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1. Introduction

S. T. Yau has done extremely deep and powerful work in differential geometry and partial
differential equations. His resolution of the Calabi conjecture on the existence of Kähler-
Einstein metrics, by solving a complex Monge-Ampère equation on Kähler manifolds, is of
fundamental importance in both mathematics and physics.

We would like to recall in this article the contributions of S. Y. Cheng and S. T. Yau to
the real Monge-Ampère equation and its applications to affine geometry. Many definitions
and details are omitted here. We refer the reader to the surveys by Loftin [34] and Trudinger
and Wang [51], as well as other references cited below, for more extensive discussions of the
topics covered here.

2. The Monge-Ampère equation

The Monge-Ampère equation is a fully nonlinear PDE, where the highest order term is
the determinant of the Hessian of the function to be solved for. Since it was introduced
by Monge and Ampère about two hundred years ago, it has been studied extensively by
mathematicians, including Minkowski, Lewy, Aleksandrov before the 1950’s and many more
since then. During the last century the main motivation for studying the Monge-Ampère
equation has been geometric applications such as the Minkowski problem, the existence of
local isometric embeddings of a 2-dimensional Riemannian manifolds in R3, the correspond-
ing global question, known as the Weyl problem, for a positively curved closed 2-dimensional
Riemannian manifold, and the classification of affine spheres.

The Monge-Ampère equation has very nice properties. It is invariant under unimodular
linear transformations, and it prescribes the Jacobian of the gradient mapping. It arises
naturally when prescribing the Gauss curvature of a hypersurface in Euclidean space. The
existence and uniqueness of generalized convex solutions to Monge-Ampère equations were
obtained by Minkowski, Lewy, and Aleksandrov. The regularity of generalized solutions,
however, was an extremely difficult problem, due to the strong nonlinearity of the equation.

The first results on regularity were in dimension two. Regularity of weak convex solutions
follows from Morrey’s regularity results for two dimensional uniformly elliptic equations.
The existence of smooth solutions to the Minkowski problem and the Weyl problem was
established indepndently by Nirenberg and Pogorelov in early 1950s. Heinz established a
sharp C2,α estimate for the two dimensional Monge-Ampère equation by using the partial
Legendre transform to convert the Monge-Ampère equation into a quasilinear elliptic PDE.
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Establishing regularity in higher dimensions is much more challenging. Shing-Tung Yau,
in collaboration with Shiu-Yuen Cheng, made substantial contributions in the 1970s. They
used a priori estimates of Calabi and Pogorelov to establish regularity theorems for the
Minkowski problem [11] and the Dirichlet problem for the Monge-Ampère equation [12].
They also resolved a conjecture of Calabi on hyperbolic affine spheres [12, 14]. We describe
this work below.

3. Cheng and Yau’s work on the Dirichlet problem

Throughout this section, given a function u on a domain of Rn, we denote its gradient by
Du and its Hessian by D2u.

The classical Dirichlet problem for the Monge-Ampère equation asks the following: Given
a bounded convex domain Ω ⊂ Rn with smooth boundary ∂Ω and continuous functions
f : Ω× R× Rn → (0,∞) and φ : ∂Ω → R, does there exist a unique function u satisfying

detD2u = f(·, u,Du), in Ω,

u = φ, on ∂Ω.
(1)

Aleksandrov [1] (and Bakelman [2] for dimension two) established the existence and unique-
ness of generalized solutions Cheng and Yau [12] established the existence of smooth solutions
to the Dirichlet problem where Ω is a smooth, uniformly convex domain in Rn and φ is a C2

function.
Calabi [7] and Pogorelov [43, 42, 45] established interior a priori C2 and C3 bounds for

strictly convex solutions to Monge-Ampère equations, but it was not known how to prove
that the solution is strictly convex. Cheng and Yau accomplished this by first studying
solutions with f singular near the boundary ∂Ω, such that |Du(x)| → ∞ as x → ∂Ω.
In that case, the Legendre transform of u, which we denote by u∗, is a convex, uniformly
Lipschitz continuous function defined on the entire space Rn and satisfies the Monge-Ampère
equation detD2u∗ = 1/f . The a priori estimates of Calabi and Pogorelov can then be used
to show that u is strictly convex.

To establish the existence of smooth solutions, Cheng and Yau reduce the question to
the Minkowski problem and apply Aleksandrov’s theorems on the uniqueness of generalized
solutions to the Dirichlet problem and the Minkowski problem, as well as their own theorem
on the existence of smooth solutions to the Minkowski problem (see section 9).

