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1 Introduction

Throughout this paper, ‖ · ‖ denotes a norm on R
n (n > 1 is always assumed) that is

normalized so that its unit ball has the same volume as the Euclidean unit ball.

A norm ‖ · ‖ on R
n induces a Sobolev norm for compactly supported functions

f : R
n

→ R with L1 weak derivative, given by

f �−→

∥
∥∇f∥∥

1
=

∫

Rn

∥
∥∇f(x)∥∥∗dx, (1.1)

where ‖ · ‖∗ denotes the norm dual to ‖ · ‖ (see Section 2 for precise definitions).

Cordero, Nazaret, and Villani [7] have recently used a beautiful mass transporta-

tion argument to establish the following family of sharp Gagliardo-Nirenberg inequali-

ties for this Sobolev norm. If ‖ · ‖ is a norm on R
n and f : R

n
→ R is compactly supported

and smooth, then

‖∇f‖1 ≥ c1,r,n|f|1−α
1 |f|αr , (1.2)

where 0 < r ≤ n/(n − 1), α ∈ R is determined by scale invariance, and |f|r denotes the

Received 7 March 2005. Revision received 2 December 2005.

Communicated by Emmanuel Hebey.



2 Erwin Lutwak et al.

standard Lr-norm of f. Their work extends earlier results of Maz ′ja [25], Gromov [27],

Alvino, Ferone, Trombetti, and Lions [1], and Del Pino and Dolbeault [8].

The CNV inequality immediately raises the obvious question.

The optimal L1 Sobolev norm. Given a function f : R
n

→ R with L1 weak derivative, what

is the unique norm ‖ · ‖ on R
n that minimizes ‖∇f‖1?

An apparently unrelated question is the following.

The even Minkowski problem. Given a positive even function g on the unit sphere Sn−1,

what is the unique convex body K such that for each unit vector u, g(u) is the Gauss cur-

vature at the point on the boundary ∂K that has outer unit normal u?

One aim of this note is to show that the two questions stated above are essentially

equivalent. We will in fact consider Lp-generalizations of these questions. This can be

stated as follows (see Section 2 for precise definitions).

If 1 ≤ p < n, a norm ‖ · ‖ on R
n induces a Sobolev norm for compactly supported

functions f : R
n

→ R with Lp weak derivative, given by

f �−→ ‖∇f‖p =

( ∫

Rn

∥
∥∇f(x)∥∥p

∗dx
)1/p

, (1.3)

where ‖ · ‖∗ denotes the dual norm.

Cordero, Nazaret, and Villani [7] extended earlier results of Aubin [2], Talenti

[31], Gromov [27], Alvino, Ferone, Trombetti, and Lions [1], and Del Pino and Dolbeault

[8] and established the following family of sharp Lp Gagliardo-Nirenberg inequalities

(throughout this paper, they will be called the CNV inequalities): If 1 ≤ p < n, ‖ · ‖ is a

norm on R
n, and f : R

n
→ R is compactly supported and smooth, then

‖∇f‖p ≥ cp,r,n|f|1−α
q |f|αr , (1.4)

where 0 < r ≤ np/(n − p), q = 1 + r(p − 1)/p, |f|p denotes the standard Lp-norm of f, and

α ∈ R is determined by scale invariance.

This leads us to ask the following for every p ≥ 1 (and not just 1 ≤ p < n).

The optimal Lp Sobolev norm. Given a function f : R
n

→ R with Lp weak derivative,

what is the unique norm ‖ · ‖ on R
n that minimizes ‖∇f‖p?

In this paper, we show that this problem is essentially the same as the apparently

unrelated even Lp Minkowski problem. The Lp Minkowski problem, which can be written
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as a Monge-Ampère equation

h1−p det
(

hij + hδij

)

= g (1.5)

on the unit sphere, is a central question in the Lp Brunn-Minkowski theory of convex

bodies (see Section 3 for more details).

A consequence of Theorem 5.1 in this paper is that all possible Lp Sobolev norms

of a function f : R
n

→ R can be encoded naturally within a single origin-symmetric

convex body K. In particular, for each norm on R
n, the corresponding Lp Sobolev norm

of f is given by the (normalized) Lp mixed volume of K and the unit ball of the norm (see

Theorem 5.1 and the remark immediately following it for details).

Moreover, the (suitably normalized) volume of this convex body is precisely equal

to the optimal Lp Sobolev norm of f. We show in Section 6 that minimizing the left-hand

side of the CNV inequality (1.4) over all norms on R
n establishes an affine version of the

Cordero-Nazaret-Villani inequalities.

