, Pix e € Hp(x A) such that
(X,4)
w* 0, Then j e *'J‘j’ » 0, 1f 0
e = : = =
(X,4) i R Y IXx,a)¢ = O o

then, by (5,7), e = 0, If p > 0, then there is, by (5,7),
p=1 J v %
some e' € H  (A) such that Se’' = e, Singe SKAe' =
K*' Set -.-sKﬁ ¢ = 0, there is, by '(4'5) some e''! ¢
(xlA) s ‘x’A) ’- Y ‘ % g
p~1 3 Yk B o o™i K]
H" "(X) such that ie'! = x.e' Lat e''t = K e”; then
2 sl

* e ;
1e''ta g Xx et!? aKA lie" = et He_nce e= e =

84e''" and, by (5,7), e = 0,

(12) x(x a) Y8 onto, Pix e e 5'(x,4), By (4.5),
t ] d i
vy lv ]
ije = o, Then 1 KK Jo = {je = 0, Using (5,7), there

: v :
is some e‘ € H (X,A) auch that j e’ = KX lje, Therefore

jeuxje's J(x )e-", or j(e-x e')’a O, If p= 0,

i
(X,4)

+#
then, by (4,.5), e = X e'= 0, ore= X €
l— H v ( )’ | {X’A) = ] = (X,A) _J
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K(x A)H (X,4), If p> 0, there is, by (4,5), some e'' ¢

= v 5%
fip 1(A) such that %e'' = g =

K e', Iete'''= ¢! 4
. (X;8)" *
‘ #e=l i <+ W ' % el
et: then ettt w gt =+ LR
ok FOEER X, A% T Nx, AP e
3 he :
QK(X.A)G' +3e''= e, or ¢ ¢ " )Hp(x'“. Q.E,D,

{X,A

Combining (7,4), (7,5) and (7,7), we obtain the fole

lowing main theorem:

{7.8) For fully norumal spaces the Alexander=-Kolmogoroff

cohomology theory is equivalent _tg the unrestrieted Eech

cohomology theory,

Prom (6,1), (4,6) and (7,8) it follows that

(7,2) For compact Hausdcrf_i_’ spaces the Alexandere

Kolmogoroff cohomology theory is equivalent 1o the re-

stricted Geeh cohomology the_orx,‘

Let (X,A) be a pair ami I the closed interval from 0O
t0 1 with the usual topology, 1If (XxI,AxI) is fully normal,

then so 1s (X,A), By (4.4), (7.,4) and (7.8) it follows

that

L | kS |
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(7,20) Let (X,A) be .a pair sueh that (XxI,AxI) is

fullv normal, If hii (X54) —> (XxX,A5I) 1s defined by-

h (x) = (x,i), i= 0, 1. then h = hl

'In the Appendix we shall give a direct proof of (7,10),
The 1dea of our proof is -€ssentially the same as that of

Dowker's [2],

As'.a consequence of {7,10), we have the-rfol‘lowing
homotopy th_eorefn which is a generalization of one stated
by Spanier {7,p.416], wo mappings f.‘ and fl from (X,A)
to (Y,B) are homotopie if and only if thex-e exists &
mapping f.- (XxI.A’«I) —->(Y,B) such that for each x ¢ X,

PF(x,0) = ¢ (x} and F(x,1) = ¢ (x),‘ o

(75115 Let (X,4) be 2 pair suéh that (XXI,AxI) is

fully normal and 1et (Y,B) be an arbitrarv pair, If fo

and fl are homotopic mappings from (X;A)-‘_t_:_g_ (Y,B), then

& 5
fs = fl

As an application of (7.11) we prove

l_ (7,12) If X is a non-null convex subset@_ﬁ_‘ 2 linear _]
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o
metric space, then H {X) &2 G and Hp(X),s{O} for all p > 0,

Proof, Since X is convex, it is connected, Therefore

it can be easily shown that Y ¢ Zo(x) if and only if it

‘15 a constant function, Hence H (X) = 2°(X) &G,

Let 4: xr—nc, be the identity mappiné, Let a € X
and define g X —>X by g(z) = a for all x €X, - Since
X is convex, F(x,t) = ta + (1 - ¢ )x defiﬁes a‘mapﬁing F
on XXI to X, For each X € X we have P(x,0) = x =i(x)
andl F(x,1) = a = g(x); therefore i end g are homotopic,

By hypothesis, X is metric; then‘ XxI is metric and hehee,'

4

o e B et
by(6,1), fully normal, It follows by (7,11) that 1 = g
Let ¥ = {a}' and let gl: X=> Y be the triviai funetion

and 32: Y —> X the inJectioh,' "'I’neh‘g = &8, and by (5,6),

3% 3¢
g8 = &

g*. Since, by {5,_8), Hp(Y) = {0} for all p > 0,
; - g ‘

and since, by (5,5), i is the identity isomorphism, it
_ ‘ . .;;; |

follows that for all p > 0, Hp(X) =1 Hp(x) = g Hp(x) =

%* 3% P * P ;
8,8, H (X) = g H(Y) = {0}, Q,E,D,

0 _
let R be an n-dimensional Euclidean space, Since

]_Rn is a linear metric space, it follows, by (7.12) that _I
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(7.23) H(R) 2 G and H'(R™) = {0} for all p >0,

Acéording to ‘;’Jailace fll], the 'extension, reduction
and hence rnap excision theorema hold fc* the Alexander-