As was pointed out by Cheng and Yau, some of their results on the Dirichlet problems and
affine spheres were obtained independently by Calabi and Nirenberg. Pogorelov announced
a proof in early 1970s, but details of his proof were not published much later in his book
[45].

4. Subsequent work on the Monge-Ampère equation

The Monge-Ampère equation has become an active area of study since the work of Cheng
and Yau. We describe briefly some of the highlights related to their work on the Dirichlet
problem.

The global regularity of solutions to the Dirichlet problem (1) was later obtained inde-
pendently by Caffarelli-Nirenberg-Spruck [4] and by Krylov [29] in early 1980s, assuming
that ∂Ω ∈ C3,1 and φ ∈ C3,1. Caffarelli also proved the strict convexity of solutions to the
Monge-Ampère equation when f satisfies a doubling condition [6]; the interior C2,α estimate
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when f ∈ Cα; and the interior W 2,p estimate when f ∈ C0 [5]. The global C2,α estimate
under the sharp conditions ∂Ω ∈ C3 and φ ∈ C3 was obtained by Trudinger and Wang
[50]. Wang also found an example that showed the continuity of f is necessary for the W 2,p

estimate for large p [51]. These estimates have been used to establish the regularity for the
affine maximal surface equation [51]. In recent years, there has also been renewed interest
in Monge-Ampère type equation due to applications in the optimal transportation.

Also related to the Dirichlet problem is the existence of a hypersurface with constant
Gauss curvature and prescribed boundary in Euclidean space, which was studied and solved
by Guan and Spruck [22] and Trudinger and Wang [49]. Urbas [52] studied the boundary
regularity of a hypersurface with prescribed Gauss curvature in a domain.

5. Affine Spheres

As part of their great burst of activity in the late 1970s, Cheng and Yau proved many
geometric results concerning differential structures invariant under affine transformations of
Rn. We describe this work here. A more extensive discussion on the topics discussed in this
and the following two sections can be found in the survey by Loftin [34].

Affine differential geometry is the study of those differential properties of hypersurfaces
in Rn+1 which are invariant under volume-preserving affine transformations. One way to
develop this theory is to start with the affine normal, which is an affine-invariant transverse
vector field to a convex C3 hypersurface. A hypersurface is an affine sphere if the lines
formed by the affine normals all meet at a point, called the center. A convex affine sphere is
called elliptic, parabolic, or hyperbolic according to whether the affine normals point toward
the center, are parallel (the center being at infinity), or away from the center, respectively.

The global theory of elliptic and parabolic affine spheres is quite tame: Every properly
immersed elliptic affine sphere is an ellipsoid, while every properly immersed parabolic affine
sphere is a paraboloid. In this generality, both these results follow from Cheng-Yau’s paper
[14], in which they show that any properly immersed affine sphere must have complete affine
metric. Then one may appeal to earlier results of Calabi [9] to classify global elliptic and
parabolic affine spheres. The global classification of parabolic affine spheres is an extension
of the well-known Bernstein theorem for the Monge-Ampère equation, which was proved by
Jörgens [26] for n = 2, Calabi [7] for n ≤ 5, and Pogorelov [44, 45] for all n ≥ 2.

Calabi realized that hyperbolic affine spheres are more varied, by noting that two quite
different convex cones contain hyperbolic affine spheres asymptotic to their boundaries. In
addition to the hyperboloid, which is asymptotic to a round cone over an ellipsoid, Calabi
also wrote down an affine sphere asymptotic to the boundary of the first orthant in Rn+1,
which is a cone over an n-dimensional simplex [9]. Based on these explicit examples in
these two extremal cases of convex cones, Calabi conjectured that each proper convex cone
admits a unique (up to scaling) hyperbolic affine sphere, and that every properly immersed
hyperbolic affine sphere in Rn+1 is asymptotic to the boundary of such a cone. Moreover,
he conjectured that the proper immersion of a hyperbolic affine sphere is equivalent to the
completeness of an intrinsic affine (or Blaschke) metric.

