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Abstract. For origin-symmetric convex bodies (i.e., the unit balls of finite dimensional Banach
spaces) it is conjectured that there exist a family of inequalities each of which is stronger than the
classical Brunn-Minkowski inequality and a family of inequalities each of which is stronger than
the classical Minkowski mixed-volume inequality. It is shown that these two families of inequalities
are “equivalent” in that once either of these inequalities is established, the other must follow as a
consequence. All of the conjectured inequalities are established for plane convex bodies.

1. Introduction

The fundamental Brunn-Minkowski inequality states that for convex bodies K, L in Euclidean n-
space, Rn, the volume of the bodies and of their Minkowski sum K+L = {x+y : x ∈ K and y ∈ L},
are related by

V (K + L)
1
n ≥ V (K)

1
n + V (L)

1
n ,

with equality if and only if K and L are homothetic. As the first milestone of the Brunn-Minkowski
theory, the Brunn-Minkowski inequality is a far-reaching generalization of the isoperimetric in-
equality. The Brunn-Minkowski inequality exposes the crucial log-concavity property of the vol-
ume functional because the Brunn-Minkowski inequality has an equivalent formulation as: for all
real λ ∈ [0, 1],

(1.1) V ((1− λ)K + λL) ≥ V (K)1−λV (L)λ,

and for λ ∈ (0, 1), there is equality if and only if K and L are translates. A big part of the
classical Brunn-Minkowski theory is concerned with establishing generalizations and analogues of
the Brunn-Minkowski inequality for other geometric invariants. The excellent survey article of
Gardner [16] gives a comprehensive account of various aspects and consequences of the Brunn-
Minkowski inequality.

If hK and hL are the support functions (see (2.1) for the definition) of K and L, the Minkowski
combination (1− λ)K + λL is given by an intersection of half-spaces,

(1− λ)K + λL =
⋂

u∈Sn−1

{x ∈ Rn : x · u ≤ (1− λ)hK(u) + λhL(u)},

where x · u denotes the standard inner product of x and u in Rn. Assume that K and L are
convex bodies that contain the origin in their interiors, then the geometric Minkowski combination,
(1− λ) ·K+o λ · L, is defined by

(1.2) (1− λ) ·K+o λ · L =
⋂

u∈Sn−1

{x ∈ Rn : x · u ≤ hK(u)1−λhL(u)λ}.
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The arithmetic-geometric-mean inequality shows that for convex bodies K, L and λ ∈ [0, 1],

(1.3) (1− λ) ·K+o λ · L ⊆ (1− λ)K + λL.

What makes the geometric Minkowski combinations difficult to work with is that while the convex
body (1−λ)K +λL has (1−λ)hK +λhL as its support function, the convex body (1−λ) ·K+o λ ·L
is the Wulff shape of the function h1−λ

K hλ
L.

The authors conjecture that for origin-symmetric bodies (i.e., unit balls of finite dimensional
Banach spaces), there is a stronger inequality than the Brunn-Minkowski inequality (1.1), the
log-Brunn-Minkowski inequality:

Problem 1.1. Show that if K and L are origin-symmetric convex bodies in Rn, then for all
λ ∈ [0, 1],

(1.4) V ((1− λ) ·K+o λ · L) ≥ V (K)1−λV (L)λ.

That the log-Brunn-Minkowski inequality (1.4) is stronger than its classical counterpart (1.1)
can be seen from the arithmetic-geometric mean inequality (1.3). Simple examples (e.g. an origin-
centered cube and one of its translates) shows that (1.4) cannot hold for all convex bodies.

As is well known, the classical Brunn-Minkowski inequality (1.1) has as a consequence an in-
equality of fundamental importance: the Minkowski mixed-volume inequality. One of the aims
of this paper is to show that the log-Brunn-Minkowski inequality (1.4) also has an important
consequence, the log-Minkowski inequality:

Problem 1.2. Show that if K and L are origin-symmetric convex bodies in Rn, then

(1.5)

∫
Sn−1

log
hL

hK

dV̄K ≥ 1

n
log

V (L)

V (K)
.

Here V̄K is the cone-volume probability measure of K (see definitions (2.5), (2.6), (2.8)).
Just as the log-Brunn-Minkowski inequality (1.4) is stronger than its classical counterpart (1.1),

the log-Minkowski inequality (1.5) turns out to be stronger than its classical counterpart.
The classical Minkowski mixed-volume inequality and the classical Brunn-Minkowski inequality

are “equivalent” in that once either of these inequalities has been established, then the other can
be obtained as a simple consequence. One of the aims of this paper is to demonstrate that the
log-Brunn-Minkowski inequality (1.4) and the log-Minkowski inequality (1.5) are “equivalent” in
that once either of these inequalities has been established, then the other can be obtained as a
simple consequence.

Even in the plane the above problems are non-trivial and unsolved. One of the aims of this
paper is to establish the plane log-Brunn-Minkowski inequality along with its equality conditions:

Theorem 1.3. If K and L are origin-symmetric convex bodies in the plane, then for all λ ∈ [0, 1],

(1.6) V ((1− λ) ·K+o λ · L) ≥ V (K)1−λV (L)λ.

When λ ∈ (0, 1), equality in the inequality holds if and only if K and L are dilates or K and L are
parallelograms with parallel sides.

In addition, in the plane, we will establish the log-Minkowski inequality along with its equality
conditions:

Theorem 1.4. If K and L are origin-symmetric convex bodies in the plane, then,

(1.7)

∫
S1

log
hL

hK

dV̄K ≥ 1

2
log

V (L)

V (K)
,

with equality if and only if, either K and L are dilates or K and L are parallelograms with parallel
sides.
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The above Minkowski combinations and problems are merely two (important) frames of a long
film. In the early 1960’s, Firey (see e.g. Schneider [54, p. 383]) defined for each p ≥ 1, what have
become known as Minkowski-Firey Lp-combinations (or simply Lp-combinations) of convex bodies.
If K and L are convex bodies that contain the origin in their interiors and 0 ≤ λ ≤ 1 then the
Minkowski-Firey Lp-combination, (1− λ) ·K+p λ · L, is defined by

(1.8) (1− λ) ·K+p λ · L =
⋂

u∈Sn−1

{x ∈ Rn : x · u ≤ ((1− λ)hK(u)p + λhL(u)p)1/p}.