Kolmagoroff cohomology groupa on fully normal apaces

Using ('? 8), we "have

(7,14) The extension, reduction 'and'hence map excision

theorems hold for the unrestrieted éech cohomology grouns

over fully normal spaces,

A cover {)\o; 1} of é topglogical spaces X is of
_p__z_‘_c}_ég n if and only if n+l is the lérgest nunmber such that
there exists a subset F of )\ c0nsist1ng of n+l distinct
elements and satisfying ﬂ{\ (u) lu € F} # £, A topolo=

glcal space X is of Lebesgue dimension £n 1f and only if

every cover of X has a refinemejnt‘of order gn,

(7,18) If X is a fully normsl space of Le'besgue

dimenslion “¢€n and A is a closed subset of X, then Hp(x,A) ‘

= {0} for all p> < I

[_ Proof, It is easily seen that in a fully normal ‘ _J
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Space any closed set with the relative topology is also
f'ully nornal, "‘herefore (X.A) is fully no“mal By (7.7),

it is suf"icient to show that HP (X,4) = {0} for all P>n,

.lIPix'an e¢lement A' e in i’{p(x,a); By (3.,2), there ig
some covering A of (X,a) ahnd some ’e,\ € H?(K,‘,L,‘) such
that e =%, e, , where %, is the natﬁral ﬁomamorphism of
HP(K,‘,-L ) into ﬁp(x,ﬁ). Let ;.L = >\ and def‘ine-;uo:
AR —-)Q(x) such that f‘ox- each u E .\ Mo(u) = )\o(u) and
for each u e Al - 1\2, Mo(u) u Xo(u; - A, Then {.,uc;;,uli
1s a cover of ‘I}i such that for easch u € J\l, ,ué(u) < )\o(ﬁ),
Since X isr of-Lebesgue dimension <n, ,/ul} has a
rerinemént {po;pl} of order <n, Let )) = {w\w € )J
and A N J) (w) # 23, Then Y = {v H)) ,pe‘g is a eovering
of (X.A). Since {v )? } > {,u ,ul} » there 1is a function
p: V -—>/u such that .;or each w € v P (w) GM (p(w))

Therefore for each w € p 1 )’ (w) c 3\ (p(w)) and for each

W € 1)2. pi{w) € )\2, pxjoving that P> A . BSince {po;plg

-

is of order < n, every simplex of K, contains at most n

elements, Therefore the group of oriented Lochatns of K,

LS:_s {0} and hence the p-th oriented cohomology group of K,,__I
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mod Ly is {03 for all p > n, By the Remark of Section 2

i
B°(K,,L,) = 10} and so M, e, = 0, Using (3,3), e = Y, e,

= 0, Q,E.D,

-
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Appendix

8, A Theorem on the Alexander-XKolmogorof? Cohomology

Theory,

Let I be the additive group of integers, For any set

X and any non-negative integer p we denote by CP(X) the

: *
group of all the functions on xp : to I which are finitely

not zero, Given any §= (xo,..:, ,xp) in val we denote by

g or [xo,.,,,xp] the characteristie function of €, that is
_ y . LD
an element of cp(X) defined as follows: If § € X° ', then
-g(‘g') is 1 or O according to §'=¢ or g'# § ., Let
= Pl _
X(p) = {8 | §ex” 7}, It is easily scen that cp(;c) is a free
group with X(p) as a base, i.e,, every non-zero element ¢

has a unique canonical representation ¢ = Z;ltio‘i » where

0. seecesl; aTe distinct elements of x(i:) and %

3 1,,._.,tn are

non-zero integers, Define e function from cn(k} to the
&

o+
subsets of X as follows: FPor any £ ¢ xP 1 the image of §
is the set of coordinates of §, denoted by |§l,; If ¢ is

e non-zero element of cp(x; with canonical representation

n

e
¢ = Z'ialtiu-i’ then the image of ¢ is le| = U, _|o |

]_ | | i=1 §°° _]

73



B = o

Moreover, the image of the zero element 0 of cp(x) is |o|

f =7,
(8,1)'_:.{_{ ¢ = Z'jml 3 jwith cj € cp(x; and tj € I, then
lel cUJ,llcjl._

Proof, Let ¢ Zhﬂ’ ji ,11;’ J=1,,..,m, and ¢ =

; | n n
| 2, 1.1%;%; e canonical representations, Then g, A
=c= 0 a DN T, o, . Since O ,...,o
3 1_13 J =1 kmljjk Jk* 1%%°°%"n

are linearly independent, it follows that each U’i is equal

to sone o-jk Hence |e| = U \0'\ - Uj 1U§U;.[ Jk\ =

m ‘
Uj=1|cjl. QCE..DU

-. There is a homomorphism O: c (X) — ¢ (x) defined by

Te

olfx x
oloag!

p_'i'l Z ( 1) [ ""’xi""'xp-a-l

| By definition we have 1mmediate1y.
(8,2) For each ¢ € Cpi%(x). 9d¢ = O,

Given any O € X(p+l) we can easily see that |30l = o],

‘ It follows by (8,1) that

L (8.3) For cach ¢ € ¢ (X), |2 el < lel,
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A set 1s said to be linearly orderecd by < if and only

if (1) x# x' implies x < x' or x' < x, (11) x < x' and
x' < x'' imply x < x'! and (4ii) x < x' implies X+ x!,
The existence of such an ordering for any given set follows

from the well-ordering postulate,

If (P(O),.,.,P(p)) is a permutacion of (O,,..,p), a
number o{F) is an order of this permutation P 4f and only
i there exist o(f) interchanges carrying {0,.;,,9) inﬁo.
(P(0)s.eesPlP)). The numﬁer o{P)Iis'not unique; but the

difference of any two of them is always even,

Let the space X be linearly ordered by <, There is a
ﬁomomarphism w3 cp(x)-e-cp(X) defined as follows: Let
[xolooulzp] G x(p)-

(1) 1r xo,.,,,xp are not distinet, then
w fxot 000 ,xp] = 0,

(ii) 17 xo,.,,,xp are distinct, there is a unique

permutation (P(O),.,.,P(p)) of (0O,,..sp) such that xP(O)

oo S Xpi,ye ThER

l_ w [xoa...’xp] = ("1)0(P)