Zhang [34] and the authors [22] have recently established a sharp Lp affine

Sobolev inequality (a version of the L1 affine Sobolev inequality involving capacity has

recently been established by Xiao [33]). The proof in [22] is rather involved, using the Lp

Petty projection inequality established by the authors [20] and a rearrangement argu-

ment, where the solution to the even Lp Minkowski problem is applied to each level set of

a function. A less circuitous proof also using the Lp Petty projection inequality, as well

as the optimal Lp Sobolev norm and the CNV inequality (1.4), is presented in Section 7.

2 Preliminaries

Throughout this paper, u · x denotes the standard inner product of u, x ∈ R
n, and | · |

denotes the standard Euclidean norm on R
n. For 1 ≤ p < ∞ and a measurable function

f : R
n

→ R, let |f|p denote the Lp norm of f and Lp(Rn) the corresponding space of Lp-

bounded functions on R
n.

An Lp
loc function f : R

n
→ R has Lp weak derivative, if there exists a measurable

function ∇f : R
n

→ R
n such that |∇f| ∈ Lp(Rn) and

∫

Rn

v(x) · ∇f(x)dx = −

∫

Rn

f(x)∇ · v(x)dx, (2.1)

for every compactly supported smooth vector field v : R
n

→ R
n. The function ∇f is called

the weak gradient of f, and the Lp norm of |∇f| is denoted by |∇f|p.
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The norm dual to ‖ · ‖ is denoted by ‖ · ‖∗, where

‖u‖∗ = sup

{

u · x
‖x‖ : x ∈ R

n\{0}

}

, (2.2)

for each u ∈ R
n. Given a function f : R

n
→ R with Lp weak derivative, we denote

‖∇f‖p =

( ∫

Rn

∥
∥∇f(x)∥∥p

∗dx
)1/p

. (2.3)

We will call this an Lp Sobolev norm of f, even though it is only a seminorm.

Throughout this paper, a convex body is always assumed to be an origin-

symmetric compact convex set in R
n with nonempty interior. A measure is always as-

sumed to be a positive finite Borel measure.

The volume (i.e., Lebesgue measure) of a convex body K will be denoted by V(K).

A convex body K defines a norm | · |K on R
n given by

|x|K = inf

{

t > 0 :
x

t
∈ K

}

(2.4)

for each x ∈ R
n. The polar body K∗ of K is defined by

K∗ = {u ∈ R
n : u · x ≤ 1 for each x ∈ K}. (2.5)

Note that | · |K∗ is the norm dual to | · |K and also the support function of K. The boundary

of Kwill be denoted by ∂K.

The standard unit ball in R
n will be denoted by B and its volume byωn.

3 The Lp Minkowski problem

We begin by recalling basics that we need from the Brunn-Minkowski theory of convex

bodies and its Lp extension (see Schneider [29] for details regarding the classical Brunn-

Minkowski theory).

If K, L are convex bodies and 0 < t < ∞, then the Minkowski combination K + tL

is defined by

| · |(K+tL)∗ = | · |K∗ + t| · |L∗ . (3.1)

As an aside, note that K + tL = {x + ty : x ∈ K, y ∈ L}.
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The mixed volume V1(K, L) of K and L is defined by

V1(K, L) =
1

n
lim

t→0+

V(K + tL) − V(K)
t

. (3.2)

A fundamental fact is that corresponding to each convex body K is a unique Borel

measure S(K, ·) on the unit sphere Sn−1 such that

V1(K, L) =
1

n

∫

Sn−1

|u|L∗dS(K,u), (3.3)

for each convex body L. The measure S(K, ·) is called the surface area measure of K.

Let h = | · |K∗ denote the support function of K, and h∗ = | · |K the support function

of K∗. Note that

h∗(x) = 1, for each x ∈ ∂K. (3.4)

Recall that the Gauss map assigns to each point of the boundary of a sufficiently smooth

convex body in R
n its outer unit normal. Since h∗ is a convex function (and therefore

differentiable almost everywhere) and constant along the boundary of K, the Gauss map

γ : ∂K → Sn−1 can be defined almost everywhere on ∂K by

γ =
∇h∗
|∇h∗| . (3.5)

It follows from the definition of the dual norm that h(∇h∗(x)) = 1, for almost every x ∈
R

n. This and the homogeneity (of degree 1) of h give

h
(

γ(x)
)

=
1

∣
∣∇h∗(x)∣∣ . (3.6)

Let σ(∂K, ·) be the (n−1)-dimensional volume measure induced on ∂K by the stan-

dard Euclidean structure on R
n. It turns out that the surface area measure is given by

S(K, ·) = γ∗σ(∂K, ·), (3.7)

where γ∗ denotes the pushforward induced by the Gauss map γ. If the boundary ∂K is

strictly convex and smooth, then

S(K, ·) =
du

κ
(

γ−1(u)
) , (3.8)
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where du is the standard Lebesgue measure on Sn−1, and κ : ∂K → R is the Gauss curva-

ture of the hypersurface ∂K.