Firey also established the Lp-Brunn-Minkowski inequality (also known as the Brunn-Minkowski-
Firey inequality): If p > 1, then

(1.9) V ((1− λ) ·K+p λ · L) ≥ V (K)1−λV (L)λ,

with equality for λ ∈ (0, 1) if and only if K = L. In the mid 1990’s, it was shown in [35, 36],
that a study of the volume of Minkowski-Firey Lp-combinations leads to an embryonic Lp-Brunn-
Minkowski theory. This theory has expanded rapidly. (See e.g. [4, 7–9, 16, 18–25, 27–50, 52, 55–57,
59–61].)

Note that definition (1.8) makes sense for all p > 0. The case where p = 0 is the limiting case
given by (1.2). The crucial difference between the cases where 0 < p < 1 and the cases where

p ≥ 1 is that the function ((1− λ)hp
K + λhp

L)1/p is the support function of (1− λ) ·K+p λ ·L when
p ≥ 1, but it is not whenever 0 < p < 1. When 0 < p < 1, the convex body (1 − λ) · K+p λ · L
is the Wulff shape of ((1− λ)hp

K + λhp
L)1/p. Unfortunately, progress in the Lp-Brunn-Minkowski

theory for p < 1 has been slow. The present work is a step in that direction.
It is easily seen from definition (1.8) that for fixed convex bodies K, L and fixed λ ∈ [0, 1], the

Lp-Minkowski-Firey combination (1− λ) ·K+p λ · L is increasing with respect to set inclusion, as
p increases; i.e., if 0 ≤ p ≤ q,

(1.10) (1− λ) ·K+p λ · L ⊆ (1− λ) ·K+q λ · L.

From (1.10) one sees that the classical Brunn-Minkowski inequality (1.1) (i.e. the case p = 1 of
(1.9)) immediately yields Firey’s Lp-Brunn-Minkowski inequality (1.9) for each p > 1. The difficult
situation arises when p ∈ [0, 1) because now we are seeking inequalities that are stronger than the
classical Brunn-Minkowski inequality.

The Lp-Brunn-Minkowski inequality (1.9) cannot be established for all convex bodies that con-
tain the origins in their interiors, for any fixed p < 1. Even an origin-centered cube and one of
its translates show that. However, the following problem is of fundamental importance in the
Lp-Brunn-Minkowski theory:

Problem 1.5. Suppose 0 < p < 1. Show that if K and L are origin-symmetric convex bodies in
Rn, then for all λ ∈ [0, 1],

(1.11) V ((1− λ) ·K+p λ · L) ≥ V (K)1−λV (L)λ.

From the monotonicity of the Lp-Minkowski combination (1.10), it is clear that the log-Brunn-
Minkowski inequality implies the Lp-Brunn-Minkowski inequalities for each p > 0. We note that
there are easy examples that show that the Lp-Brunn-Minkowski inequality (1.11) fails to hold for
any p < 0 — even if attention were restricted to simple origin symmetric bodies.

One of the aims of this paper is to show that the Lp-Brunn-Minkowski inequality (1.5) can be
formulated equivalently as the Lp-Minkowski inequality:
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Problem 1.6. Suppose 0 < p < 1. Show that if K and L are origin-symmetric convex bodies in
Rn, then

(1.12)

(∫
Sn−1

(
hL

hK

)p

dV̄K

) 1
p

≥
(

V (L)

V (K)

) 1
n

.

For each p ≥ 1, the inequalities (1.11) and (1.12) are well known to hold for all convex bodies
(that contain the origin in their interior) and are also well known to be equivalent, in that given
one, the other is an easy consequence.

From Jensen’s inequality it can be seen that the Lp-Minkowski inequality (1.12) for the case
p = 0, the log-Minkowski inequality (1.5), is the strongest of the Lp-Minkowski inequalities (1.12).
The Lp-Minkowski inequality for the case p = 1, the classical Minkowski mixed-volume inequality,
is weaker than all the cases of (1.12) where p ∈ (0, 1).

Even in the plane the above problems are non-trivial and unsolved. One of the aims of this paper
is to solve the problems in the plane. Solutions in higher dimensions would be highly desirable.

We will prove the following theorems.

Theorem 1.7. Suppose 0 < p < 1. If K and L are origin-symmetric convex bodies in the plane,
then for all λ ∈ [0, 1],

(1.13) V ((1− λ) ·K+p λ · L) ≥ V (K)1−λV (L)λ.

When λ ∈ (0, 1), equality in the inequality holds if and only if K = L.

Observe that the equality conditions here are different than those of Theorem 1.3.

Theorem 1.8. Suppose 0 < p < 1. If K and L are origin-symmetric convex bodies in the plane,
then,

(1.14)

(∫
S1

(
hL

hK

)p

dV̄K

) 1
p

≥
(

V (L)

V (K)

) 1
2

,

with equality if and only if K and L are dilates.

Observe that the equality conditions here are different than those of Theorem 1.4.
The approach used in this paper to establish the geometric inequalities of these theorems is new.

2. preliminaries

For quick later reference we develop some notation and basic facts about convex bodies. Good
general references for the theory of convex bodies are provided by the books of Gardner [15],
Gruber [17], Schneider [54], and Thompson [58].

The support function hK : Rn → R, of a compact, convex set K ⊂ Rn is defined, for x ∈ Rn, by

(2.1) hK(x) = max{x · y : y ∈ K},
and uniquely determines the convex set. Obviously, for a pair K, L ⊂ Rn of compact, convex sets,
we have

(2.2) hk ≤ hL, if and only if, K ⊆ L.

Note that support functions are positively homogeneous of degree one and subadditive.
A convex body is a compact convex subset of Rn with non-empty interior. A boundary point

x ∈ ∂K of the convex body K is said to have u ∈ Sn−1 as one of its outer unit normals provided
x · u = hK(u). A boundary point is said to be singular if it has more than one unit normal vector.
It is well known (see, e.g., [54]) that the set of singular boundary points of a convex body has
(n− 1)-dimensional Hausdorff measure Hn−1 equal to 0.
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Let K be a convex body in Rn and νK : ∂K → Sn−1 the generalized Gauss map. For arbitrary
convex bodies, the generalized Gauss map is properly defined as a map into subsets of Sn−1.
However, Hn−1-almost everywhere on ∂K it can be defined as a map into Sn−1. For each Borel
set ω ⊂ Sn−1, the inverse spherical image ν−1

K (ω) of ω is the set of all boundary points of K which
have an outer unit normal belonging to the set ω. Associated with each convex body K in Rn

is a Borel measure SK on Sn−1 called the Aleksandrov-Fenchel-Jessen surface area measure of K,
defined by

(2.3) SK(ω) = Hn−1(ν−1
K (ω)),

for each Borel set ω ⊆ Sn−1; i.e., SK(ω) is the (n− 1)-dimensional Hausdorff measure of the set of
all points on ∂K that have a unit normal that lies in ω.