Cheng-Yau [14, 12] prove Calabi’s conjecture on hyperbolic affine spheres. Calabi-Nirenberg
proved the same results as in [14] around the same time in unpublished work. One of the
main techniques in Cheng-Yau’s proof is a gradient estimate on a height function. (There
are also clarifications of Cheng-Yau’s proof in Li [31, 32].)
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6. Hyperbolic Affine Spheres and Real Monge-Ampère Equations

If Ω ⊂ Rn ⊂ RPn is a convex domain, then the existence of a hyperbolic affine sphere
asymptotic to the cone over Ω follows from the solution of the following Dirichlet problem
for a real Monge-Ampère equation

(2) detuij =

(
−1

u

)n+2

, (uij) > 0, u
∣∣
∂Ω

= 0.

Calabi conjectured that there is a unique solution to (2) on any convex bounded Ω [9].
Cheng-Yau show there always exists such a solution in [12], and uniqueness follows easily by
the maximum principle. From this solution, one may use a duality result of Calabi (known
to experts at the time of Cheng-Yau’s work and published later in [20]), or a later argument
of Sasaki [46], to produce the hyperbolic affine sphere asymptotic to the cone over Ω.

As noted above, the paper [12] was one of the first works to prove the existence smooth
solutions to general real Monge-Ampère equations on convex domains. The technique is to
prove regularity of Alexandrov’s weak solution. A key step in the proof is to approximate
solutions to the Dirichlet problem for a real Monge-Ampère equation by solutions to the
Minkowski problem on Sn, which are provided by Cheng-Yau in [11].

Loewner-Nirenberg solved (2) earlier in the case of domains in R2 with smooth boundary
[33]. Cheng-Yau’s result requires no regularity of ∂Ω except that provided by convexity. The
solution of (2) for ∂Ω only Lipschitz relies on using Calabi’s explicit solution on a simplex
as a barrier. The case of rough boundary is of particular geometric interest, as most convex
domains admitting cocompact projective group actions have boundaries which are nowhere
C2 [27, 3].

Cheng-Yau provide another existence and regularity proof for the real Monge-Ampère
equation in [13], this time using a tube domain construction to gain access to Yau’s estimates
for the complex Monge-Ampère equation [55].

7. Affine Manifolds

An affine manifold is a manifold with coordinate charts in Rn and affine gluing maps
x 7→ Ax+ b. The tangent bundle to an affine manifold carries a natural complex structure,
which can be provided by gluing together tube domains over the affine coordinate charts in
Rn. There is also a natural notion of an affine Kähler, or Hessian, metric, which is the natural
restriction of a Kähler metric on the total space of the tangent bundle which is invariant in
the bundle directions.

In [13], Cheng-Yau asked and answered the analogous question for Yau’s solution to the
Calabi conjecture on Kähler manifolds—the existence of Kähler-Einstein metrics. In the
Kähler case, any closed Kähler manifold with first Chern class c1 < 0 admits a unique
Kähler-Einstein metric of negative Ricci curvature. Cheng-Yau define an affine first Chern
class and prove the negativity of this affine Chern class on a closed affine Kähler manifold is
equivalent to the existence of a complete Kähler-Einstein metric on the tangent bundle. The
restriction of this metric to the affine manifold is nowadays called the Cheng-Yau metric. The
class of affine manifolds admitting a complete Cheng-Yau metric is exactly the class of affine
quotients of proper convex cones. Moreover, the Cheng-Yau metric on a convex cone and the
hyperbolic affine sphere asymptotic to the cone are equivalent [47, 35]. (Note the Cheng-Yau
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metric is not in general Einstein: it is merely the restriction of the Kähler-Einstein metric
on the tangent bundle.)

The affine analog of a Calabi-Yau manifold (a closed Kähler manifold with c1 = 0) is
an affine Kähler manifold admitting a parallel volume form. On any closed affine Kähler
manifold with parallel volume, Cheng-Yau construct a flat affine-Kähler metric by appealing
to estimates in [55].

8. Maximal Hypersurfaces in Minkowski Space

Calabi conjectured in [8] that every entire maximal spacelike hypersurface in Minkowski
space Rn,1 must be a hyperplane, and provided a proof for n ≤ 4. In [10], Cheng-Yau prove
this result for all n, using estimates similar to those in [14]. This Bernstein property for
maximal spacelike hypersurfaces is in contrast to the case of entire minimal graphs in Rn+1.
These must be linear for n < 8, but there are entire nonlinear examples for n ≥ 8.