Recall that a measure μ on the unit sphere Sn−1 is said to be even, if it assumes

the same values on antipodal Borel sets. The even Minkowski problem can be stated as

follows. Given an even Borel measure μ on the unit sphere Sn−1, does there exist a convex

body Kwhose surface area measure is μ? Or, equivalently, does there exist a convex body

K such that

V1(K, L) =
1

n

∫

Sn−1

|u|L∗dμ(u), (3.9)

for each convex body L?

Lutwak [17] showed how elements of the classical Brunn-Minkowski theory can

be extended to a more general Lp Brunn-Minkowski theory (see, e.g., [5, 6, 11, 12, 13, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 30]) by using Lp Minkowski sums first introduced

by Firey. The essential details are reviewed below.

Suppose 1 ≤ p < ∞. If K, L are convex bodies, and 0 < t < ∞, then the Lp

Minkowski-Firey combination K +p tL is defined by

| · |p(K+ptL)∗ = | · |pK∗ + tp| · |pL∗ . (3.10)

The Lp mixed volume of K and L is defined by

Vp(K, L) =
p

n
lim
t→0

V
(

K +p t
1/pL

)

− V(K)
t

, (3.11)

and can be viewed as an Lp surface area of ∂K with respect to the geometric structure

induced by the norm | · |L. It generalizes the Euclidean surface area of K, which is given

by nV1(K,B), where B is the standard unit ball in R
n. Note that

Vp(K,K) = V(K). (3.12)

A fundamental inequality that we need is the following special case of the Lp

Minkowski inequality [17].

Lemma 3.1. If 1 ≤ p < ∞ and K, L are origin-symmetric convex bodies in R
n, then

Vp(K, L) ≥ V(K)1−p/nV(L)p/n. (3.13)

Equality holds if and only if L = tK for some t > 0. �
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This inequality generalizes the classical isoperimetric inequality, where p = 1

and L = B. The following is a well-known and useful consequence.

Lemma 3.2. If K and L are convex bodies such that

Vp(K,Q)
V(K)

=
Vp(L,Q)
V(L)

(3.14)

for each convex bodyQ, then K = L. �

Proof. SettingQ = K gives, by (3.12) and Lemma 3.1,

1 =
Vp(K,K)
V(K)

=
Vp(L, K)
V(L)

≥
(
V(K)
V(L)

)p/n

. (3.15)

This gives V(K) ≤ V(L); setting Q = L gives the reverse inequality. From the equality

conditions of Lemma 3.1, L is a dilate of K. Since V(K) = V(L), the bodies must be the

same. �

It was shown in [17] that corresponding to each convex body K is a unique Borel

measure Sp(K, ·) on the unit sphere Sn−1 such that

Vp(K, L) =
1

n

∫

Sn−1

|u|
p
L∗ dSp(K,u), (3.16)

for each convex body L. The measure Sp(K, ·) is called the Lp surface area measure of K.

One easily observes that for every t > 0,

Sp(tK, ·) = tn−pSp(K, ·). (3.17)

It was also shown in [17] that the Lp surface area measure Sp(K, ·) is absolutely continu-

ous with respect to S(K, ·) = S1(K, ·), and that for the Radon-Nikodym derivative we have

dSp(K, ·)
dS(K, ·) = h1−p, (3.18)

where h = | · |K∗ is the support function of K.
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The even Lp Minkowski problem. Given an even Borel measure μ on Sn−1, does there

exist a convex body K such that μ = Sp(K, ·)? Or, equivalently, does there exist a convex

body K such that

Vp(K, L) =
1

n

∫

Sn−1

|u|
p
L∗dμ(u), (3.19)

for each convex body L?

Lutwak [17] gave an affirmative answer to this problem when p �= n. The authors

[23] introduced the volume-normalized Lp Minkowski problem, for which the case p = n

can be handled as well (The volume-normalized L1 Minkowski problem was used earlier

by Ball [3] to construct convex bodies with large shadow areas in all directions). See [5,

6, 11, 13] for recent progress on the Lp Minkowski problem when the given measure is

not assumed to be even.

