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Abstract

Abstract: An affine Moser-Trudinger inequality, which is stronger than the Euclidean Moser-
Trudinger inequality, is established. In this new affine analytic inequality an affine energy of the
gradient replaces the standard L™ energy of gradient. The geometric inequality at the core of the
affine Moser-Trudinger inequality is a recently established affine isoperimetric inequality for convex
bodies. Critical use is made of the solution to a normalized version of the L™ Minkowski Problem.
An affine Morrey-Sobolev inequality is also established, where the standard L? energy, with p > n,
is replaced by the affine energy.

1 Introduction and main results

The standard Sobolev inequality in IR", n > 2, for p € [1,n), provides an upper bound for the

L»r (IR™) norm of functions f from the Sobolev space W'P(IR™) in terms of the LP(IR") norm of the
Euclidean length of their gradient,

1/p
(1) 19rl = ( [ 1vrpar)
Rn
An optimal form of the Sobolev inequality, with sharp constant, reads
(1.2) p | fll 2 < IV flp, for f € WHP(IR"),

and goes back to Federer & Fleming [21] and Maz'ya [42] for p = 1, and to Aubin [5] and Talenti [52]
for 1 < p < n. Here, ay,, = nv (%)1_% [wnf(%)F(n+ 1— %)/F(n)] %, where I is the gamma function,
and wy, = 72 /T(1+ %) is the n-dimensional volume enclosed by the unit sphere Sn—t,

In [56, 38], a strengthened version of the sharp Sobolev inequality was established (see [41] for
further extensions), where the customary norm ||V f||,, is replaced by a new invariant (of functions)

defined by

—1/n
(1.3) Ep(f) = C,MD(/S"1 ||va||;”dv> .

NWnWp—1 1/p
2Wn4p—2

the LP(IR"™) norm of the directional derivative D, f of f along v, namely

Here, ¢, p = (nwn)'/™, and for each vector v € S*! the expression || D, f]|, stands for

(1.4 1Dty = ([ 1o i@pis) "
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where “” denotes the usual inner product in IR". An important fact is that ,(f) is invariant under
affine transformations of IR" of the form z +— Az + xp, with zp € IR™ and A € SL(n). Note that by
contrast ||V f||, is invariant only for A € SO(n), rather than A € SL(n). We call the invariant €,(f)
the LP affine energy of f.

The affine Sobolev inequality, established in [56] for p = 1 and in [38] for 1 < p < n, states that

(1.5) apnl fll 2o < E,(f), for f € WHP(IR").

Observe that (1.5) is an affine inequality whereas the Sobolev inequality (1.2) is only Euclidean.
Inequality (1.5) improves the Sobolev inequality (1.2) because, by the Holder inequality and Fubini’s
theorem, one easily sees that

(1.6) Ep(f) < IV £llp

for every f € WHP(IR") and p > 1 ([38, Inequality (7.1)]). In fact, the affine Sobolev inequality
(1.5) is essentially stronger than the Euclidean Sobolev inequality, because the ratio E,(f)/||V fllp
is not uniformly bounded from below by any positive constant, as f ranges in WHP(IR"). This is
demonstrated, for instance, by considering functions f having the form f(z) = ¢(Ax) for some fixed
function ¢ and letting A vary in SL(n).

It is the aim of this note to complete the picture of affine Sobolev inequalities given in [56, 38|,
and deal with both the limiting case p = n and super-limiting case p > n.

Functions f € WH?(IR™), whose support sprt f has Lebesgue measure |sprt f|, that is finite are
known to be not merely in L(IR™) for every ¢ < oo, but to be even exponentially summable [46, 54, 55].
The Moser-Trudinger inequality is the statement that

1
lsprt f| JRe

@IV A g <

(1.7)

for every f € WLH(IR"™) with 0 < |sprt f| < oo, where n’ = n/(n — 1) is the Hélder conjugate of n.
The constant nw}/ " is best possible, in that inequality (1.7) would fail for for any real number m,, if
nw,ll/ " were to be replaced by a larger number. Although not explicitly known, the best constant m,,
on the right-hand side of (1.7) can be characterized as

oo ’
(1.8) My, = sup/ O™ gy
¢ JoO

where ¢ ranges among all non-decreasing locally absolutely continuous functions in [0, c0) such that
$(0) =0 and [~ ¢'(t)"dt < 1.