{XP(O}“"’xI-’(p}]f __l
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The following (8,4) and (8,5) are immediate:
(8.,4) ww=w

(8.5) For esch o ¢ C(X), |wel c lef,

(§

(8 6) If [x lsuoix ] € x‘p) and (T(O)!oanT{p)} H

pez'mutation Of (C,.0.2P), then

O(T)Lx l..tlx ]i

"'\Jt T(O)’Ql.lx ( )] = ( 1)

Proof, If"xo,..,,xp are not distinet, then nelther

are x Therefore wlx

T(o) ’.qo'lx,r(p)o

T(O)DOlo"xT(p)] = 0=
1)°m)

w[.xo,.,.',,xp], it xo,,,,,xp are distinct, there is
a'-unique permutation (P(0),,...,P(p)) of (OseeesP) such that

-] '
x e B X Since PT ™ is ermutation carryin
Po) < == < Fp(p)e B arrying

(T(0) seeesT{P)) into (P(O).....P(p)) and O(T) *O(P) is an

order of PT , it follows that w[=x
o(P)+o(T)

T(0) >+ iy} =

o(r)

(-1) [xP(O)!otnix ( )] = ( 1) wrxoiunt!xp?-

Q.E.D,

-

. {8,7) For gach ¢ € cp+1(X), dwe = wde,

Proof, It is sufficient to show that aw[xo,,,,,x ]

L . S
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= wa{xo,..,,xpﬂ] for every [xo,,,_,xp_ﬂ] .G X(p+l), Fix

an element [xo..,,,xp+i] of X(p+l), 1Ir xo,,__,xé_}l are not

distinet, say ;:J = ::k with j < k, then aw[z PoeesX 1= 0

pHl
. P+l
&nd wa{xolq..’x I= wz ( l) fx lt.-’z‘i,l..ﬂx

J

pral =

(=1)

~

[xoftt,q.’leooolxklocq’xp+1] *+ ('13 {zoln.-olxj!.ao'-i‘

k"‘;" _}l]" Slnce there exist k-j~1 interchanges carrying

(xoieoo’zjtooal!kl.:"'q-b’xp*l) into (xo""’xj“""xh""’Xp-!-l}

it follows by (8,6) that uJZkg;;,,,zj,,,.,xk,...,x ;1]
k-j-1 A . . 63

(“1) {xoagooaxjictotxk#---#xp+l]- },{ence wa{xo’...’xp'}l
= 0= aw[xo;;;',;x s« xé',;;,,x , are distinet, there

p.}l]lz p+

is a unique permutation (P(0),...,P(p+l)) of'tb,,,.,p+1y

such that x_, "< ,.. < % Therefore éwfx' 2esesX

¢{0)
= (=1) (Pjaix

]

P(p+1)' p+l

(-1 ‘“Zpﬂt yirx

p(0)*****Fp(peny] = *p(0)®
o U

noo!xP(.i)iqtoige(p.}l)J‘ Sinee (P(O)...ibf(i”l),f’{i*l}p,..p
C{p+l)) is a pez*muta'tion of (0,,,_,,P(i_)_-.jl.,f’(i)-l—l,,“,p-t-l)
off) + p(1) 1 is an order of this permutation, 1t follows
| Pl P(1) |
that 3wfxoa...axp+ Z ( l) m(xo’.."xP{i)"l’

x?(i)*Ilotntqu*l] = watxoiooo )xp+1]. Q.E.D.

Por each x € X there is a homomorphism of cp{}t) into

I_Cpe-l(x) defined es fgllews: For each ¢ ¢ cp(x} we dengte _J

9
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its image by xe¢, Then for each [:zo,,,,,xp] € X(p),

xf X X
LXOSQa-! p] = r ’xoOoopﬂxp].
(8,8) For every c € Cp(}_{},_p > 0, we have axe= ¢ = z3a,

Proof, It is sufficient to show the assertion for
¢ € X(p), Since p > 0, then for any [xo,,._,xp] € X(p) we
] DRI pueasXk 12 BIX,X peueyX 12 [X poovpx ] =
nave [0' "p]=a[’0’ 'pla'o' 'p}
, i A JEES . X |
Z}i)ﬁo(-l) [xoxo!otoﬁxi’.etixp] = txolaoo!xp] - xzigef-l) [xof

"-’xi’ﬂﬂﬂlxp] = fxotanc’xp] = xa[xoio.t’xp}o Q.E,D-

(8,9) (Eilenberg) For each non-negative integer p

there is a homomorphism D: Op(}() — cp+1(x_> such. that whene
ever e, € Cp(}:) we have
(1) . 1Del < lel,
{11) .. e -we | . if e ¢ CO(X).; ,
oDe = { ‘

é-ﬂc-Dac _?_._i‘_cecp(x), p>0,. .,

Proof, The homowmorphism D can be constructed in-
ductively as follows, Let D: ¢ (x) — ¢ (X) be the trivial
- homomorphism, Then for any ¢ € GO(X) we have De = O and so

l—anc 0, Hence both (i) and (ii) are satisfied, Suppose

_
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that the homomorphism D has been constructed with the desired

behavior for 0,,,,,p, For each O ¢ X{p+l) we choose an

element x_ € 07|, Then a homomorphicm D: Cp-‘-ltx) —-—)Gp {xX)