In particular, the authors solved the even case of the volume-normalized Lp

Minkowski problem and proved the following in [23].

Theorem 3.3. If 1 ≤ p < ∞ and μ is an even Borel measure on the unit sphere Sn−1, then

there exists a unique origin-symmetric convex body K̄ such that

Sp(K̄, ·)
V(K̄)

= μ (3.20)

if and only if the support of μ is not contained in any (n−1)-dimensional linear subspace.

�

If p �= n, Theorem 3.3 is equivalent to the solution to the even Lp Minkowski prob-

lem. Given a measure μ satisfying the assumptions of Theorem 3.3, then it follows from

(3.17) that the unique solution to the even Lp Minkowski problem is obtained by letting

K = V(K̄)1/(p−n)K̄, (3.21)

where K̄ is the origin-symmetric convex body given by Theorem 3.3.

4 The functional Lp Minkowski problem

We begin by defining the Lp surface area measure of a Sobolev function.

Lemma 4.1. Given 1 ≤ p < ∞ and a function f : R
n

→ R with Lp weak derivative, there

exists a unique finite Borel measure Sp(f, ·) on Sn−1 such that

∫

Rn

ϕ
(

− ∇f(x))pdx =

∫

Sn−1

ϕ(u)pdSp(f, u), (4.1)
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for every nonnegative continuous function ϕ : R
n

→ R homogeneous of degree 1. If f is

not equal to a constant function almost everywhere, then the support of Sp(f, ·) cannot

be contained in any (n − 1)-dimensional linear subspace. �

We call the measure Sp(f, ·) given by the lemma above the Lp surface area mea-

sure of the function f.

Proof. Let Σ = {x : ∇f(x) = 0}. Since

ψ �−→

∫

Rn\Σ

ψ

(

−
∇f(x)
∣
∣∇f(x)∣∣

)

∣
∣∇f(x)∣∣pdx (4.2)

defines a nonnegative bounded linear functional on the space of continuous functions

on Sn−1, it follows by the Riesz representation theorem that there exists a unique Borel

measure Sp(f, ·) on Sn−1 such that

∫

Rn\Σ

ψ

(

−
∇f(x)
∣
∣∇f(x)∣∣

)

∣
∣∇f(x)∣∣pdx =

∫

Sn−1

ψ(u)dSp(f, u), (4.3)

for each continuous function ψ : Sn−1
→ R.

If ϕ : R
n

→ [0,∞) is continuous and homogeneous of degree 1, then ϕ(−∇f(x)) =

0, for each x ∈ Σ. This, the homogeneity ofϕ, and (4.3) withψ = ϕp (restricted to the unit

sphere) give

∫

Rn

ϕ
(

− ∇f(x))pdx =

∫

Rn\Σ

ϕ
(

− ∇f(x))pdx

=

∫

Rn\Σ

ϕ

(

−
∇f(x)
∣
∣∇f(x)∣∣

)p
∣
∣∇f(x)∣∣pdx

=

∫

Sn−1

ϕ(u)pdSp(f, u).

(4.4)

Thus, the measure Sp(f, ·) satisfies (4.1) for each nonnegative continuous function ϕ :

R
n

→ R homogeneous of degree 1. The uniqueness of Sp(f, ·) follows by observing that

any measure Sp(f, ·) on Sn−1 that satisfies (4.1) defines the same linear functional as

given by (4.2).

If the support of Sp(f, ·) is contained inH∩Sn−1, where, say,H = {x ∈ R
n : xn = 0},

then by (4.1),

0 =

∫

Sn−1

∣
∣un

∣
∣
p
dSp(f, u)

=

∫

Rn

∣
∣∂nf(x)

∣
∣
p
dx.

(4.5)
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It follows that ∂nf = 0 almost everywhere, and therefore, for each i = 1, . . . , n and com-

pactly supported smooth function χ,

∂n∂i(f ∗ χ) = 0, (4.6)

where f ∗ χ denotes the convolution of f and χ. Since ∂if ∈ Lp(Rn),

∂i(f ∗ χ) ∈ Lp
(

R
n
)

, (4.7)

and since f∗χ is smooth, it follows by (4.6), (4.7), and the mean value theorem that ∂i(f∗χ)
is identically zero and f∗χ is constant. This holds for every compactly supported smooth

function χ, and therefore the function fmust be constant almost everywhere. �

This leads naturally to the following.