The set of convex bodies will be viewed as equipped with the Hausdorff metric and thus a
sequence of convex bodies, Ki, is said to converge to a body K, i.e.,

lim
i→∞

Ki = K,

provided that their support functions converge in C(Sn−1), with respect to the max-norm, i.e.,

‖hKi
− hK‖∞ → 0.

We shall make use of the weak continuity of surface area measures; i.e., if K is a convex body
and Ki is a sequence of convex bodies then

(2.4) lim
i→∞

Ki = K =⇒ lim
i→∞

SKi
= SK , weakly.

Let K be a convex body in Rn that contains the origin in its interior. The cone-volume measure
VK of K is a Borel measure on the unit sphere Sn−1 defined for a Borel ω ⊆ Sn−1 by

(2.5) VK(ω) =
1

n

∫
x∈ν−1

K (ω)

x · νK(x) dHn−1(x),

and thus

(2.6) dVK =
1

n
hK dSK .

Since,

(2.7) V (K) =
1

n

∫
u∈Sn−1

hK(u) dSK(u),

we can turn the cone-volume measure into a probability measure on the unit sphere by normalizing
it by the volume of the body. The cone-volume probability measure V̄K of K is defined

(2.8) V̄K =
1

V (K)
VK .

Suppose K, L are convex bodies in Rn that contain the origin in their interiors. For p 6= 0, the
Lp-mixed volume Vp(K, L) can be defined as

(2.9) Vp(K, L) =

∫
Sn−1

(
hL

hK

)p

dVK .

We need the normalized Lp-mixed volume V̄p(K, L), which was first defined in [43],

V̄p(K, L) =

(
Vp(K, L)

V (K)

) 1
p

=

(∫
Sn−1

(
hL

hK

)p

dV̄K

) 1
p

.
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Letting p → 0 gives

V̄0(K, L) = exp

(∫
Sn−1

log
hL

hK

dV̄K

)
,

which is the normalized log-mixed volume of K and L. Obviously, from Jensen’s inequality we
know that p 7→ V̄p(K, L) is strictly monotone increasing, unless hL/hK is constant on suppSK .

Suppose that the function kt(u) = k(t, u) : I × Sn−1 → (0,∞) is continuous, where I ⊂ R is an
interval. For fixed t ∈ I, let

Kt =
⋂

u∈Sn−1

{x ∈ Rn : x · u ≤ k(t, u)}

be the Wulff shape (or Aleksandrov body) associated with the function kt. We shall make use of
the well-known fact that

(2.10) hKt ≤ kt and hKt = kt, a.e. w.r.t. SKt ,

for each t ∈ I. If kt happens to be the support function of a convex body then hKt = kt, everywhere.
The following lemma (proved in e.g. [23]) will be needed.

Lemma 2.1. Suppose k(t, u) : I × Sn−1 → (0,∞) is continuous, where I ⊂ R is an open interval.
Suppose also that the convergence in

∂k(t, u)

∂t
= lim

s→0

k(t + s, u)− k(t, u)

s

is uniform on Sn−1. If {Kt}t∈I is the family of Wulff shapes associated with kt, then

dV (Kt)

dt
=

∫
Sn−1

∂k(t, u)

∂t
dSKt(u).

Suppose K, L are convex bodies in Rn. The inradius r(K, L) and outradius R(K, L) of K with
respect to L are defined by

r(K, L) = sup{t > 0 : x + tL ⊂ K and x ∈ Rn},

R(K, L) = inf{t > 0 : x + tL ⊃ K and x ∈ Rn}.
If L is the unit ball, then r(K, L) and R(K, L) are the radii of maximal inscribable and minimal
circumscribable balls of K, respectively. Obviously from the definition, it follows that

(2.11) r(K, L) = 1/R(L, K).

If K, L happen to be origin-symmetric convex bodies, then obviously

(2.12) r(K, L) = min
u∈Sn−1

hK(u)

hL(u)
and R(K, L) = max

u∈Sn−1

hK(u)

hL(u)
.

It will be convenient to always translate K so that for 0 ≤ t < r = r(K, L), the function
kt = hK − thL is strictly positive. Let Kt denote the Wulff shape associated with the function kt;
i.e., let Kt be the convex body given by

(2.13) Kt = {x ∈ Rn : x · u ≤ hK(u)− thL(u) for all u ∈ Sn−1}.
Note that K0 = K, and that obviously

lim
t→0

Kt = K0 = K.

From definition (2.13) and (2.2) we immediately have

(2.14) Kt = {x ∈ Rn : x + tL ⊆ K}.
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Using (2.14) we can extend the definition of Kt for the case where t = r = r(K, L):

Kr = {x ∈ Rn : x + rL ⊆ K}.
It is not hard to show (see e.g. the proof of (6.5.11) in [54]) that Kr is a degenerate convex set (i.e.
has empty interior) and that

(2.15) lim
t→r

V (Kt) = V (Kr) = 0.

From Lemma 2.1 and (2.9), we obtain the well-known fact that for 0 < t < r = r(K, L),

(2.16)
d

dt
V (Kt) = −nV1(Kt, L).

Integrating both sides of (2.16), and using (2.15), gives

Lemma 2.2. Suppose K and L are convex bodies, and for 0 ≤ t < r = r(K, L), the body Kt is the
Wulff shape associated with the positive function kt = hK − thL. Then, for 0 ≤ t ≤ r = r(K, L),

(2.17) V (K)− V (Kt) = n

∫ t

0

V1(Ks, L) ds,

where Kr = {x ∈ Rn : x + rL ⊆ K}.

3. Equivalence of the Lp-Brunn-Minkowski and the Lp-Minkowski inequalities

In this section, we show that for each fixed p ≥ 0 the Lp-Brunn-Minkowski inequality and
the Lp-Minkowski inequality are equivalent in that one is an easy consequence of the other. In
particular, the log-Brunn-Minkowski inequality and the log-Minkowski inequality are equivalent.