2
is defined by

DO = X, 0 - X W0 = vaacr for every o¢ X{p+1),

By (8.5), |Zpwo|= {x:] U Jwe) ¢ lol and, by (8,3) and the
inductive hypothesis, |x Dac|= {x.] U |D30) ¢ {xs} U |30
c |o|, dHoreoven, |xe0) = {x,) U o] = (o], We infer by
(8.1) that [Del| ¢ |o| for every o ¢ X(p+l), Using (8,1)
again, we have |D¢| c‘ le] for every ¢ ¢ cp_,rl(}t), By (8,2),
(8,7}, (&,8) and the inductive hygothesias, we l_zave |
9 Do = 3{x,0 = x w0 - x_D3g)

= Q= WO~ DIC = xv(acr - W0 ~ 3IDIT)

= 0= WT= D30 - X (30 - WO =~ (30 = W)}

= 0= W&~ DIT for every O ¢ X{p+l1),

It follows that De= ¢ =-we - Die for every ¢ € C_ _(X),

p+l
Hence D: cpﬂ(x}-—e cpﬂ(}() behaves as required, Q,E,D,

-

If A is a subset of X and {)\o;x;}" is a cover of

(see p, 26), we denote by cp({)\o;.xl}) the subgroup of cp{:{)

L | _
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generaved by the elements O of X{p) with lo-| contained in

some J\O(u)a u ‘E')‘\l'-"

(8,10) (1) wcp({xo;xlz) c cp{{xosxlj).

(11) DC (Ta A1) < Corn{TAgix3 e

Proof, If O ¢ X(p) N CP({J\O;All}, there is some u € )\1

such that |o| < ,\o(u), By (8,5), |wo| ¢ )\o(u), Hence
Wwo ¢ cp({xo;)\i}),_ ince cp({xoleg) is generated by the

chegl {i 4 (‘) .
elements in X(p) Cp({)\ou\ll). it follows that Cptf.\o,)\lg)
c cp{{)\og,\l}), This proves (i), Similarly we have (ii) by

i uSi?lg (8¢9)¢‘ Q‘E‘.Dli

Let Ep(;‘{} be the group of homomorphisms from Cp(}:) to
the coefficient group G, fThen 9, W, D induce nomomorphisms
1 D%+l T B =D, % _p+l
3 ) — Py, o S (x) —s TP(x), D*: TP (x) —>

Ep(X), defined _reaﬁectively by
- P
(3 9)(ec) = P(3e) for ¢ ¢ Cpﬂ(X)a Ye c(X),

(W) = ¢(ux) for e ¢ 0 (x), € P,

p¥l

(D"¢){e} = 9(De) for e € (x), ge T,

% w4
l_‘a » W, J are the dual homomorphisms of » W, D, _J
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For each pair (X,A) let EP(X,A) be the subgroup of Ep(){)
such that ¢ € T'(X) is in G'(X,A) 1f and only if there is e

cover {)\o;xlj of A such that Y = 0 on Cp({,\o;xlz )e By

(8,4), (8,7), (8,9) and {8,10), we have immediately:

(8,11) (i) W' = & and 36" = &S,
(11) Por each ¢ ¢ EP(X) we have
" 0 if p= o,
QP - W qﬂ { & % _—
SDY+DIY if p> o,

T e it
(111) WEP(x,8) € G2(x,4),

#_D -
(iv) D P 1(X,A) & Cp(X,A).

— +
Since Cp(}:) is a free group with X(p) = {g ] £ ¢ Xp 3'}
es a base, there la a homomorphism ¥: Cp(XJ-—-> "ép(x) such

that given any ¢ ¢ Gp(}t) we have

ptl

(XPIE) = 9(8) for every § € X

= i
Since g s § is a 1-1 funetion of xp 1into X(p), there

is a homomorphism X': Ep(}() —>Cp{}{) such that given any

-

Ve Cp(x) we have

(X'¥)(E) = ¥(§) for every ¢ ¢ Kp+l.

o _ _
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(8.12) (1) %: ¢®(x) —=TP(x) and x = x'"L,

(11) x3 = 3°x,

(1i1) xcp(x,m = Ep(x,A),

Proof, (1) follows from the fact that both X x' ang -

XK are tae identity isomorphisms, For any @ ¢ CP(X) and

P2

(xo,,,,,xp*l) € X we have

(Kg‘?){xolbto!xp+1] = (§‘P)[xolun¢lx )

p+l
+1 i
= Z.?;O("JJ on"""ﬁi’“"xp-i-l)

D+l L A
- - "
? Z':.’—O( 1) (K‘P)[xotonoﬂxilnco’xp.*_ll

= (K"?‘)(a[xoinon’x }}

p+1

%
= (a K‘P) r#o)e e ’xp'*‘l‘]'

This proves (ii), If ¢ ¢ cp(X,A}, then there is a cover
. 6 & o o (p¥l)
{Ao'kl} of A such that ¢ = 0 on {Ao,xlg « There=
fore X¥ = 0 on Cp{{J\os,\li) and X9 ¢ EP(X,A)‘, Similarly,
12 ¥ ¢ SP(x,4), tuen X9 ¢ ¢P(x,4), Hence (i11) is proved,
Q.E.D,

.
:é - ﬁ & - - -
}; W aad D induee 20momorphisms s

1

-, o Ty ¥
By (8,12}, {

+1
¢?(x) —>¢P(x) ana @: P Hx) —s P(x) derinea respectively

l- 3k

L
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by = XWX and ® = XD X, According to (8,11) we have

(8,13) (1) o = and S0 =07,

(11) For each ¢ ¢ cp(x) we have

0 if p= 0,
(?-Q‘?.-.l {_ _
BHY + HTY it p> o0,

(111) Qc®(x,4) < ¢P(x,a),

(1) 8P 0,n) < Px,n),

A p-cochain Y of X is said to be alternative if and

only if the following conditions hold: Let.(xo,,.a,xp) €
+1
xPT,
(1) 1f xo,,.,.xP are not dissinet, then ?(xo,,,,,xp)