The functional Lp Minkowski problem. Given a Borel measure μ on Sn−1, does there ex-

ist a function f : R
n

→ R with Lp weak derivative such that Sp(f, ·) = μ?

We answer this question for even measures by using the solution to the normal-

ized even Lp Minkowski problem.

Theorem 4.2. If 1 ≤ p < ∞ and μ is an even Borel measure on Sn−1 whose support is

not contained in any (n − 1)-dimensional linear subspace, then there exists a function

f : R
n

→ R with Lp weak derivative such that Sp(f, ·) = μ. �

Proof. By Theorem 3.3, there exists an origin-symmetric convex body K such that

Sp(K, ·)
V(K)

= μ. (4.8)

Let χ : [0,∞) → [0,∞) be a smooth decreasing compactly supported function such that

∫
∞

0

(

− χ ′(t)
)p
tn−1dt =

1

V(K)
, (4.9)

and define f : R
n

→ R by

f(x) = χ
(

h∗(x)
)

, (4.10)

where, as before, h∗ = | · |K and h = | · |K∗ . Since f is compactly supported, χ is smooth, and

h∗ is Lipschitz, it follows that the function f has weak Lp derivative.
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Observe that the (n−1)-dimensional volume measure on (h∗)−1(t) = t∂K induced

by the standard Euclidean structure on R
n is given by

σ(t∂K, tω) = tn−1σ(∂K,ω), (4.11)

for each t > 0 and Borel set ω ⊂ ∂K. Therefore, by the coarea formula (see, e.g., Federer

[9]) and the observation that ∇h∗ is homogeneous of degree 0,

∫

Rn

F(x)
∣
∣∇h∗(x)∣∣pdx =

∫
∞

0

∫

(h∗)−1(t)
F(x)

∣
∣∇h∗(x)∣∣p−1

dσ(t∂K, x)dt

=

∫
∞

0

∫

∂K

F(tv)
∣
∣∇h∗(v)∣∣p−1

tn−1dσ(∂K, v)dt,
(4.12)

for every F ∈ L1(Rn).

Let ϕ : R
n

→ [0,∞) be continuous and homogeneous of degree 1. By the chain

rule, (4.12) and the homogeneity of ϕ, (3.4), (3.5), and (3.6), (4.9) and (3.7), and (3.18)

and (4.8),

∫

Rn

ϕ
(

− ∇f(x))pdx

=

∫

Rn

ϕ
(

− χ ′(h∗(x)
)∇h∗(x))pdx

=

∫
∞

0

∫

∂K

tn−1
(

− χ ′(t)
)p
ϕ

(

∇h∗(v)
∣
∣∇h∗(v)∣∣

)p
∣
∣∇h∗(v)∣∣p−1

dσ(∂K, v)dt

=

∫
∞

0

(

− χ ′(t)
)p
tn−1dt

∫

∂K

ϕ
(

γ(v)
)p
h
(

γ(v)
)1−p

dσ(∂K, v)

=
1

V(K)

∫

Sn−1

ϕ(u)ph(u)1−pdS(K,u)

=

∫

Sn−1

ϕ(u)pdSp(K,u)
V(K)

=

∫

Sn−1

ϕ(u)pdμ(u).

(4.13)

�

5 Existence and uniqueness of an optimal Sobolev norm

We use the even Lp Minkowski problem to show that for each function f : R
n

→ R with

Lp weak derivative, there is a unique origin-symmetric convex body K whose Lp surface

area measure is equal to the Lp surface area measure of f and that a dilate of this body is

the unit ball for the optimal Lp Sobolev norm of f. This construction establishes a funda-

mental connection between functions on R
n and convex bodies in R

n.
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Theorem 5.1. If 1 ≤ p < ∞ and f : R
n

→ R has Lp weak derivative, then there exists a

unique origin-symmetric convex body K = Kpf such that

∫

Rn

ϕ
(

− ∇f(x))pdx =
1

V(K)

∫

Sn−1

ϕ(u)pdSp(K,u), (5.1)

for every even continuous function ϕ : R
n

→ [0,∞) that is homogeneous of degree 1. �

A consequence of this theorem is that the Lp Sobolev norm of f is equal to a suit-

ably normalized Lp mixed volume of the convex body Kpf and the unit ball of the norm

used to define the Sobolev norm. Specifically, if we set ϕ = | · |Q∗ , then it follows by (5.1)

and (3.16) that

1

n

∫

Rn

∣
∣∇f(x)∣∣p

Q∗dx =
Vp(K,Q)
V(K)

, (5.2)

for each origin-symmetric convex bodyQ.