Suppose p > 0. If K and L are convex bodies that contain the origin and s, t ≥ 0 (not both
zero) the Lp-Minkowski combination s·K+p t·L, is defined by

s·K+p t·L = {x ∈ Rn : x · u ≤ (shK(u)p + thL(u)p)1/p for all u ∈ Sn−1}.
We see that for a convex body K and real s ≥ 0 the relationship between the Lp-scalar multipli-
cation, s·K, and Minkowski scalar multiplication sK is given by:

s·K = s
1
p K.

Suppose p > 0 is fixed and suppose the following “weak” Lp-BrunnMinkowski inequality holds
for all origin-symmetric convex bodies K and L in Rn such that V (K) = 1 = V (L):

(3.1) V ((1− λ)·K+p λ·L) ≥ 1,

for all λ ∈ (0, 1). We claim that from this it follows that the following seemingly “stronger”
Lp-Brunn-Minkowski inequality holds: If K and L are origin-symmetric convex bodies in Rn, then

(3.2) V (s·K+p t·L)
p
n ≥ sV (K)

p
n + tV (L)

p
n ,

for all s, t ≥ 0. To see this assume that the “weak” Lp-Brunn-Minkowski inequality (3.1) holds

and that K and L are arbitrary origin-symmetric convex bodies. Let K̄ = V (K)−
1
n K and L̄ =

V (L)−
1
n L. Then (3.1) gives

(3.3) V ((1− λ)·K̄+p λ·L̄) ≥ 1.

Let λ = V (L)
p
n

V (K)
p
n +V (L)

p
n
. Then

(1− λ)·K̄+p λ·L̄ =
1

(V (K)
p
n + V (L)

p
n )

1
p

(K+p L).
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Therefore, from (3.3), we get

V (K+p L)
p
n ≥ V (K)

p
n + V (L)

p
n .

If we now replace K by s ·K and L by t ·L and note that V (s ·K)
p
n = sV (K)

p
n , we obtain the

desired “stronger” Lp-Brunn-Minkowski inequality (3.2).

Lemma 3.1. Suppose p > 0. For origin symmetric convex bodies in Rn, the Lp-Brunn-Minkowski
inequality (1.11) and the Lp-Minkowski inequality (1.12) are equivalent.

Proof. Suppose K and L are fixed origin-symmetric convex bodies in Rn. For 0 ≤ λ ≤ 1, let

Qλ = (1− λ)·K+p λ·L;

i.e., Qλ is the Wulff shape associated with the function qλ = ((1− λ)hp
K + λhp

L)
1
p . It will be

convenient to consider qλ as being defined for λ in the open interval (−εo, 1 + εo), where εo > 0 is
chosen so that for λ ∈ (−εo, 1 + εo), the function qλ is strictly positive.

We first assume that the Lp-Minkowski inequality (1.12) holds. From (2.7), the fact that hQλ
=

((1− λ)hp
K + λhp

L)
1
p a.e. with respect to the surface area measure SQλ

, (2.6) and (2.9), and finally
the Lp-Minkowski inequality (1.12), we have

V (Qλ) =
1

n

∫
Sn−1

hQλ
dSQλ

=
1

n

∫
Sn−1

((1− λ)hp
K + λhp

L)h1−p
Qλ

dSQλ

= (1− λ)Vp(Qλ, K) + λVp(Qλ, L)

≥ (1− λ)V (Qλ)
n−p

n V (K)
p
n + λV (Qλ)

n−p
n V (L)

p
n .(3.4)

This gives,

(3.5) V (Qλ) ≥
(
(1− λ)V (K)

p
n + λV (L)

p
n

)n/p

≥ V (K)1−λV (L)λ,

which is the Lp-Brunn-Minkowski inequality (1.11).
Now assume that the Lp-Brunn-Minkowski inequality (1.11) holds. As was seen at the beginning

of this section, this inequality (in fact a seemingly weaker one) implies the seemingly stronger Lp-
Brunn-Minkowski inequality (3.2). But this inequality tells us that the function f : [0, 1] → (0,∞),
given by f(λ) = V (Qλ)

p
n for λ ∈ [0, 1], is concave.

The convex body Qλ is the Wulff shape of the function qλ = ((1 − λ) hp
K + λ hp

L)1/p. Now, the
convergence as λ → 0 in

qλ − q0

λ
−→ h1−p

K

p
(hp

L − hp
K) =

h1−p
K hp

L − hK

p
,

is uniform on Sn−1. By Lemma 2.1, (2.6) and (2.9), and (2.7),

dV (Qλ)

dλ

∣∣∣∣
λ=0

=

∫
Sn−1

h1−p
K hp

L − hK

p
dSK =

n

p
[Vp(K, L)− V (K)].

Therefore, the concavity of f yields

V (K)
p−n

n (Vp(K, L)− V (K)) = f ′(0) ≥ f(1)− f(0) = V (L)
p
n − V (K)

p
n ,

which gives the Lp-Minkowski inequality (1.12). �

Lemma 3.2. For origin symmetric convex bodies in Rn, the log-Brunn-Minkowski inequality (1.4)
and the log-Minkowski inequality (1.5) are equivalent.
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Proof. Suppose K and L are fixed origin-symmetric convex bodies in Rn. For 0 ≤ λ ≤ 1, let

Qλ = (1− λ)·K+o λ·L;

i.e., Qλ is the Wulff shape associated with the function qλ = h1−λ
K hλ

L. It will be convenient to
consider qλ as being defined for all λ in the open interval (−εo, 1 + εo), for some sufficiently small
εo > 0 and let Qλ be the Wulff shape associated with the function qλ. Observe that since q0 and
q1 are the support functions of convex bodies, Q0 = K and Q1 = L.

First suppose that we have the log-Minkowski inequality (1.5) for K and L. Now hQλ
= h1−λ

K hλ
L

a.e. with respect to SQλ
, and thus,

0 =
1

nV (Qλ)

∫
Sn−1

hQλ
log

h1−λ
K hλ

L

hQλ

dSQλ

= (1− λ)
1

nV (Qλ)

∫
Sn−1

hQλ
log

hK

hQλ

dSQλ
+ λ

1

nV (Qλ)

∫
Sn−1

hQλ
log

hL

hQλ

dSQλ

≥ (1− λ)
1

n
log

V (K)

V (Qλ)
+ λ

1

n
log

V (L)

V (Qλ)
(3.6)

=
1

n
log

V (K)1−λV (L)λ

V (Qλ)
.