= 0,
(iL) If xo,,,,,xp are distinct, then for any permuta-

tion (T{o)'ooov.‘r(p)) Of (oscepﬁp)’

(T}

(=]
i ‘P(XT(O),....xﬂp})-a (-l) q{xal.oo’xp}a

Hote that the definition of an elternative cochain is

independent of the linear ordering on X used to define w

(8.14) ¢ € 6°(X) is alternative if and omly if ¢ =a9,

B i

L )
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Proof, Let ¢ ¢ CP(K) and (x ,..,,x ) € Xgél. Then
(2¢)(x Peeer® } = (x‘oox*{’){x saees® ) = (wxﬂtx soces®y }
(x“?)(w[x Peves® 1. Suppose that ‘P‘=Sl‘P. ir Xoa....xp
are not distinet, then ‘?(x ,,,,,x ) = (sl?,gx ,,,,,xp)
()(Q)(aﬁx ,,,.,x 1) =0, 1f xo,,,,,xu are distinet, then

&

for any permutation (T{G),,,,;T(p)) of (0,,,,,9) we have

‘?( T(O)ioovﬂx..r(p) ("Q-"P)(K (0)’0."’x/r( )) = {KLP)(“Or
o(T) o{T

T(0)*
nouﬂxq_(p)]) = ‘“l) (ﬂ?)(

o{T)

(K‘P)(w[x o?eeerX, 1) = (-1)°
.o.sxp) = (=1) ?(xo,...,xp}, Hence Y is alternative,
Conversely suppose that Y is alternative, If xb,,;.,zp are
n§£ distinct, then (:L?)(xo,,,_,xp) 4 (»(?){w[xo,,,,,zp]) =
0 =<¥{x°,.;.;xﬁ)h¢>zf xo,.,;,xp'are distinct, there. is a
‘unique permutation (9(0),.,,,?(p))‘of {OseeesP) such that

< hes K X ‘Therefore (n?)(xo,...'.xp') =

e(0) P(p)*
590z beenx 1) = (1% gy 1x
o(P)

pLo)*****p(py ] =

(-1) ?(x?(o)ﬂoo.’xe(p)) = ‘P(xoic.;ixp). Hence' ? HQ(P.
Q.E,D, |

-

Let GP(X) be the subgroup of cp(x) consisting of all
the elternative p-cochains of X, Then %59(X) c gp'ltxi,

Lsince for any ¢ ¢ ‘E:’p(xg, %9 = Fay =TP, If (X,A) is a |



B > N
pair, we denote |
(x,8) = Prx,a) n P(xy,
Ex,m) = c2(x,4) 0 &,
= '1~p+1

Ep(X,A) = 9 Co {(X,4) n Ep(xpﬂ).

B (X,A) = { ' . '
SEP1 . v L aP i |
3CT T(X,AY + co(x,g) itp>o0
Clearly gp{}t,ﬁ.) is a subgroup of EP(X,A)_ Therefore we

obtain the p-th alternative Alexander~Xolmogorofs cotomology

grbup of X mod A
B (x,8) = 2P(x,4)/8%(x,4) .

If £: (X,A)—> (¥,5) is a mapping and £7: ¢P(v) — ¢P(x)
is defined by (5.4), then £*3°(v,8) < ¥®(x,4) ang £*8P (v, B)
& %p(x,m. and hence £ induces a homomorphism £™: ﬁp(Y,B)

'-\;p > N, ~ # ”p Ar
—> H (X;4) suech that £ rl = ¥ £ on Z (Y,B), where Y
~D ~D ~ ~0 ~P .
27 (X,A) — H7(X,A) and b’l. Z2°(Y,B)—> H (¥,B) are naturzl
homomorphisms,

-~

Let (X,;4) be a pair and let 1 be the injection of &
. 5 5 ~, D ~D¥Ll
into X, Then there is a homomorphism 87: T (a)— T 7(x,4)

sueh that : ) __,
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S"@”i# = YV8 on 1#-'1'2'1)(;1) n Ep(}{},
~ y ~ "~ N"'l' e ‘é‘ »
where @73 ZP(A)—->H {a) and ¥ :'Zn I{X,A)-——éHp I(X,,ﬁa)

are natural homomorphisms,

(€.,15) The alternative Alexander-Xolmogoroff ¢ohomology

theory (ﬁp,f~g‘5~) is equivalent Yo the Alexander-Kolmogovoff

3
cohiomology theory (Hp,f »9) for general gpaces

Proof, . Given any space X let 1 EP(X)—%CPQ'X) ‘be the
injeetion, It is clear that 48 = %4 on Ep(x) and for any
subset A of X, ng(x,A) c CP(X,A),, T‘nerefore, i (.}{,A) is

-;:P . b . . ¥P, ., - PO,
e pair, then 3%z (X,A) < 2"(X,A) and 43 (X,4) < BY(X,4),
Hence there is a 'homomc')rphism 4" ﬁp(x,ﬁ}—-éﬁp(x,ﬁ.} such
™ = YT on TPrx ) e - Py,
that 4 ¥ = ¥% on Z7(X,A), where ¥ : 2 (X34) —> H(X,4)
and Y”:'ﬁp(x,m —ﬁ‘ﬁp(x,}l) are natural homomorphisms,'

P,.,, . AP ot o _
L6°(X) ¢ C7(X), since for any Y ¢ ¢ (%) we nave, by (8,13},
(1), Q(29) =04 and hence, by (5,14), ad¢ P(x). There-
fore there is a homomorphism % Cp (X)) — Ep{}i) Qefined by

- D
79 = 2f for every ¢ € ¢°(X), By (8,13), (i) ara (111),
*q§ = §‘7 end for any subset A of x,-v)cp(x,p.} E 'épii{s;«.),

it e
u’herefore Y induces a homowmorphism L/ Hp(x,a)—-——)}ipﬁx,g—)—!
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such that ) ¥ = ¥™n,