A still elusive complete solution to the Lp Minkowski problem should provide

necessary and sufficient conditions on a function f to guarantee the existence of a not

necessarily origin-symmetric convex bodyK for which (5.1) holds for all continuous non-

negative functions ϕ that are homogeneous of degree 1 (but not necessarily even).

Proof. Let μ be the even part of the measure Sp(f, ·) on Sn−1. By Theorem 3.3, there exists

an origin-symmetric convex body K such that

Sp(K, ·)
V(K)

= μ. (5.3)

Ifϕ : R
n

→ [0,∞) is an even continuous function that is homogeneous of degree 1, then it

follows by Lemma 4.1 and (4.8) that

∫

Rn

ϕ
(

− ∇f(x))pdx =

∫

Sn−1

ϕ(u)pdSp(f, u)

=

∫

Sn−1

ϕ(u)pdμ(u)

=
1

V(K)

∫

Sn−1

ϕ(u)pdSp(K,u).

(5.4)

If K1 and K2 are both origin-symmetric convex bodies satisfying (5.1), then by

(5.2) and Lemma 3.2, K1 = K2. �

Corollary 5.2. Suppose 1 ≤ p < ∞. If f : R
n

→ R has Lp weak derivative, then there is,

among all norms on R
n whose unit ball has the same volume as the Euclidean unit ball,
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a unique norm ‖ · ‖ that minimizes ‖∇f‖p. That norm is given by

‖ · ‖ =

(
V(K)
ωn

)1/n

| · |K, (5.5)

where K = Kpf. Moreover,

‖∇f‖p = n1/pω1/n
n V(Kpf)−1/n. (5.6)

�

Proof. Note that (5.5) is equivalent to

‖ · ‖∗ =

(
ωn

V(K)

)1/n

| · |K∗ . (5.7)

For each norm | · |L such that V(L) = ωn, it follows by (5.2), the Lp Minkowski inequality

(3.13), (3.12), (5.2) again, and (5.7) that

∫

Rn

∣
∣∇f(x)∣∣p

L∗dx = n
Vp(K, L)
V(K)

≥ nV(K)−p/nωp/n
n

= n

(
ωn

V(K)

)p/n
Vp(K,K)
V(K)

=

(
ωn

V(K)

)p/n ∫

Rn

∣
∣∇f(x)∣∣p

K∗dx

=

∫

Rn

∥
∥∇f(x)∥∥p

∗dx.

(5.8)

Uniqueness of the norm ‖ · ‖ follows from the equality condition of the Lp Minkowski

inequality (3.13).

Note that equation (5.6) is contained in the last four lines of (5.8). �

Theorems 4.2 and 3.3 imply the following converse to Theorem 5.1.

Proposition 5.3. Suppose 1 ≤ p < ∞. If K is an origin-symmetric convex body, then there

exists a function f : R
n

→ R with weak Lp derivative such that Kpf = K. �

The convex body Kpf encodes the geometry of the level sets of f. In particular, if

all of the level sets are dilates of an origin-symmetric convex body K, then Kpf is a dilate

of K.

The following proposition describes how Kpf behaves if f is composed with an

invertible linear transformation.
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Proposition 5.4. Suppose 1 ≤ p < ∞. If f : R
n

→ R has Lp weak derivative, andφ ∈ SL(n),

then

Kp

(

f ◦ φ−1
)

= φ
(

Kpf
)

. (5.9)
�

Proof. Using the definitions of the Lp Minkowski-Firey combination and Lp mixed vol-

ume, it is straightforward to verify the well-known fact that for every pair of convex

bodies K and L,

Vp(φK, L)
V(φK)

=
Vp

(

K,φ−1L
)

V(K)
. (5.10)

Using the identity |φ−t · |L∗ = | · |(φ−1L)∗ , where φ−t denotes the inverse transpose of φ,

and making the change of variables y = φ(x) give

∫

Rn

∣
∣∇(f ◦ φ−1

)

(y)
∣
∣
p

L∗dy =

∫

Rn

∣
∣∇f(x)∣∣p(φ−1L)∗dx. (5.11)

Let K = Kpf and Kφ = Kp(f ◦ φ−1). By (3.16), (5.2), (5.11), (5.2) again, and (5.10),

Vp

(

Kφ, L
)

V
(

Kφ

) =
Vp(φK, L)
V(φK)