The Moser-Trudinger inequality and close variants have attracted the attention of specialists in
both the theory of function spaces and in partial differential equations; see e.g., [3, 4, 5, 6, 7, 11, 10,
15, 16, 19, 20, 23, 24, 26, 30, 47].

Our first result deals with a stronger, in light of (1.6), affine version of (1.7):

Theorem 1.1 Suppose n > 1. Then for every f € WH™(IR™) with 0 < |sprt f| < oo,

1
lsprt f| Jwn

1/n

(1.9) e M@V En (D™ g < My .
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The constant nwy' "~ is best possible in that (1.9) would fail for any real number m,, if nwrlL
be replaced by a larger number.

/n

were to



Carleson and Chang [10] proved that (spherically symmetric) extremals do exist for the Moser-
Trudinger inequality (1.7). As a consequence, since, by (1.6),
1 L @ gy < L e @V EN™ gy < o)
[sprt f| Jrn = |sprt f| JRre =

(1.10)

for each f € WHm(IR") with 0 < |sprt f| < oo, extremals for the affine Moser-Trudinger inequality
(1.9) exist as well. Moreover, if f is an extremal for the Moser-Trudinger inequality (1.7), then not
only is f also an extremal for the affine Moser-Trudinger inequality, but since we are dealing with an
affine inequality, composing f with any element of GL(n) will also yield an extremal for the affine
Moser-Trudinger inequality.

Let us now turn to the case when p > n. For these values of p, the Morrey-Sobolev embedding
theorem tells us that any function from W1P(IR") is essentially bounded. An optimal bound for || f| s
in terms of ||V f||, is available, and states that

1_1
(1.11) [flloe < bnp [spre fl7 2|V flp

L 1/p’

1 .
for every f € WIP(IR™) such that |sprt f| < co. Here, b, , =n" Pwy, " (%) , where p’ is the Holder

conjugate of p. See Talenti [53]. The affine counterpart of (1.11) is contained in the following result.
Theorem 1.2 If p > n, then for every f € WYP(IR™) such that |sprt f| < oo,

(1.12) 1Flloo < buplsprt £17 7€, (f)-

Equality holds in (1.12) whenever

3

p—

(1.13) fx) :a(l— ]A(x—x0)|9j)+
for some a € R, xp € IR", and A € GL(n).

Here, the subscript “4” stands for the “positive part”.

2 A symmetrization inequality for the affine energy

A key tool in our approach to Theorems 1.1 and 1.2 is an affine version of the Pélya—Szegd principle
regarding the decrease of gradient norms under symmetrization. Recall that, given any measurable
function f:IR"™ — IR such that [{x € R" : |f(x)| > t}| < oo for every ¢ > 0, its distribution function
g : (0,00) — [0,00) is defined by

(2.1) wt) =l >t fort>o,
its decreasing rearrangement f* : [0, 00) — [0, 00| is defined by

(2.2) f*(s) =sup{t > 0: ps(t) > s} for s >0,
and its spherically symmetric rearrangement f* : IR™ — [0, o] is defined by
(2.3) fX(x) = f*(wnlz]™) for x € IR" .

Note that

(2.4) [Lf = pps = Hpk,



and hence

(2.5) |sprt f| = |sprt f*| = [sprt f*],
(2.6) 1fllse = £*(0) = 1/ *[loo »
and

27) | at@his= [ o @ds = [ ()

for every continuous increasing function ® : [0,00) — [0, 00).