If 3 (X,A)—(Y,B) is a mapping, then in the diagran

h‘p’(\Y,B) £ P (x A)
1 NPy e — =Pk, Y
| _,S*:: T": ﬁ#-' T": ,5-::-
: & (Y,B)"""""’-‘"—‘)Z (JsQA)
/. £ 0,7y \ D

¥(v,B) e . > %

Do TP 3 ":’:‘M ' “l". ~ %
£V = e Y= Yetavarta gL o Y, Hence £'3

=4 £, I (X,4) is a pair and i: A — X is the injection,

then in the diagram

B (4) _ , — 'in,tx)
~N !
b e L F
P, . i* #-1 p B +1
zP(4) «— ¥4y (,x) S 2P )

Tﬂ, ' Y'g o T';
" |
PP(a) «——— #1524y n ¥ (x)———?——n “Lx,4)

-

A A '2-
1P(a) ‘- > 577 (x,4)

* 5 S Y= o & W
8% 61" = 68317 = $p1tte 1§12 3T = YVE - eat |

' % s
Hence €% = 4°8%

~/
I_‘ Clearly ma: cp{}{) ——>ﬁp(x) is the identity isomorph:-l_sia;
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% 3 ~ 3
then go is 'nés 2 ﬁ?(x,ﬁ)-——bﬁp(x,ﬂ), Hence 1 is an
isomorphism into, Sinece 1Y = £, it follows by {B.15), (1)
that for any ¢ ¢ Gp(X3s

¢ -'S‘)‘{J z{_- S ‘
e8¢ + ST iz p> o0,
: o o e Pl
If @ ¢ 2°(x;4), p > 0, then by (8,13), (ill), S¢ c ¢ {X,4)
and HTY e_ci(x,a).., ‘Terefore $-179¢ ¢ BP(X,4)," Ip ¢ ¢
G i %o
c°(x,a}, then @ =19Y = 0 ¢ B {X,A), Hence ﬂ—g"p : Eip(X,A}

——élﬁpix,ﬁ) is.the identity isomorphism and '3h is onto,

Combining these results, the cohomology theories

¥ e ) . ' :
(Hg,f s0) end {ﬁp,f‘;§“) are equivalent for genepral spaces,

LE

AS a consequence of the proof of (B,15) we have

(86,16) Every Alexander~Xolmogoross eonomology class

contains at least one alternative cocyele,
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9. A Proof of the Homotopy Lemma (7,10),

Let (X,A) be a palr such thag (KxI,AxI) is fully normal,
where I is the closed interval from O to 1 with the usual

topology, Let ht: {XsA) —> {XXI;AxI) be defined by

B(x) = (2,8), t= 0, 1, We assert in (7,10) that no = n

By (8,16}, our assertion is equivalent to the folloﬁing

@

(8.1) 12 9 ¢ ZP(XxI,4xI), then hjc?-hf? ¢ B°(X,8)

By (6,3), (1), there is a cover ing A= {A ;A .X z

Of (X*I,AxI) such that ¢ = 0 on (X5 5 Fickel

on ({xO;xl§*}(p*2), where Ab,ﬁ 1" xb with % being the ine-

a¢& S‘F

jection of AxI into XxI, For each (x,t) ¢ XxI there is a
neighbornood U(x £) of % in X and a connected nelghborhood
R F 3 v : L 2

(x ) S in I such bhat G(x t) (K 5y 13 eoﬁtaxnea in
F 3

some Ab{u), where u is in .Kz or in Ai-ﬁa.acpording as

(xnt) € ﬂKIl oy (X;t) E(K”A)XIO Given any x € X, {V(T t)l
)

t € I} is a collection of open sets whose union covers I

Since each V(x £) is connected, there exisiz & finite sub-
2

3 &4 )
collection {V(x,t(i))l i = 1,,,,,.{x)} such that

L | . | B

a7
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[ 7]
Ve Vi@, ¢ Vi st Vs, tein-1)) s

v L B A for 1< i< r(x);
(x,5(1)) (x,5(141)) (x)

Yz " Vim,eg) T @ for -l >

ﬂ#b d

r(x% '

n Let > == = nd define
P U = MY, sy I =¥ f,=X8 "

,90: Pl--—> Q{}{) {(Q({x) 'ig the céllection Qf"open sets in }_{) by
P(x) = UJGC for every x G.Pl.: Then P = | {PO; 91;92} -is.a
covering of (X,ﬁ;),.,' Let /\-Ll = UKEX{({.xsi}) l i== 1,“.,2‘(3‘33 ’
,u2 = ux%{((x,;s.)) li = 1,,”,;@(};)3 and ﬂefiné /(..Lo:'/ul——>@,(}{x1)
by M(‘)(( z,i})% Uxx?(x;t(i)) for gllv((x,i'}) ¢ M.’i,' " Taen

M = {Mo;}xls}xz}- is a covering. of (}{xI,A;‘E)_a:ﬁ M >N,

' r(x)

; o, : L
For each X € X let tx = 0, tx = 1 and choose a tx €

‘ ' i - l " P r{x)
Vix,t(a))" Viz,t(1+1))* @ <1 <r(x), Then < eee < B

") ] =) - . £
bo?_ convenience sake we deu;.gnatg v %, £(1)) and (x, n.x) by

Vi and {x,1] and let 2 = {{x,i] | 1<£isg r‘(:ﬁ} and X € x},

Let XxI be ordered such that‘ (jx,t_) < tx’.'ﬁ'.} if znd
only if elither t < t' or t= t' and X< x’, Taen XxI is
linearly ordered by < ';":ith respect to this ordering
there is =z homomorphism W3 Cp{}{xx) — Gp(}{x}:) analogous to