, (5.12)

for each convex body L. The proposition now follows by Lemma 3.2. �

It is easily verified that if f : R
n

→ R has weak Lp derivative and g : R
n

→ R is

given by

g(x) = tf(cx + y), (5.13)

for each x ∈ R
n, where t, c > 0 and y ∈ R

n, then Kpg = t−1cn/p−1 Kpf. Combining this with

Proposition 5.4 gives

Kp

(

tf ◦Φ−1
)

= t−1|φ|−1/pφ
(

Kpf
)

, (5.14)

for each t > 0 and invertible affine transformationΦ : R
n

→ R
n given by

Φ(x) = φ(x) + y, (5.15)

where y ∈ R
n, φ ∈ GL(n), and |φ| denotes the absolute value of the determinant of φ.
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6 Sharp affine inequalities

Let Aff(n) denote the group of invertible affine transformations of R
n. There is a natural

left action of R\{0} × Aff(n) on functions f : R
n

→ R, given by f �→ tf ◦ Φ−1, for each

(t,Φ) ∈ R\{0} × Aff(n). An affine inequality for a class of functions f : R
n

→ R is an

inequality L[f] ≤ R[f], where L and R are functionals such that

L[tf ◦Φ]
R[tf ◦Φ]

=
L[f]
R[f]

, (6.1)

for each (t,Φ) ∈ R\{0} × Aff(n). The inequality is sharp if there exists a function f for

which equality holds, and such a function is called an extremal function for the inequal-

ity. If f is extremal, then so is tf ◦ Φ. In other words, the set of extremal functions is

invariant under the left action of R\{0} × Aff(n).

Corollary 5.2 can be used to establish sharp affine Sobolev inequalities. For ex-

ample, it leads to a family of sharp affine inequalities, stated below in Theorem 6.1, that

extend the Cordero-Nazaret-Villani inequalities.

For x ∈ R, denote x+ = max{x, 0}. If 1 < p < n, and r ∈ (0, np/(n − p)], define

w : [0,∞) → [0,∞) by

w(t) =

⎧

⎨

⎩

(

1 + (r − p)tp/(p−1)
)p/(p−r)

+
if r �= p,

exp
(

−ptp/(p−1)
)

if r = p.
(6.2)

For p = 1, let

w(t) =

⎧

⎨

⎩

1 if t ≤ 1,
0 if t > 1.

(6.3)

Let

W(x) = w
(

|x|
)

. (6.4)

Let q, α, cp,r,n ∈ R satisfy

q =

(

1 −
1

p

)

r + 1,

1 − α

q
+
α

r
=
1

p
−
1

n
,

cp,r,n =
|∇W|p

|W|1−α
q |W|αr

.

(6.5)
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By Corollary 5.2, there is a norm ‖ ·‖ such that the volume of Kpf suitably normal-

ized is equal to ‖∇f‖p. By this and the CNV inequalities (1.4), we get the following.

Theorem 6.1. Suppose 1 ≤ p < n and 0 < r ≤ np/(n − p). If f ∈ Lq(Rn) ∩ Lr(Rn) has Lp

weak derivative, then f satisfies the sharp affine inequality

V
(

Kpf
)−1/n ≥ c̃p,r,n|f|1−α

q |f|αr , (6.6)

where

c̃p,r,n = n−1/pω−1/n
n cp,r,n, (6.7)

and q, α, and cp,r,n are given by (6.5). Equality holds if there exists a norm ‖ · ‖ on R
n,

a ∈ R, σ ∈ (0,∞), and x0 ∈ R
n, such that

f(x) = aw

(∥
∥x − x0

∥
∥

σ

)

, (6.8)

for all x ∈ R
n, wherew is given by (6.2) if p > 1 and (6.3) if p = 1. �

That the sharp inequality (6.6) is affine follows from (5.14). Note that the set of

extremal functions in Theorem 6.1 is infinite-dimensional, and therefore the group R ×
Aff(n) does not act transitively on this set. This is in contrast to Theorem 7.2, where the

set of extremal functions is finite-dimensional, and the group R×Aff(n) acts transitively

on that set.

7 The sharp affine Lp Gagliardo-Nirenberg inequalities

In this section,we show how the optimal Sobolev norm can be used to give a new straight-

forward proof of the sharp affine Lp Sobolev inequality proved by Zhang [34] for the case

p = 1 and the authors [22] for the case 1 < p < n. We begin by recalling the crucial geo-

metric inequality underlying the analytic inequality, as well as some definitions needed

to state the theorem.