If f € WIP(IR™) for some p > 1, then the classical Pélya-Szegd principle (see Brothers & Ziemer
[8], Kawohl [28], Talenti [52]) asserts that then f* is locally absolutely continuous, f* € WHP(IR™),
and

(2.8) IVl < (19 llp-

In fact, a full analogue of (2.8) for the affine energy €, turns out to hold. It was shown in [38] that
if 1 < p < n, then

(2.9) Ep(f*) < &(f)

for every f € WLP(IR™). An inspection of the proof given in [38] shows that the same argument will
work for p > n as well. Instead, the proof given in [38] breaks down when p = n, exactly the case
of interest for applications to Theorem 1.1. In this borderline situation, a limiting argument could
be used to establish (2.9). However, a main aim of this note is to present in Theorem 2.1 below a
direct unified approach to inequality (2.9), which yields (2.9) simultaneously for all p > 1. Apart from
its own interest, such an approach makes the proof of Theorem 1.1 self-contained, and, on avoiding
limiting arguments in p, is useful in analyzing the equality cases, an issue of possible interest for future
developments. (In this connection, see e.g. [8, 18, 22, 29|, where the cases of equality in (2.8) and in
related inequalities are characterized.)

Theorem 2.1 Suppose n > 1 and p > 1. If f € WEP(IR™), then f* € WIP(IR"™), and

(2.10) Ep(f*) < &(f).

Note that the left-hand sides of (2.8) and (2.9) agree, since
1/p

Isprt f]| , ,
(2.11) £, (/%) = ( [ s g <s>>>pds) — VS,

if f € WHP(IR™). Thus, in view of (1.6), Theorem 2.1 provides a strengthened version of the standard
Polya—Szego principle.



3 Elements of the L? Brunn-Minkowski Theory

The proof of Theorem 2.1 relies on tools from the rapidly evolving LP Brunn-Minkowski theory of
convex bodies (see, e.g., [12], [14], [27], [31], [32], [33] — [41], [44], [48] — [50]). In particular, on the
affine LP isoperimetric inequality [37] (see Campi & Gronchi [9] for an alternate proof) and on the
solution of the normalized LP Minkowski problem [40]. We recall some basic facts from this theory
that will be needed in what follows.

A convex body is a compact convex set in IR™ with nonempty interior, which, throughout this paper,
will be assumed to contain the origin in its interior. Each convex body K is uniquely determined by
its support function hg : IR™ — (0, 00) defined by

hi(u) =max{u-x: 2z € K} for u € IR"™.

For real p > 1, real € > 0 and convex bodies K and L, the Minkowski-Firey LP combination K-, eL
is the convex body whose support function obeys

(3.1) hiyer(-)? = hi ()P +Phi ()"

When p = 1, the subscript in “+4;” can be suppressed without causing any ambiguity - see the obser-
vation following equation (3.5) below.
The LP-mixed volume V,,(K, L) of K and L is defined by

1
K4erL| - |K
Vp(k, L) = 2t R ZIK]

n e—0+ g

The existence of this limit was proved in [33]. In particular,
(3.2) V(K K) = |K],

for every convex body K. The LP extension of the classical Minkowski inequality (established in [33]
for p > 1) states that

(3-3) V(K L) > [K[*7PILPP,

with equality, for p > 1, if and only if K = eL for some € > 0, and equality, for p = 1, if and only if
K =z +¢L for some 2 € IR"™ and € > 0. In [33] it is also shown that

(3.4) V(K. L) = % /S b hic(0) PdS(v)

for all convex bodies K and L, where Sk is a Borel measure on S?! called the surface area measure
of K (see e.g. Schneider [51]).
The mixed volume Vi (E, K) of a compact set E and a convex body K in IR" is defined as

| E+¢K|—|E
(3.5) Vi(B. K) = L liming LEF R = 1B]
n e—0t €

Here E4+e¢K = {x+ey:x € E and y € K}. Notice that, if E is a convex body, the definition of
E +¢eK coincides with Definition (3.1) for p = 1. The Brunn-Minkowski inequality (see e.g., Schneider
[51] or Gardner [25]) states that

1 1 1
(3.6) |E + K|% > |E|* + |K|*.



Definition (3.5) and the Brunn-Minkowski inequality immediately give the Minkowski inequality
1.1

(3.7) VI(E,K) > |E|" |K]|~ .