- —
W, A3 the dual of W there is a homowmorphism W g cp{}{xx)

L Cee st om
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-—->'ép(xxI) defined by {E»*‘{')e = Y{@ec) for VY ¢ '(:p{}cxx) and

¢ ¢ cp(xwz), Since there is a natural isomorphism X of

Cp(XxI} cnto _Ep(xxl), & induces a homo.mox-phism a: cp(}{xI)

—s ¢¥(XXI) defined by (SL¥)(§) = iEJ'*R% (§) for Ve cPrxxy)
P+l

and §¢ X° 7, We can easily see that 21l the properties of

§ =
; U v

@

W, W, 0 obtained above also hold for W, w
Let g = {X , X ) € Xpﬂ I x is a coordinate of §
o eced p » =

and 0 < J € r{x), then for each i therc is a unique integer

'ﬁ(i) defined by A(i) = max 14 | 1%,41 4 {xi,ij_}, e denc;te
S y =
{X;j] “{ ’.l”x } {[X !&(0)13911.![5: é(p)]}o

If x= max:{xo,,",xp}, then we denote

GEX’O} {xthoaaxp_] = ffxop{)],g,,, {xp,(}] }9

For each {x,j]' € 2 there is a homomorpaiem d s

V [x,31°
C?(};)__;}cpﬂ(xﬁ) defined as follows : Let § = (Xon.nxp}
_p+
¢ X7

(i) If % is not a coordinate of € then
fX,J] (= loooba 1= 0;
(i) If x is a coordinate of §, then

L | a 3#00 = - 2 5
tr, 31 70r 000 %] = WIRI1I6, pyTxen ),



———r

l_ 90 _l

In case (ii) if xo,,.,,xp are distinct, x = X (0€<n<yp)
and [y,k] is the maximum of [xo,i(o)j,,,.,[xn l,zf,(n..g_)]’

(= ,A(n)-11,0% . ,A(a42) ], ..., txp,i(p) ], taen

ny,k] {Xon ».uaxp] = [Exo,ﬁ_(()) | T [xn—lsé(n_l} ¥s

LSO RS HC AN (C O P AR CIR (IS IR
It follows that for p > 0,

) i A
= - ﬁ r =
[x’j}afx ’o-nlx ] 21‘30( 1} [xaj]s:{osanon.’ iiuﬁenxpj

( 1) W[K,j 1] 9[ ’jgfx iooo!xiﬁoellx }.

Zi.:zO si#n P

[X,:}]{x ’eooﬁx ]—am{.i j 1}9 ’j][xo’oeo!xp}

::wafx,j l] E 9j}[x0’..-,x§3]

—

S - - X
w [X,j][xo"'°'xp] w[xsj 1}39[}:"1]{ oﬂono’xpj

=5&9[X.j][ o""""] pr ("'l)if[x,j-l}’

[xo,i(O)]n....t:*-i,é{i)],..“fx, A(p) 11

wG{XnJ}IKO"‘“-’xp] ) 009{ Dk]rx '...’Rp]
i_ A
. Zi’“O i—-"l( 1) w{xij'llO{X’j]{x{)leoa’xiﬂoooﬁzp]t
Therefore
{9.2) (d _,,3"'3 )l."'" Qtooﬂx ]

L {x:3) [®%:31 __]
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[X’J]{x Booosx ] = LOS

[ka] [xo’ ] ixpja

If p= O, then 2d [x] = 3wlx, =110

(x,3] [x pJ]EX]
353[[Xaj'1lnfxa§13 = 9{x,j~1],0x,31] = [X,§] - fx,3=1], or

(9.2°%) [A 3]{x] = [%,§] - {ng ila

Civen any § ¢ xP 1

. E)# 0 only if x is
xyj](§} g v “
coordinate of §, Therefore a homomorphism D: Cp(x)——e

c +I(Xxl') is defined by

D(E) = 5 {a £|a €# 03,

B =2ie, 89y, 5 # o3

Let hiﬁ= ¢ (K)-——-hc _(XXI) be the homomorphism defined
by h IK 9.;993 1= [(x Oi)tooci(x :1)] for every (= vo..:xp)

@ - w =
(9.3) @n, h

DWJ + 3DwW" on c_j(x)', p> 0,
5
o¥ {

Pae—

Dw ¥ X
d | on Co( ) .

Proof, It is sufficient %o show that fopr every ¥ €

{pwag + oDWg it p > o,

MDWE if p= 0,
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dDW[X] = 3 D[] = Zf““txi][]

i

Zr{“*}{rx,,_g - [x,8-1])
= [xX,2(z)] - fx,0]

= whlﬁ{.x] - who#{:{}ﬁ-

The second pari is proved,

Pl - ;
» B> Oo I*‘“o’otai

1

Now f£ix an g = (xo,.,.,xp) € X

%, are no dlstinet, then
whl*g - who#g = 0= DwIE +3Dw§,

Supyose that xg,,,,,xp are dis.,;.nct: and let ‘{[xi,ﬁ} l os 4

& r(xi) and 0 $1 < pJ be erranged in a descending sequenec
Z(l)’n¢~93(ﬁ>32(R+1)3..',Z(R+p+1}3

where R = Zp »{x ), Then z(1) = (max

i=0 i

. xi, 1) and ‘z(R-%l) =

(maxi Ri’ 0). Therefore

92(1) [KON“‘.:KP] = ,{{Koal)s..oa(xpyl)] = hl#[xolouosxp]a

GZ(R+1}IXO’.Q“’XP} = {(xoﬁo}’-b?’(xpio)} = ho#fxoDoooéxp}a

-

oreover,

R L T ey (0O s T A2 1) |
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end z(J) = [x ,A(n)], then 2(3942) € Ix,4(4)] for a12 1
different from n and 'z(j-:-l) < [xn,i(n)-l}. Hence