This gives the log-Brunn-Minkowski inequality (1.4) .
Suppose now that we have the log-Brunn-Minkowski inequality (1.4) for K and L. The body

Qλ is the Wulff shape associated wit the function qλ = h1−λ
K hλ

L, and the convergence as λ → 0 in

qλ − q0

λ
−→ hK log

hL

hK

,

is uniform on Sn−1. By Lemma 2.1,

(3.7)
dV (Qλ)

dλ

∣∣∣∣
λ=0

=

∫
Sn−1

hK log
hL

hK

dSK .

But the log-Brunn-Minkowski inequality (1.4) tells us that λ 7→ log V (Qλ) is a concave function,
and thus

(3.8)
1

V (Q0)

dV (Qλ)

dλ

∣∣∣∣
λ=0

≥ V (Q1)− V (Q0) = log V (L)− log V (K).

When (3.7) and (3.8) are combined the result is the log-Minkowski inequality (1.5).
�

4. Blaschke’s extension of the Bonnesen inequality

From this point forward we shall work exclusively in the Euclidean plane. We will make use of the
properties of mixed-volumes of compact convex sets, some of which might possibly be degenerate
(i.e. lower-dimensional). For quick later reference we list these properties now.

Suppose K, L are plane compact convex sets. Of fundamental importance is the fact that for
real s, t ≥ 0, the area, V (sK + tL), of the Minkowski linear combination sK + tL = {sx + ty :
x ∈ K and y ∈ L} is a homogeneous polynomial of degree 2 in s and t:

(4.1) V (sK + tL) = s2V (K) + 2stV (K, L) + t2V (L).

The coefficient V (K, L), the mixed area of K and L, is uniquely defined by (4.1) if we require (as
we always will) it to be symmetric in its arguments; i.e.

(4.2) V (K, L) = V (L, K).
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From its definition, we see that the mixed area functional V (· , ·) is obviously invariant under
independent translations of its arguments. Obviously, for each K,

(4.3) V (K, K) = V (K).

The mixed area of K, L is just the mixed volume V1(K, L) in the plane and thus (from (2.9) we
see) it has the integral representation

(4.4) V (K, L) =
1

2

∫
S1

hL(u) dSK(u).

If K is degenerate with K = {su : −c ≤ s ≤ c}, where u ∈ S1 and c > 0, then SK is an even
measure concentrated on the two point set {±u⊥} with total mass 4c.

From (4.1), or from (4.4), we see that for plane compact convex K, L, L′ and real s, s′ ≥ 0,

(4.5) V (K, sL + s′L′) = sV (K, L) + s′V (K, L′).

But this, together with (4.2), shows that the mixed area functional V (· , ·) is linear with respect
to Minkowski linear combinations in both arguments.

From (4.4) we see that for plane compact convex K, L, L′, we have

L ⊆ L′ =⇒ V (K,L) ≤ V (K, L′),

with equality if and only if hL = hL′ a.e. w.r.t. SK
(4.6)

The basic inequality in this section, inequality (4.7), is Blaschke’s extension of the Bonnesen
inequality. It was proved using integral geometric techniques. It has been a valuable tool used to
establish various isoperimetric inequalities, see e.g., [5], [6], [12], [51], and [53]. Since the equality
conditions of inequality (4.7) are one of the critical ingredients in the proof of the log-Brunn-
Minkowski inequality, we present a complete proof of inequality (4.7), with its equality conditions.

Theorem 4.1. If K, L are plane convex bodies, then for r(K, L) ≤ t ≤ R(K, L),

(4.7) V (K)− 2tV (K, L) + t2V (L) ≤ 0.

The inequality is strict whenever r(K, L) < t < R(K, L). When t = r(K, L), equality will occur
in (4.7) if and only if K is the Minkowski sum of a dilation of L and a line segment. When
t = R(K, L), equality will occur in (4.7) if and only if L is the Minkowski sum of a dilation of K
and a line segment.

Proof. Let r = r(K, L) and suppose t ∈ [0, r]. Recall from (2.13) that

Kt = {x ∈ Rn : x · u ≤ hK(u)− thL(u) for all u ∈ Sn−1},
and that from (2.14), we have

(4.8) Kt + tL ⊆ K.

But (4.8), together with the monotonicity (4.6), linearity (4.5), and symmetry (4.2) of mixed
volumes, together with (4.3) gives

(4.9) V (K, L) ≥ V (Kt + tL, L) = V (Kt, L) + tV (L).

Now Lemma 2.2 and (4.9) gives,

V (K)− V (Kt) = 2

∫ t

0

V (Ks, L) ds

≤ 2

∫ t

0

(V (K, L)− sV (L)) ds(4.10)

= 2tV (K, L)− t2V (L).
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Thus,

(4.11) V (K)− 2tV (K, L) + t2V (L) ≤ V (Kt).

From (4.9) and (4.10) we see that equality holds in (4.11) if and only if,

(4.12) V (K, L) = V (Ks + sL, L), for all s ∈ [0, t],

which, from (4.8) and (4.6), gives

hK = hKs + shL, a.e. w.r.t. SL

for all s ∈ [0, t].
By (2.15) we know V (Kr) = 0 and thus Kr is a line segment, possibly a single point. Therefore,

from (4.11) we have

(4.13) V (K)− 2rV (K, L) + r2V (L) ≤ 0.

We will now establish the equality conditions in (4.13). To that end, suppose:

(4.14) V (K)− 2rV (K, L) + r2V (L) = 0.

Then by (4.12) we have,

V (K, L) = V (Kr + rL, L).

But this in (4.14) gives:

V (K)− 2rV (Kr + rL, L) + r2V (L) = 0,

which, using (4.5), can be rewritten as

V (K)− 2rV (Kr, L)− r2V (L) = 0,

and since V (Kr) = 0 can be written, using (4.5), as

V (K)− V (Kr + rL) = 0.

Since Kr + rL ⊆ K, the equality of their volumes forces us to conclude that in fact Kr + rL = K.
Therefore, K is the Minkowski sum of a dilation of L and the line segment Kr (which may be a
point).

Since 1/R(K, L) = r(L, K) from (2.12), from inequality (4.13), and its established equality
conditions, we get

V (L)− 2r′V (L, K) + r′2V (K) ≤ 0, where r′ = r(L, K) = 1/R(K, L),

with equality if and only if L is the Minkowski sum of a dilation of K and a line segment. But,
using the symmetry of mixd volumes (4.2), this means that

(4.15) V (K)− 2RV (K, L) + R2V (L) ≤ 0, where R = R(K, L),

with equality if and only if L is the Minkowski sum of a dilation of K and a line segment.
Finally, inequalities (4.13) and (4.15) together with the well-known properties of quadratic func-

tions show that

V (K)− 2tV (K, L) + t2V (L) < 0, whenever r(K, L) < t < R(K, L).