9. The Minkowski problem

The next few sections describe the background to the Minkowski problem, which is a
question about the affine geometry of convex bodies in Rn, i.e. convex bodies in an abstract
finite-dimensional real vector space. However, it is often convenient to use geometric aspects
special to Rn such as the standard unit sphere. We therefore will use the following notation
and definitions:

• Denote X = Rn and let X∗ be the dual vector space to X (which is also Rn).
• Denote the natural contraction between x ∈ X and ξ ∈ X∗ by 〈ξ, x〉 or 〈x, ξ〉.
• Denote the standard unit sphere in X or X∗ by Sn−1.
• The group of invertible linear transformations of X will be denoted by GL(n) and

identified with invertible square matrices.
• Any A ∈ GL(n) induces a transpose linear transformation, which we denote by
At : X∗ → X∗.

• The inverse of At will be denoted A−t : X∗ → X∗.

10. Convex geometry without smoothness assumptions

Everything in this section is stated without proof. Details can be found in standard
references such as [18, 19, 48].

A set K ⊂ X is called a convex body, if it is compact and convex and has non-empty
interior.

The volume of K with respect to the standard Lebesgue measure on X = Rn will be
denoted V (K).

10.1. Support function. The support function of a convex body is the most fundamental
and convenient way to represent a convex body. If the body is a polytope, then the support
function is given by a finite set of data. In general, the support function is a convex homo-
geneous function, which can therefore be restricted to the unit sphere without any loss of
information.

The support function hK : X∗ → R of a convex body K is defined to be

hK(u) = sup
x∈K

〈u, x〉,
5



for each u ∈ X∗. Observe that since the function hK is given by the supremum of linear
functions, it is a convex function homogeneous of degree 1. Moreover, the body K can be
reconstructed from hK by

K = {x : 〈u, x〉 ≤ hK(u), for each u ∈ X∗}.

10.2. Invariance properties of the support function. If K̃ = AK+v, where A ∈ GL(n)
and v ∈ X, then

h eK(u) = hK(Au) + 〈u, v〉,
for each u ∈ X∗.

10.3. Minkowski sum. If K and L are convex bodies in Rn, then so is its Minkowski sum
K + L, which is given by

K + L = {x+ y : x ∈ K, y ∈ L}.

The sum can also be defined using support functions by

hK+L = hK + hL.

10.4. Mixed volume. Given a compact set S ⊂ Rn, let V (S) denote the volume of S with
respect to standard Lebesgue measure on Rn.

Let B denote the standard unit ball in Rn. If K is a convex body, then the limit

V (K,B) = lim
t→0+

V (K + tB)− V (K)

t

exists and that if K has smooth boundary ∂K, then V (K,B) is the surface area (i.e., (n−1)-
dimensional Hausdorff measure) of ∂K.

This leads naturally to the following generalized surface area of a convex body K with
respect to another convex body L:

V (K,L) = lim
t→0+

V (K + tL)− V (K)

t
.

This is often called the mixed volume of K and L.

10.5. Surface area measure. The mixed volume V (K,L) is a bounded linear functional
of the support function hL : Sn−1 → R. Using the Riesz representation theorem, there exists
a unique measure SK on the unit sphere Sn−1 such that

V (K,L) =

∫
Sn−1

hL(u) dSK(u),

for each convex body L. The measure SK is called the surface area measure of K. Note that
this is related to but not what differential geometers would call the surface area measure of
the boundary ∂K, but it turns out to be closely related. Also, see Yang [54] for a different
approach to defining the surface area measure that avoids integration over the unit sphere
(which obscures the behavior of the formula under affine transformations).
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10.6. Invariance properties of the surface area measure. Since the measure SK is
defined on the unit sphere, and the unit sphere is not preserved under affine transformations,
the behavior of the measure SK under affine transformations is quite complicated. On the
other hand, the associated integral

h 7→
∫

Sn−1

h(u) dSK(u)

behaves quite nicely, since it is the essentially the same as the functional L 7→ V (K,L).
In particular, if A ∈ GL(n) and v ∈ X, then since V (AK + v) = | detA|V (K),

V (AK + v, L) = | detA|V (K,A−1L).

It follows that if K̃ = AK + v, then∫
Sn−1

h(u) dS eK(u) = | detA|
∫

Sn−1

h(A−tu) dSK(u).

Also, observe that since V (K,L+ v) = V (K,L) for each v ∈ X, it follows that

(3)

∫
Sn−1

〈u, v〉 dSK(u) = 0,

for each v ∈ X.