Oa(ge1y Foreses® ) =lx WA0) 1,0 0tz Whne1)), |
| Fxnsﬁié}~l},Ezn,}l,éi{n'-‘rl}In...;fxp,ﬁw)]]e

and, by (9.2),

® %3 ‘ | - I e
(dZ(J) dZ(j))[xop‘.o-?xpj wsg(j}{ cﬁooosxpj

s

- W G & f” " x 1
Z{J‘?‘l) “'09 Qe _'3“

&

Conzequently, .
R
Do +0o o = P o - v YL X
( a | D) rxoaoc..-v xp] Zjﬂl{c‘z{j}g adz(jb)[Yoﬁdoe,9 p]
R —_ - :
. 231‘“92(33“‘0’-"'%3 " 0O, (guay [Fpraeesn l)

= w@z(l) [xoaaool?}-‘p] = sz(R-ﬂ.) rxo;..ogip}

= ((-\)hlﬁ" who# )Exo’.ocsxp}n

Since wwW =w and a)hm = R, W, it follows that

G (B\Q}a *‘anw}{xcﬂeoolxp] =, (Da * aD)w[xol.otoﬁxp]

= (@ - ®
= ( hl# wha# )wixoﬂoeoﬂxp}

e

= BBy = BRI E e 1,

completing the proof of (9.,3), Q.E.D,

A8 the dual of D there is a homomorphiom Dﬁ: P ﬂ{}C I)

—s (%) definea by

_



R

(D'We = W(De)
=P, | . : .
for Y e T “(XxI) and ¢ ¢ C (X). since there is a natural
X : .
- Bl =D+
isomorphism X of ¢° "'(}{KE) onto Cp 1(}1*1) end a naturgi

isomorphism X of Gp(};) onto Ep(}{), D irduces a homomope

phi

3

w~ad

* -
m o0 ¢ cp 1(3{x1)-—>cp(}i) such that D XK= o, i.c
(BY)E) = (D"RYI(D)
% +, : - :
for Y ¢ cp‘lf}ixx) and § € Kp l‘ By (2,3), we ecan easily

show thai

(9.4) For esch ¥ € ¢®(X 1) we have

§.ne8+g Q8TY iryp> o0,

hl.n.\%l - 110 QY= { i
Qh8Y

=
k4

Pp= 0,

Proof of {9,1), Since ¢ ¢ ﬁp(xxi,AxI), then ¢ = ¢,
It follows by (9.4) that
§289+ 2859 ir 5 o,
n¥o_ oo |
:llf-P - ho‘-?-:-' N
\.Q.oélé"‘? . irp=o,
-l ‘
Therefore we have only to show that 0289 ¢ Cp {A,A) for
p'> 0 and -Q.'09§‘P € C(I:(}{;A) for p = 0, Here only a proof
Brlp o g% e a FIETI
Lo ﬂe@“? € C (X8, P> 0, will be given below, since

a paraliel proof for the other can be done without difficulity,

L | | . _
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Fix an § = (x s-.uvx } ¢ {P F Z(p) sey g €

(A0 U ) with v € by 38 B g oouia® arc not distinet, then

n.@«?(g)';—. (m&‘?)(whgh) = O, ‘Suppose that :u:b“,.,,xr- are

distinet, Let x be a coordinate of § and 1 € § g wix)

J = s '
I ‘t i J d d ;{ pid et o 1S
fc Uz € v aﬂ [x,51" o!aonvﬁp_l] ’r\:J -1}, Ix. 9&(0339

coer X l,zi{p-l)‘]r; ~ Then for each i either i{i) = (%) and
(2,31 4 (2,800 ] or [=,1] < (x,,4(1)42] and 1x,5] & =, 04(1),
T 2 Ay g - : . —
in the first case we have t = {” = 1 and hence (x,,1) ¢
Ki . &

,iio((xi,i(i))) N j‘io((y,m}), Therelore

(x A(2)] = (x,,1) ¢ ﬁ“’({y,m»
In the second case we have {ri,i(i}], rx, ,i(i)vl] €

~

).Lo(( i(i)-ﬁ-l)) and hence t € é(i}ﬂ and {xi,ti}_ €
1 .

| A(\xi,i(i)*l)) n /u.((y,m)). Therefore

tmA) € K s Ay ¢ Wgm,
Sinece [x,j] ¢ /?io((x;;l)) n }“io(isz';ﬁ)); we have also .
15,341 € Mz, ) ¢ Llly,my,
Hence
{X,j}{.‘{ Ooobﬁl" ] € C ({/UV 9M2§ )e
By the definition of W, co{’xb,,,,,xp l] is either O or

L&,, PRy 3 Wit}i (P(G)lnoiDP(p-l}} being
#{0) P(p=-1)



m .
the permutation of (Csuuesp=1) such #hat x P

F(O)

We infer thas
*o(p-1)* |

{x,,]]w"}' Dcoe#x ] GG {{A 9}"-} }

Conseguently,

:DLO[:{ ﬁoaaﬂx ] - Z {d w[‘xolouuﬁx

o p-1 (x,5]
Az, 51 Fgreeesx 14 0} ¢ AEP RN

p~1jl

Since 9= Q0 on ({xo;)\g};“}(p-‘-}') and M > X, it follows '
that XY = 0 on ¢ ({j}:o;,u,gg "). Heace (neQ‘-F){xo,,“,xp__i?
(U-)D K?)[;{ anwasx } = (K‘PI{D“’LA a.o.s-“- 1]) "';-‘.09

ke L . (») p"'l_.._

proving that 089 =0 on .{Pg’f’g} and Q89 ¢ ¢ (X,2),

Q.F‘aDu
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