�
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5. Uniqueness of planar cone-volume measure

Given a finite Borel measure on the unit sphere, under what necessary and sufficient conditions
is the measure the cone-volume measure of a convex body? This is the unsolved log-Minkowski
problem. It requires solving a Monge-Ampère equation and is connected with some important
curvature flows (see e.g. [2], [14], [56]). Uniqueness for the log-Minkowski problem is more difficult
than existence. Even in the plane, the uniqueness of cone volume measure has not been settled.
If the cone-volume measure is that of a smooth origin-symmetric convex body that has positive
curvature, uniqueness for plane convex bodies was established by Gage [14] and in the case of even,
discrete, measures in the plane is treated by Stancu [56].

In this section, we shall establish the uniqueness of cone-volume measure for arbitrary symmetric
plane convex bodies. For non-symmetric plane convex bodies the problem remains both open and
important.

The uniqueness of cone-volume measure is related to Firey’s worn stone problem. In determining
the ultimate shape of a worn stone, Firey [11] showed that if the cone-volume measure of a smooth
origin-symmetric convex body in Rn is a constant multiple of the Lebesgue measure (on Sn−1),
then the convex body must be a ball. This established uniqueness for the worn stone problem for
the symmetric case. In R3, Andrews [2] established the uniqueness of solutions to the worn stone
problem by showing that a smooth (not necessarily symmetric) convex body in R3 must be a ball
if its cone volume measure is a constant multiple of Lebesgue measure on S2.

The following inequality (5.1) was established by Gage [14] when the convex bodies are smooth
and of positive curvature. A limit process gives the general case, but the equality conditions do
not follow. As will be seen, the equality conditions are critical for establishing the uniqueness of
cone-volume measures in the plane.

Lemma 5.1. If K, L are origin-symmetric plane convex bodies, then

(5.1)

∫
S1

h2
K

hL

dSK ≤ V (K)

V (L)

∫
S1

hL dSK ,

with equality if and only if K and L are dilates, or K and L are parallelograms with parallel sides.

Proof. Since K and L are origin symmetric, from (2.12) we have

r(K, L) ≤ hK(u)

hL(u)
≤ R(K, L),

for all u ∈ S1. Thus, from Theorem 4.1 we get

V (K)− 2
hK(u)

hL(u)
V (K, L) +

(
hK(u)

hL(u)

)2

V (L) ≤ 0.

Integrating both sides of this, with respect to the measure hLdSK , and using (4.4) and (2.7), gives

0 ≥
∫

S1

(
V (K)− 2

hK(u)

hL(u)
V (K, L) +

(
hK(u)

hL(u)

)2

V (L)

)
hL(u) dSK(u)

= −2V (K)V (K, L) + V (L)

∫
S1

hK(u)2

hL(u)
dSK(u).

This yields the desired inequality (5.1).
Suppose there is equality in (5.1). Thus,

(5.2) V (K)− 2
hK(u)

hL(u)
V (K, L) +

(
hK(u)

hL(u)

)2

V (L) = 0, for all u ∈ supp SK .
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If K and L are dilates, we’re done. So assume that K and L are not dilates. But K 6= L implies
that r(K, L) < R(K, L). From Theorem 4.1, we know that when

r(K, L) <
hK(u)

hL(u)
< R(K, L),

it follows that

V (K)− 2
hK(u)

hL(u)
V (K, L) +

(
hK(u)

hL(u)

)2

V (L) < 0,

and thus we conclude that

(5.3) hK(u)/hL(u) ∈ {r(K, L), R(K, L)} for all u ∈ supp SK .

Note that since K is origin symmetric supp SK is origin symmetric as well. Either there exists
u0 ∈ supp SK so that hK(u0)/hL(u0) = r(K, L) or hK(u0)/hL(u0) = R(K, L). Suppose that
hK(u0)/hL(u0) = r(K, L). Then from (5.2) and the equality conditions of Theorem 4.1 we know
that K must be a dilation of the Minkowski sum of L and a line segment. But K and L are not
dilaltes, so there exists an x0 6= 0 so that

hK(u) = |x0 · u|+ r(K, L)hL(u),

for all unit vectors u. This together with hK(u0)/hL(u0) = r(K, L) shows that x0 is orthogonal to
u0 and that the only unit vectors at which hK/hL = r(K, L) are u0 and −u0. But supp SK must
contain at least one unit vector u1 ∈ supp SK other than ±u0. From (5.3), and the fact that the
only unit vectors at which hK/hL = r(K, L) are u0 and−u0, we conclude hK(u1)/hL(u1) = R(K, L)
and by the same argument we conclude that the only unit vectors at which hK/hL = R(K, L) are
u1 and −u1. Now (5.3) allows us to conclude that

supp SK = {±u0,±u1}.

This implies that K is a parallelogram. Since K is the Minkowski sum of a dilate of L and a
line segment, L must be a parallelogram with sides parallel to those of K. If we had assumed
that hK(u0)/hL(u0) = R(K, L), rather than r(K, L), the same argument would lead to the same
conclusion.

It is easily seen that the equality holds in (5.1) if K and L are dilates. A trivial calculation
shows that equality holds in (5.1) if K and L are parallelograms with parallel sides. �

The following theorem was established by Gage [14] when the convex bodies are smooth and
have positive curvature. When the convex bodies are polytopes it is due to Stancu [57].

Theorem 5.2. If K and L are plane origin-symmetric convex bodies that have the same cone-
volume measure, then either K = L or else K and L are parallelograms with parallel sides.

Proof. Assume that K 6= L. Since

VK = VL,

it follows that V (K) = V (L). Thus, since K 6= L, the bodies cannot be dilates. Thus inequality
(5.1) becomes

(5.4)

∫
S1

hL

hK

dVK ≥
∫

S1

hK

hL

dVK and

∫
S1

hK

hL

dVL ≥
∫

S1

hL

hK

dVL,
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with equality, in either inequality, if and only if K and L are parallelograms with parallel sides.
Using (5.4) and the fact that VK = VL, both twice, we get∫

S1

hL(u)

hK(u)
dVK(u) ≥

∫
S1

hK(u)

hL(u)
dVK(u)

=

∫
S1

hK(u)

hL(u)
dVL(u)

≥
∫

S1

hL(u)

hK(u)
dVL(u)

=

∫
S1

hL(u)

hK(u)
dVK(u).