10.7. The Minkowski problem. The Minkowski problem asks the following: Given a
measure µ on the unit sphere Sn−1 ⊂ X∗ such that

(4)

∫
Sn−1

u dµ(u) = 0,

does there exist a unique convex body K whose surface area measure SK satisfies SK = µ?
Solutions to the Minkowski problem were given by H. Minkowski, A. D. Aleksandrov, and

Fenchel and Jessen (see the book by Schneider [48] for references).

10.8. The Brunn-Minkowski inequality. The Brunn-Minkowski inequality for convex
bodies states that

V (K + L)1/n ≥ V (K)1/n + V (L)1/n,

with equality holding if and only if L = tK+v for some t ∈ [0,∞) and v ∈ X. It immediately
implies the generalized isoperimetric inequality

(5) V (K,L) ≥ V (K)(n−1)/nV (L)1/n,

with the same equality condition as above. If L is the standard unit ball, (5) is the classical
Euclidean isoperimetric inequality for a convex body.
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10.9. Uniqueness in the Minkowski problem. If K and L are both solutions to the
Minkowski problem, then

V (L) = V (L,L)

=

∫
Sn−1

hL(u) dSL(u)

=

∫
Sn−1

hL(u) dµ(u)

=

∫
Sn−1

hL(u) dSK(u)

= V (K,L)

≥ V (K)(n−1)/nV (L)1/n,

which implies that

V (L) ≥ V (K).

All of the above also holds, if K and L are swapped. Therefore, equality holds throughout.
By this and the equality condition of the Minkowski inequality, it follows that L is a translate
of K.

10.10. Variational approach to the Minkowski problem. The inequality (5) can be
written as

V (L)−1/n

∫
Sn−1

hL(u) dSK(u) ≥ V (K)(n−1)/n,

with equality holding if and only if L = tK + v for some t ∈ [0,∞) and v ∈ X. Therefore,
one possible approach to solving the Minkowski problem is to minimize the functional

L 7→
∫

Sn−1

hL(u) dµ(u)

over all convex bodies L with volume equal to 1.
This approach can be used to solve the Minkowski problem when µ is a discrete measure

and K is a convex polytope. An approximation argument extends the solution to arbitrary
convex bodies.

11. Convex geometry with smoothness assumptions

No proofs are provided for any of the statements in this section, but everything can be
established using straightforward calculations and therefore are left as an elementary exercise
for the reader.

If the boundary of the convex body is assumed to be C2 and have positive definite second
fundamental form, then the concepts above can be described in terms of better known local
differential geometric invariants such as the Gauss map and second fundamental form of the
boundary.

First, observe that if the support function hK is C2, then, since it is convex, its Hessian
∂2hK(u) is always positive semi-definite. Moreover, since hK is homogeneous of degree 1, its
differential ∂hK is homogeneous of degree 0. Therefore, its Hessian ∂2hK(u) always has at
least one zero eigenvalue corresponding to the eigenvector u.
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Throughout this section, we assume that K ⊂ X is a convex body such that its support
function hK : X∗ → R is C2 and its Hessian ∂2hK(u) has rank n− 1 for each u 6= 0. Using
the inverse Gauss map defined below and the inverse function theorem, it follows that these
assumptions are equivalent to boundary ∂K being a C2 hypersurface with a positive definite
second fundamental form everywhere.

11.1. The inverse Gauss map. Under the assumptions above, the differential ∂hK : X∗ →
X is homogeneous of degree 0, and its image is the boundary ∂K. The restriction of ∂hK

to the unit sphere Sn−1 is the inverse to the Gauss map γK : ∂K → Sn−1, where γK(x) is
the outer unit normal to ∂K at x ∈ ∂K.

11.2. The inverse second fundamental form. Recall that the second fundamental form
of ∂K at x ∈ ∂K is defined to be the differential of the Gauss map at x. Therefore, since
∂hK restricted to the unit sphere is the inverse map to the Gauss map γK , it follows that,
if u ∈ Sn−1, then the Hessian ∂2hK(u) restricted to the hyperplane u⊥ is the inverse of the
second fundamental form at x = ∂hK(u).

The positive eigenvalues of ∂2hK(u) are called the radii of curvature of ∂K at x = ∂hK(u).
Their reciprocals are the eigenvalues of the second fundamental form at x and are called the
principal curvatures.

11.3. The curvature function. In affine convex geometry, we want to define the curvature
function fK : X∗\{0} → (0,∞) of the convex body K to be the determinant of the positive
definite (n− 1)-by-(n− 1) minor of ∂2hK (which has rank n− 1). However, there is no affine
invariant way of isolating this minor and taking its determinant directly. Instead, we define
it indirectly.