If E has a C! boundary, then the following integral representation for V4 (E, K) holds:

(3.8) MEE) =1 [ hivla)ae @),

n

where v(z) denotes the outward unit normal vector to OF at x, and H"~! is (n — 1)-dimensional
Hausdorfl measure - see [56].

The LP-projection function of a convex body K is denoted by v,(K,-) : R" — (0,00) and is defined
by

1
(3.9) vp(K,u)P = 2/ lu - v|Phy (v)1 7P dSk (v), for u € IR™.
Sn—1

The LP-projection body IL,K of K is the convex body whose support function is v, (K, -). The polar
II7 K of the convex body II,K is defined as

K ={ze€R": |z -y|<1forally e I[,K}.
On observing that
I K = {vp(K,u) tu:u e 8"},
and making use of polar coordinates, one sees that

1

(3.10) L K| = / vp (K, u) "du.
n Sn—1

The LP Petty projection inequality [37] (see Campi & Gronchi [9] for an alternate approach) is an
affine isoperimetric inequality that states that for every convex body K in IR",

(3.11) K| P IEK P < et fumipe2,

with equality for p = 1 if and only if K is an ellipsoid and with equality for p > 1 if and only if K is
an ellipsoid centered at the origin.

The solution to the even normalized LP Minkowski problem [40] will play a key role in our proof
of Theorem 2.1. It states that for each p > 1 and for each even Borel measure A on S”~ !, whose
support does not lie in the intersection of S”~! with a proper subspace, there is uniquely associated
an origin-symmetric convex body K, such that

1

(3.12) = ———5K.
K|

4 Proof of Theorem 2.1

Assume that p > 1, and n > 1. Suppose that f € C§°(IR"), the space of infinitely differentiable
functions having compact support in IR". By Sard’s Lemma, for a.e. t > 0,

(4.1) {If| >t} is a bounded open set with a C* boundary,

(4.2) Hlfl >ty ={lf1 =1},



and
(4.3) Vf(x)#0, for x € {|f| = t}.
For every positive ¢ satisfying (4.1)-(4.3), define v, (f,%,-) : R" — (0, 00) by
1
(4.4) it =3 [ VI@PIVA) e e), e ue
{If1=t}

and, for each convex body @, define V,(f,t,Q) by

_1
_n

(4.5) Q= [ @y ee ).

Observe that, for each convex body @,

(4.6) Vi(f,t,Q) = Vi({|f| > t},Q) for a.e. t > 0.

Lemma 4.1 If f € C§°(IR"), then for a.e. t > 0, there exists a unique origin-symmetric convex body
K, = K(f,p), such that

vp (K, u)P

(4.7) vp(f,t,u)P = W, foru e S,
and

|Ky 7

for every origin-symmetric convex body Q) in IR™.

Proof. Suppose ¢ > 0 is such that (4.1)-(4.3) are fulfilled. Let A\; be the even positive Borel measure
on 8"~ satisfying

) [ st = [ v tae

for every even Borel function g : S*~! — IR. Since, for fixed u € S*~1,
H'({z: |f(x)| =t and u-v(z) £ 0}) >0,
and (4.3) holds, one has

(4.10) / - 1(@)||V ()P a3 () > 0.
{If1=t}

Hence, by (4.9),

(4.11) / |u-v|dAe(v) >0, for u € S" L.
Sn—1

Consequently, the measure ); is not supported in the intersection of S"~! with any subspace. By the
solution to the even normalized LP Minkowski problem (3.12), there exists a unique origin-symmetric
convex body K; such that

1

(4.12) M= ———75K, -
| K|,



Equation (4.7) follows from the chain

L V@R
(4.13) vy f,tu)? = /{m e e
1

i . D p—1 n—1
3 @R @ e @)
1

- 2/SM - oPdN(v)

1
= -v[Ph 1=rq
3R] Jsnr lu-v|Ph, (v)PdSK, (v)

_ vp (K, w)P
K|

for u € S"~1, where the second equality holds since v(z) = Vf(z)/|Vf(x)| for x € {|f| = t}, the third
equality is a consequence of (4.9), the fourth equality is due to (4.12), and the final identity is (3.9).
As for (4.8), note that by (4.5), (4.9), (4.12), and (3.4),