Thus, we have equality in both inequalities of (5.4) and from the equality conditions of (5.4) we
conclude that K and L are parallelograms with parallel sides. �

6. Minimizing the logarithmic mixed volume

Lemma 6.1. Suppose K is a plane origin-symmetric convex body, with V (K) = 1, that is not a
parallelogram. Suppose also that Pk is an unbounded sequence of origin-symmetric parallelograms
all of which have orthogonal diagonals, and and such that V (Pk) ≥ 2. Then, the sequence∫

S1

log hPk
(u) dVK(u)

is not bounded from above.

Proof. Let u1,k, u2,k be orthogonal unit vectors along the diagonals of Pk. Denote the vertices of
Pk by ±h1,ku1,k,±h2,ku2,k. Without loss of generality, assume that 0 < h1,k ≤ h2,k. The condition
V (Pk) ≥ 2 is equivalent to h1,kh2,k ≥ 1. The support function of Pk is given by

(6.1) hPk
(u) = max{h1,k|u · u1,k|, h2,k|u · u2,k|},

for u ∈ S1. Since S1 is compact, the sequences u1,k and u2,k have convergent subsequences.
Again, without loss of generality, we may assume that the sequences u1,k and u2,k are themselves
convergent with

lim
k→∞

u1,k = u1 and lim
k→∞

u2,k = u2,

where u1 and u2 are orthogonal.
It is easy to see that if the cone-volume measure, VK({±u1}), of the two-point set {±u1} is

positive, then K contains a parallelogram whose area is 2VK({±u1}). Since K itself is not a
parallelogram and V (K) = 1, it must be the case that

(6.2) VK({±u1}) <
1

2
.

For δ ∈ (0, 1
3
), consider the neighborhood, Uδ, of {±u1}, on S1,

Uδ = {u ∈ S1 : |u · u1| > 1− δ}.
Since VK(S1) = V (K) = 1, we see that for all or δ ∈ (0, 1

3
)

(6.3) VK(Uδ) + VK(U c
δ ) = 1,

where U c
δ is the complement of Uδ.

Since the Uδ are decreasing (with respect to set inclusion) in δ and have a limit of {±u1},
lim

δ→0+
VK(Uδ) = VK({±u1}).



THE LOG-BRUNN-MINKOWSKI INEQUALITY 15

This together with (6.2), shows the existence of a δo > 0 such that

VK(Uδo) <
1

2
.

But this implies that there is a small εo ∈ (0, 1
2
) so that

(6.4) τo = VK(Uδo)−
1

2
+ εo < 0.

This together with (6.3) gives

(6.5) VK(Uδo) =
1

2
− εo + τo and VK(U c

δo
) =

1

2
+ εo − τo.

Since uik converge to ui, we have, |uik − ui| < δo whenever k is sufficiently large (for both k = 1
and k = 2). Then for u ∈ Uδo and k sufficiently large, we have

|u · u1,k| ≥ |u · u1| − |u · (u1,k − u1)|
≥ |u · u1| − |u1,k − u1|
≥ 1− δo − δo

≥ δo,

where the last inequality follows from the fact that δo < 1
3
. For all u ∈ S1, we know that

|u · u1|2 + |u · u2|2 = 1. Thus, for u ∈ U c
δo

, we have |u · u2| > (1 − (1 − δo)
2)

1
2 > 2δo, which shows

that when k is sufficiently large,

|u · u2,k| ≥ |u · u2| − |u · (u2,k − u2)|
≥ |u · u2| − |u2,k − u2|
≥ 2δo − δo

= δo.

From the last paragraph and (6.1) it follows that when k is sufficiently large,

(6.6) hPk
(u) ≥

{
δoh1,k if u ∈ Uδo ,

δoh2,k if u ∈ U c
δo

.

By (6.6) and (6.3), (6.5), the fact that 0 < h1,k ≤ h2,k together with (6.4), and finally the fact
that h1,kh2,k ≥ 1 together with εo ∈ (0, 1

3
), we see that for sufficiently large k,∫

S1

log hPk
dVK =

∫
Uδo

log hPk
dVK +

∫
Uc

δo

log hPk
dVK

≥ log δo + VK(Uδo) log h1,k + VK(U c
δo

) log h2,k

= log δo + (
1

2
+ τo − εo) log h1,k + (

1

2
− τo + εo) log h2,k

= log δo + 2εo log h2,k + (
1

2
− εo) log(h1,kh2,k) + τo(log h1,k − log h2,k)

≥ log δo + 2εo log h2,k.

Since Pk is not bounded, the sequence h2,k is not bounded from above. Thus, the sequence∫
S1

log hPk
dVK

is not bounded from above. �
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Lemma 6.2. If K is a plane origin-symmetric convex body that is not a parallelogram, then there
exists a plane origin-symmetric convex body K0 so that V (K0) = 1 and∫

S1

log hQ dVK ≥
∫

S1

log hK0 dVK

for every plane origin-symmetric convex body Q with V(Q)=1.

Proof. Obviously, we may assume that V (K) = 1. Consider the minimization problem,

inf

∫
S1

log hQ dVK

where the infimum is taken over all plane origin-symmetric convex bodies Q with V (Q) = 1.
Suppose that Qk is a minimizing sequence; i.e., Qk is a sequence of origin-symmetric convex
bodies with V (Qk) = 1 and such that

∫
S1 log hQk

dVK tends to the infimum (which may be −∞).
We shall show that the sequence Qk is bounded and the infimum is finite.

By John’s Theorem, there exist ellipses Ek centered at the origin so that

(6.7) Ek ⊂ Qk ⊂
√

2Ek.

Let u1,k, u2,k, be the principal directions of Ek so that

h1,k ≤ h2,k, where h1,k = hEk
(u1,k) and h2,k = hEk

(u2,k).

Let Pk be the origin-centered parallelogram that has vertices {±h1,ku1,k,±h2,ku2,k}. (Observe that

by the Principal Axis Theorem the diagonals of Pk are perpendicular.) Because of Ek ⊂
√

2Pk, it
follows from (6.7) that

(6.8) Pk ⊂ Qk ⊂ 2Pk.

From this and V (Qk) = 1, we see that V (Pk) ≥ 1
4
.