Define the curvature function fK : X∗\{0} → (0,∞) to be the homogeneous function of
degree −n− 1 given by

(6) fK = h−n−1
K det ∂2

(
1

2
h2

K

)
.

That this is the right definition of the curvature function can be seen as follows. If u ∈ Sn−1,
then

fK(u) = det ∂2hK(u)
∣∣
u⊥
.

On the other hand, recall that the Gauss curvature κ(x) is the determinant of the second
fundamental form at x ∈ ∂K. Since ∂2hK(u)|u⊥ and the second fundamental form of ∂K at
x = ∂hK(u) are inverses of each other, it follows that fK(u) is the reciprocal of the Gauss
curvature at x.

11.4. The surface area measure. The surface area measure is given by dSK(u) = fK(u) du,
where du is the standard (n− 1)-dimensional volume measure on the unit sphere Sn−1.

By (3), the curvature function fK satisfies the identity∫
Sn−1

ufK(u) du = 0.
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11.5. The Minkowski problem. If the measure µ can be written as dµ(u) = φ(u) du, for
a positive continuous function φ, then the Minkowski problem can be restated as follows:

If φ is a positive continuous function on the unit sphere Sn−1 satisfying∫
Sn−1

uφ(u) du = 0,

find the unique convex body K whose curvature function fK is equal to φ.
Another equivalent restatement is:
If ψ is a positive continuous function on the unit sphere Sn−1 satisfying∫

Sn−1

u

ψ(u)
du = 0,

find the unique convex body K whose Gauss map γK : ∂K → Sn−1 and Gauss curvature
κ : ∂K → (0,∞) satisfy for each x ∈ ∂K,

κ(x) = ψ(γK(x)).

11.6. The Minkowski problem as a PDE. The Minkowski problem can be described
roughly as prescribing the determinant of the Hessian of the support function and therefore
a PDE of Monge-Ampère type. This is not a precise description, because the Hessian is in
fact singular and its determinant is zero.

As mentioned in Cheng-Yau [11], there are two different ways to write the Minkowski
problem rigorously as a PDE of Monge-Ampère type.

First, if the support and curvature functions are restricted to the unit sphere, then they
satisfy the equation

det(∇2hK + hKg) = fK ,

where g is the standard Riemannian metric on the unit sphere, ∇2hK is the Hessian of hK

with respect to this metric, and the determinant is taken with respect to an orthonormal
frame. Therefore, if we restrict to convex bodies with C2 support functions, the Minkowski
problem is equivalent to the following PDE of Monge-Ampère type on the sphere:

Find the unique function h : Sn−1 → (0,∞) with positive definite Hessian and satisfying

(7) det(∇2h+ hg) = φ,

where φ a continuous positive function on Sn−1 such that

(8)

∫
Sn−1

uφ(u) du = 0.

Second, if the support and curvature functions are restricted to an affine hyperplane
H ⊂ Rn, then they satisfy the equation

det ∂2hK = fK ;

here, ∂2hK denotes usual flat Hessian of hK restricted to the hyperplane H. For example,
if H = {xn = 1}, then hK depends only on the co-ordinates x1, . . . , xn−1, and here ∂2hK

denotes the standard Hessian with respect to those co-ordinates. Therefore, a solution to the
Minkowski problem implies a solution h to the classical Monge-Ampère equation on Rn−1

det ∂2h = φ,
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where φ is given.
It is worth noting that the definition (6) gives a third way to represent the Minkowski

problem as a PDE of Monge-Ampère type:
Given a positive function φ : X∗\{0} homogeneous of degree −n− 1 such that∫

Sn−1

uφ(u) du = 0,

find the unique convex function h : X∗ → [0,∞) homogeneous of degree 1 such that

det ∂2

(
1

2
h2

)
= hn+1φ.

12. Cheng and Yau’s regularity theorem for the Minkowski problem

12.1. Statement. The paper of Cheng and Yau [11] addresses the regularity of a solution
to the Minkowski problem. In other words, do regularity assumptions on curvature function
fK of a convex body K imply corresponding regularity conclusions on the support function
hK? Toward this end, they used the continuity method (see below) to prove the following:

Theorem 1. If k ≥ 3 and K is a convex body whose curvature function fK is in Ck(X∗\{0}),
then its support function hK is in Ck+1,α(X∗\{0}) for all α ∈ (0, 1).