Associated with an origin-symmetric convex body K is the convex body Γ−pK,

which is the unit ball of the norm on R
n given by

|x|
p
Γ−pK =

1

V(K)

∫

Sn−1

|u · x|pdSp(K,u). (7.1)

The body Γ−pK is called the normalized Lp polar projection body of K.
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The range of the operator Γ−p is the class of n-dimensional central slices of the

Lp-ball. The integral transform used to define Γ−p is the Lp-cosine transform, which is

also the Fourier transform for even homogeneous functions of degree −n − p on R
n (see

Koldobsky [14] for details).

Petty established the case p = 1 (see, e.g., [10, 29, 32]) and the authors [20] estab-

lished the case p > 1 of the following geometric inequality (see Campi and Gronchi [4]

for a different approach).

Theorem 7.1 (Lp Petty projection inequality). If 1 ≤ p < ∞ and K is a convex body, then

V
(

Γ−pK
) ≤ ap,nV(K), (7.2)

where

ap,n =

⎡

⎢
⎣

√
πΓ
(p + n

2

)

2Γ
(n

2
+ 1
)

Γ
(p + 1

2

)

⎤

⎥
⎦

n/p

. (7.3)

Equality holds if and only if K is an ellipsoid. �

These concepts were extended from bodies to functions by Zhang [34] for p = 1

and the authors [22] for p > 1.

If 1 ≤ p < ∞ and f : R
n

→ R has Lp weak derivative, then the Lp polar projection

body of f is defined to be the unit ball Bpf of the norm on R
n given by

|x|Bpf =

( ∫

Rn

∣
∣x · ∇f(y)∣∣pdy

)1/p

. (7.4)

We observe the volume of Bpf can be given directly in terms of the function f by

V
(

Bpf
)

=
1

Γ
(n

p
+ 1
)

∫

Rn

exp

(

−

∫

Rn

∣
∣x · ∇f(y)∣∣pdy

)

dx. (7.5)

By (7.4), Theorem 5.1, and (7.1),

Bpf = Γ−p Kpf. (7.6)

In [20] it is shown that for each φ ∈ GL(n) and each convex body K, we have Γ−pφK =

φΓ−pK. This and (5.14) give

Bp

(

tf ◦Φ−1
)

= t−1|φ|−1/pφ
(

Bpf
)

, (7.7)
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for each t > 0 and invertible affine transformationΦ : R
n

→ R
n given by

Φ(x) = φ(x) + y, (7.8)

where y ∈ R
n and φ ∈ GL(n).

The identity (7.6), the Lp Petty projection inequality (Theorem 7.1), and Corollary

5.2 lead to the following sharp affine Lp Gagliardo-Nirenberg inequalities. In contrast to

Theorem 6.1, the extremal functions for this theorem are defined in terms of an inner

product norm and have ellipsoids as level sets.

Theorem 7.2. Suppose 1 ≤ p < n and 0 < r ≤ np/(n − p). If f ∈ Lq(Rn) ∩ Lr(Rn) has Lp

weak derivative, then f satisfies the sharp affine inequality

V
(

Bpf
)−1/n ≥ Cp,r,n|f|1−α

q |f|αr , (7.9)

where

Cp,r,n = n−1/p
(

ωnap,n

)−1/n
cp,r,n, (7.10)

q, α, and cp,r,n are given by (6.5), and ap,n is given by (7.3). Equality holds if there exists

an inner product norm ‖ · ‖ on R
n, a ∈ R, σ ∈ (0,∞), and x0 ∈ R

n, such that

f(x) = aw

(∥
∥x − x0

∥
∥

σ

)

, (7.11)

for all x ∈ R
n, wherew is given by (6.2) if p > 1 and (6.3) if p = 1. �

Proof. That the sharp inequality (7.9) is affine follows from (7.7).

By (7.6) and the Lp Petty projection inequality (Theorem 7.1), (5.6), and the CNV

inequality (1.4),

V
(

Bpf
)−1/n ≥ a−1/n

p,n V
(

Kpf
)−1/n

= n−1/p
(

ωnap,n

)−1/n‖∇f‖p

≥ Cp,r,n|f|1−α
q |f|αr ,

(7.12)

where ‖∇f‖p is the optimal Lp Sobolev norm of f. This proves (7.9).

The equality conditions for (7.9) follow from the equality conditions for the Lp

Petty projection inequality (Theorem 7.1) and the affine CNV inequality (Theorem 6.1).

�

The case r = pn/(n − p) of Theorem 7.2 is the sharp affine Lp Sobolev inequality

established for p = 1 by Zhang [34] and for 1 < p < n by the authors [22].
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8 Problem

Is there a direct solution to the functional even Lp Minkowski problem that does not

make use of the solution to the even Lp Minkowski problem?
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