Assume that Qk is not bounded. Then Pk is not bounded. Applying Lemma 6.1 to
√

8Pk shows
that the sequence

∫
S1 log hPk

dVK is not bounded from above. Therefore, from (6.8) we see that
the sequence

∫
S1 log hQk

dVK cannot be bounded from above. But this is impossible because Qk

was chosen to be a minimizing sequence.
We conclude that Qk is bounded. By the Blaschke Selection Theorem, Qk has a convergent

subsequence that converges to an origin-symmetric convex body K0, with V (K0) = 1. It follows
that

∫
S1 log hK0 dVK is the desired infimum. �

7. The log-Minkowski inequality

We repeat the statement of Theorem 1.4:

Theorem 7.1. If K and L are plane origin-symmetric convex bodies, then∫
S1

log
hL

hK

dV̄K ≥ 1

2
log

V (L)

V (K)
,

with equality if and only if either K and L are dilates or when K and L are parallelograms with
parallel sides.

Proof. Without loss of generality, we can assume that V (K) = V (L) = 1. We shall establish the
theorem by proving ∫

S1

log hL dVK ≥
∫

S1

log hK dVK ,

with equality if and only if either K and L are dilates or if they are parallelograms with parallel
sides.
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First, assume that K is not a parallelogram. Consider the minimization problem

min

∫
S1

log hQ dVK ,

taken over all plane origin-symmetric convex bodies Q with V (Q) = 1. Let K0 denote a solution,
whose existence is guaranteed by Lemma 6.2. (Our aim is to prove that K0 = K and thereby
demonstrate that K itself can be the only solution to this minimization problem.)

Suppose f is an arbitrary but fixed even continuous function. For some sufficiently small δo > 0,
consider the deformation of hK0 , defined on (−δo, δo)× S1, by

qt(u) = q(t, u) = hK0(u)etf(u).

Let Qt be the Wulff shape associated with qt. Observe that Qt is an origin symmetric convex body
and that since q0 is the support function of the convex body K0, we have Q0 = K0.

Since K0 is an assumed solution of the minimization problem, the function defined on (−δo, δo)
by

t 7−→ V (Qt)
− 1

2 exp{
∫

S1

log hQt dVK},

attains a minimal value at t = 0. Since hQt ≤ qt this function is dominated by the differentiable
function defined on (−δo, δo) by

t 7−→ V (Qt)
− 1

2 exp{
∫

S1

log qt dVK}.

But clearly both functions have the same value at 0 and thus the latter function attains a local
minimum at 0. Thus, differentiating the latter function at t = 0, by using Lemma 2.1, and recalling
that V (Q0) = V (K0) = 1, shows that

−1

2

∫
S1

hK0(u)f(u) dSK0(u) +

∫
S1

f(u) dVK(u) = 0.

Thus, since f was an arbitrary even function, we conclude that∫
S1

f(u) dVK0(u) =

∫
S1

f(u) dVK(u)

for every even continuous f , and therefore,

VK = VK0 .

By Theorem 5.2, and the assumption that K is not a parallelogram, we conclude that K0 = K.
Thus, for each L such that V (L) = 1,∫

S1

log hL dVK ≥
∫

S1

log hK dVK ,

with equality if and only if K = L. This is the desired result when K is not a parallelogram.
If K is a parallelogram the proof is trivial, but for the sake of completeness we shall include it.

Assume that K is the parallelogram whose support function, for u ∈ S1, is given by

hK(u) = a1|v1 · u|+ a2|v2 · u|,

where v1, v2 ∈ S1 and a1, a2 > 0. Then suppSK = {±v⊥1 ,±v⊥2 }, while VK({±v⊥i }) = 2a1a2|v1 · v⊥2 |,
and |v1 · v⊥2 | = |v2 · v⊥1 |. It is easily seen that V (K) = 4a1a2|v1 · v⊥2 | = 1, and that

(7.1) exp

∫
S1

log hL dVK =
√

hL(v⊥1 )hL(v⊥2 ).
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Recall that V (L) = 1. The parallelogram circumscribed about L with sides parallel to those of K
has volume

4hL(v⊥1 )hL(v⊥2 )|v1 · v⊥2 |−1 = 16a1a2hL(v⊥1 )hL(v⊥2 ),

and thus, 16a1a2hL(v⊥1 )hL(v⊥2 ) ≥ V (L) = 1, or equivalently

hL(v⊥1 )hL(v⊥2 ) ≥ 1

16a1a2

,

with equality if and only if L itself is a parallelogram with sides parallel to those of K. Thus, by
(7.1), the functional

∫
S1 log hL dVK attains its minimal value if and only if

hL(v⊥1 )hL(v⊥2 ) =
1

16a1a2

;

i.e., if and only if L is a parallelogram with sides parallel to those of K. �

Proof of Theorem 1.3. Lemma 3.2 shows that the log-Minkowski inequality of Theorem 7.1 yields
the log-Brunn-Minkowski inequality (1.6) of Theorem 1.3. To obtain the equality conditions of the
log-Brunn-Minkowski inequality (1.6), we need to analyze the equality conditions of the inequality
(3.6) in the proof of Lemma 3.2. The equality conditions for the log-Minkowski inequality of
Theorem 7.1 show that equality in inequality (3.6) would imply that either K, L and Qλ are
dilates or that K, L and Qλ are parallelograms with parallel sides. This establishes the equality
conditions of Theorem 1.3.

�

Proof of Theorem 1.8. Jensen’s inequality (along with its equality conditions), shows that the Lp-
Minkowski inequality, for p > 0, of Theorem 1.8 follows from the L0-Minkowski inequality of
Theorem 7.1.

�

Proof of Theorem 1.7. Lemma 3.1 shows that the Lp-Minkowski inequality of Theorem 1.8 yields
the Lp-Brunn-Minkowski inequality of Theorem 1.7.

To obtain the equality conditions of the Lp-Brunn-Minkowski inequality (1.13) of Theorem 1.7
we need to analyze the equality conditions of inequalities (3.4) and (3.5) of Lemma 3.1 which
were used to derive the Lp-Brunn-Minkowski inequality of Theorem 1.7 from the Lp-Minkowski
inequality of Theorem 1.8.

From the equality conditions of Theorem 1.8, we know that equality in inequality (3.4) implies
that K and L are dilates. But inequality (3.5) is a direct consequence of the concavity of the log
function and this concavity is strict. Hence, equality in inequality (3.5) implies that V (K) = V (L).
Thus we conclude that equality in the Lp-Brunn-Minkowski inequality (1.13) of Theorem 1.7
implies that K = L. �

Acknowledgement The authors thank Professor Rolf Schneider for helpful comments on an
earlier draft of this paper.
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