(4.14) Vo(f1,Q) = /{ PIRCCEICTR
— o | halorani)

B 1

N TL|Kt| gn—1

— ‘/P(Ktv Q)
K|

hq(v)Ph, (v)' PdSk, (v)

To see that K is unique, suppose that K] is an origin-symmetric convex body that also satisfies (4.8).
Then

VoK Q) _ V(K4 Q)
K| K

(4.15)

for every origin-symmetric convex body @ in IR". Choosing Q = K; in (4.15), and making use of
(3.2) and (3.3) entail that |K[| > |K¢|. The same argument applied with @ = K/ in (4.15) shows that
|K¢| > |K]|. Thus, |K}| = |K¢|, and the equality condition in (3.3), with K = K; and L = K|, implies
that necessarily K; = K. 0

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. We may assume that f does not vanish identically, otherwise the statement
holds trivially. The fact that f* € W1IP(IR™) whenever f € W1P(IR") is classical - see e.g. Brothers
and Ziemer [8]. To establish (2.10), let us first assume that f € C§°(IR"). From the coarea formula
and definition (4.4),

@6 D= [ Vi@

- V@) 01
—dH d
/ /{|f| —  |Vf()] (z) dt

—2/0 vp(f,t,v)Pdt,



for v € S"~1. Minkowski’s inequality for integrals tells us that

00 —n/p —p/n oo 1 —p/n
(4.17) (/S(/O v,,(f,t,v)pdt> dv) 2/0 (/Swdv> dt

Let Ky = K¢(f,p) be the unique origin-symmetric convex body guaranteed by Lemma 4.1 for a.e.
t > 0. Owing to (4.7), (3.10), and (3.11), we have

1 1 e K7 ~P/n
s g W ()
n Jgn-1 vp(f,t,v)" n Jgn-1 vp(K, v)"?
_ 1
| K| [TI3 5|

Z Wn4p—2 1 ;
WnWp—1 |Kt|5

for a.e. t > 0. Thanks to (4.8) applied with @Q = K}, and (3.2), one gets

‘/;)(Kh Kt) -1

, for a.e. t > 0.
| K|

(4.19) Vp(f,t, Ky) =

Assume, for the time being, that p > 1. From equation (4.19), Holder’s inequality, equation (3.8) and
inequality (3.7), we deduce that, for a.e. t > 0,

N

nl/p</{|f|t} rv;u)rd}‘"_l(”) ) 1
(g @)

- < /{Iflt} i (@Y IVS @) ($)> % ( /{mt} !Vfl ()] e CU)) '

> hi, (v(z))dH" 1 (z
_/{W} K (v(@)) A ()
nVi({lf| >t} Ky)
nl{If] > t}|7 [ K| v

— g () K|

By the coarea formula again,

py(t) = I{f|>t}ﬂ{Vf—0}|+/ /ﬂf }|Vf )|

(see e.g. Brothers & Ziemer [8]), and since the non-increasing function ps is the sum of two nonin-
creasing functions, we have

3=

(4.20) = (nV,(f,t, Ky))

Y

H" Hz) dr, for t > 0,

1
(4.21) — s (t) > / dH" () for a.e. t > 0.
! 1=t IVf(2)]
Combining (4.20) and (4.21) yields
1 tyP=n
(4.22) i (t) for a.e. t > 0.

K[ i mpr
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Inequality (4.22) also holds for p = 1, since, by (4.19) and (4.6),
_ 11 11
t= g [ RO @) = AT = 0,0 2 U > AR = )7 1

From (1.3), (4.16), (4.17), (4.18) and (4.22) we obtain

—p/n
(4.23) Ep(f)F = CZ,p</Sn_1 IIvallp"d”>

o] -n/p —p/n
= cﬁp</ <2/ vp(f,t, U)pdt> dv)
’ sn—1 0

2 * (1 1 ~e/n
2 [ W) "
ne/n P [ n Jgn—1 vp(f, t,0)"

oo
1
anz/"/ & dt
0 |K|n

> npwf/"/ %1 dt .
0 (_qu(t))p—

An inspection of the proof of (4.23) shows that, when f = f* and K; = K;(f*,p), all the
inequalities turn into equalities, since K;(f*,p) is a ball centered at the origin for a.e. ¢ > 0 (in
particular, equality holds in (4.21) if f = f* - see e.g. [17, Lemmas 2.4 and 2.6]). Consequently, since
pf = ppx, we deduce that

p

(4.24) &p(f*)P = nPup/m /(]"O%dt.