Regularity theorems when dimX = 2 were first obtained by Pogorelov [41] and Nirenberg
[39]. Pogorelov [45] proved the theorem above independently.

Regularity theorems of Evans [17] and Krylov [28, 30] can be used to extend the theorem
above to all k ≥ 2. See the survey by Trudinger and Wang [51] for details.

Chou and Wang [15] have given a different proof of regularity using a geometric heat flow,
namely the logarithmic Gauss curvature flow.

12.2. Sketch of Proof. Cheng and Yau prove regularity by establishing the existence of
a smooth solution to the PDE (7), if the given curvature function φ : Sn−1 → (0,∞) is
sufficiently smooth. They do this via the continuity method.

In particular, fix k ≥ 3 and let φ ∈ Ck(Sn−1) be positive and satisfy (8). Define, for each
t ∈ [0, 1], φt = (1− t)1+ tφ and note that φt is positive and satisfies (8). Let S ⊂ [0, 1] be the
set of all t such that there exists a convex body Kt with support function ht ∈ Ck+1,α(Sn−1),
for every α ∈ (0, 1), and curvature function equal to φt. Obviously, 0 ∈ S. Therefore, if S is
both open and closed, then 1 ∈ S and therefore a solution to (7) exists for the given function
φ.

That S is open follows by the implicit function theorem and the application of standard
linear elliptic PDE theory to the linearization of (7). In particular, the linearized operator
is an elliptic self-adjoint operator whose kernel consists exactly of linear functions on X∗

restricted to the unit sphere. It therefore can be inverted, and Schauder theory gives the
desired regularity for solutions to the linearized equation.

To prove S is closed, Cheng and Yau show how to establish a priori C0, C1, C2, and C3

bounds for a solution to (7). The C0 bound is equivalent to a diameter bound for the convex
body K in terms of its curvature function. This is established using a convex geometric
argument.
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To obtain the higher regularity bounds, it is first necessary to obtain a lower bound on
the diameter of the convex body K. This again is established using a convex geometric
argument.

The remaining bounds are now obtained using the second formulation of the Minkowski
problem given in section 11.6 on an affine hyperplane. Cheng and Yau show that in this
setting the lower bound on the diameter of K allows one to control the size of a level set
for the support function h. This allows them to apply a priori second and third derivative
estimates obtained by Pogorelov [43, 42, 45] for a solution to the Monge-Ampère equation
on a bounded convex domain.

Pogorelov’s proof of the third derivative estimate is based on earlier work of Calabi [7]
and is much more involved than the second derivative bound. Regularity theorems of Evans
[17] and Krylov [28, 30] imply C2,α bounds without requiring the C3 bound.

Higher regularity of the support function now follows by the standard bootstrapping of
Schauder estimates using the elliptic PDE (7).

13. Generalizations of the Minkowski problem

The impact of the work of Cheng and Yau [11, 12] on the Minkowski problem goes well
beyond the theorems proved in their papers. Their papers are among the first to combine
techniques from both the Brunn-Minkowski theory in convex geometry and nonlinear elliptic
PDE theory. Until their work, the two worlds of convex geometry and PDE’s were largely
separate. Their work created a solid bridge between the two subjects, one that has become
well traveled by people from both specialties.

This, for example, can be seen by recent work on the Lp Minkowski problem, which was
introduced by Lutwak [36, 37]. Lutwak showed that all of the concepts defined in section 10,
which he called the L1 Brunn-Minkowski theory, can be extended to an Lp Brunn-Minkowski
theory. In particular, he defined the Lp curvature function fp = h1−pf of a convex body K,
where h is the support function and f the curvature function of K, and formulated the Lp

Minkowski problem:
Given a function φ : X∗ → (0,∞) homogeneous of degree −n− p, find the unique convex

body K ⊂ X whose Lp curvature function is given by φ.
This has been studied extensively by both people in PDE’s and those in convex geometry.

See, for example, the papers of Lutwak, Yang, and Zhang [38], Chou and Wang [16] and
Hug, Lutwak, Yang, and Zhang [25], as well as the references contained within them. More
recently, Haberl, Lutwak, Yang, and Zhang [24] have formulated and studied the even more
general Orlicz-Minkowski problem.

Other Minkowski-type problems have also been studied by Oliker [40], Wang [53], Guan
and Li [23].
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