The desired inequality (2.10) for f € C§°(IR") now follows from (4.23) and (4.24).
To establish inequality (2.10) for an arbitrary f € WP(IR"), consider a sequence of functions
{fi}ken such that fi, € C5°(IR™) for k € IN, and fi, — f in WHP(IR™). We already know that

(4.25) Ep(fX) < &x(f1) for k € IN.

It is easily seen that || Dy fxl|, — || Dy f]|, uniformly for v € S"~1. Moreover, the function v — || D, f||,
is strictly positive and (Lipschitz) continuous on S”~!, and hence attains a positive minimum on S"~!.
Consequently, 1/||Dy fi|[; — 1/||Dy f||;; uniformly for v € Sn~1 whence

(4.26) T &,(fi) = &,(f).

On the other hand, f,:' — f* in L"(IR™), thanks to the contractivity of the spherically symmetric
rearrangement in L™ (IR™) (see e.g. Chiti [13]). Hence, one can infer that fk’f — f* weakly in W1P(IR").

Since EP(fIf) = Hka*Hp and E,(f*) = ||[Vf*|», and since the L"(IR™) norm of the gradient is lower
semicontinuous with respect to weak convergence in W1P(IR"),

(4.27) lim inf &,(f¥) > €,(/*).

Inequality (2.10) follows from (4.25)-(4.27). O
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5 Proof of Theorems 1.1 and 1.2

The finiteness of the quantity m,,, as defined in (1.8), is the content of the following result by Moser.

Lemma 5.1 Let p € (1,00), and let

(5.1) my = sup/ e?) =5
¢ JO

where ¢ ranges among all non-decreasing, locally absolutely continuous functions in [0,00) fulfilling

$(0) =0 and [;° ¢'(s)Pds < 1. Then
(5.2) my, < 00.

Incidentally, observe that the quantity m, given by (5.1) remains unchanged if the class of trial
functions is enlarged to include also not necessarily (positive and) monotone functions ¢, provided
that ¢(s)? is replaced by |p(s)]?" and ¢(s)? by |¢/(s)|P. This can be easily seen on replacing ¢(s) by
Jo 16'(s)lds.

The original proof of Lemma 5.1 for p > 2 contained in Moser [45] is rather involved. A simplified
approach, exploiting a technique of Garsia (see Adams and Hedberg [2, Section 3.8]), is presented in
Adams [1], where an even more general result is established; a very similar proof, for p = 2, can be
found in Marshall [43], where the possibility of an extension to the case where p # 2 is also mentioned.

For completeness, we reproduce a proof of Lemma 5.1 along the same lines as those of Adams [1] and
Marshall [43].

Proof of Lemma 5.1. For each ¢ € IR, define
Bo={s>0:s—o(s)” <t},
and let
7
cp = -
1—(1+2-P)i-p
From the fact that ¢(0) = 0, the Holder inequality and the fact that fooo ¢'(s)Pds < 1, we have that

s p'
o(s)P = </ qb'(r)dr) <s for s > 0.
0
Hence,
(5.3) E =0, for t < 0.
We now show that
(5.4) |E¢| < (cp+2)t, for ¢t > 0.

Inequality (5.4) trivially holds if E; C [0, 2t]. If this is not the case, then inequality (5.4) will follow if
we prove that

(5.5) sg — 51 < cpt
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for every si1, so € E; satisfying 2t < s1 < s3. From the definition of E; and the Holder inequality,

_1

81—t§</081¢/(r)dr) <81</ & (r pdr) w <51<1—/ & (r Pdr> .
Thus,
(5.6) / o(r pdr<1—<1—> "

From the definition of Ey, the Holder inequality again, and (5.6),

82—t<</ ¢ (r dr—f—/ &' (r >
1 81 ; L p/
< 8f< ; ¢(7“)pd7“> (s2 —s1) </ ¢'(r pd?“) ]

IN
»
oy
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3
_
\_/
|
| S

Therefore,
L 170
t ¥ t\"\ "
(5.7) 21 < 1+(—1> (1—(1—) >p] :
S1 S1 S1 S1
Set M = #2251 and z =1 — L. Then, 3 <z < 1 and (5.7) can be rewritten as
(5.8) M1 —2)+2< (1+M7(1—2)7(1—22"1)5)"

The convexity of the function 7 — 77" entails that, for \ € [0, 1],

1
7

(5.9) (1+M7 1= 2)7 (11— N5) < (1= N 4 NP M = 2)(1— 22T
Choosing A = 1 — 22P~Y and combining (5.8) and (5.9) yield
(1= — 2 2441

MS 1 - 1
(1—2)(1=AP (1 —2r1)e1)  1—(142zp-1)Tp

= Cp,

whence (5.5) follows.
The Layer Cake principle and a simple change of variables imply that

/ eg<s>ds:/ s> 0:g(s) <t} e tdt
0

—0o0

for every measurable function g : (0,00) — IR. Thus,

oo , oo
/ e =55 = / |Ele™tdt < cp,+2,
0 —o0

where the inequality is a consequence of (5.3) and (5.4). O
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Proof of Theorem 1.1. By (2.7) and (2.5), we have
n ’ | rtf‘ n ’
(5‘10) / e(nwj/ |f(x)])™ dr — /SP e(nw;/ r(sHn ds |
" 0

On the other hand, (2.11) and (2.10) tell us that

1/n

Isprt f| , , n
(5.11) enn) 2 e = ([T (s - () s

Owing to (5.10) and (5.11), the affine Moser-Trudinger inequality (1.9) will follow if we show that, for
each a > 0,

1 a n n'
(5.12) sup / el ") g — My,
v @Jo

as 1 ranges among all non-increasing locally absolutely continuous function v : (0,a] — [0,00) such

that ¢(a) = 0 and [ (nw}l/nsl/"/(—w’(s)))nds < 1. Given such a 1), define the non-decreasing function
¢ :[0,00) — [0,00) by

(5.13) o(t) = nw'/Mp(ae™), for ¢t > 0.
Note that ¢(0) = 0. The change of variable
(5.14) s=ae"

gives

/00 ¢ ()" dt = /a (nw}t/”sl/”/(—w’(s)))nds < 1,
0

0

/Oo SO et gt = - /“ e(mon "V g
0 aJo

Hence, equation (5.12) follows from Lemma 5.1, since, for each fixed a, the class of functions appearing
in definition (5.1) agrees with the class of functions ¢ given by (5.13) with 1) as above.

and

The sharpness of the constant nw,ll/ "in (1.9) can be verified on testing the inequality on the same
sequence {fitrew of (radially decreasing) functions as in Moser [45], namely

kl/d

7w if |z| < e~k/n
nwy,

fulx) = ¢ B0 100 <i) if e7k/m <zl <1

e o]

0 otherwise .

Note that the sequence { fix(A(x —x))} is also extremal in (1.9), for any xg € IR" and any A € GL(n),
since inequality (1.9) is invariant under affine transformations in IR". O

We conclude with the proof of Theorem 1.2.
Proof of Theorem 1.2. Similarly to the proof of Theorem 1.1, a crucial ingredient here is the
symmetrization inequality (2.9) for p > n. This inequality, together with (2.11), reads

1/p

jsprt f| S
(5.15) E(f) > &(f*) = (/0 ' (nwp/m st /™ (— (s)))pd5>
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for every f € WHP(IR™) with |sprt f| < co. By the (local) absolute continuity of £*, and by (2.6), (2.5)
and the Holder inequality,

|sprt f] ,
(516)  |fllzemn = £7(0) = /0 (— 1 (s))ds

lsprt. /| , , Up g plsortfl NP
([ ) ([
0 0
=11/ jspr /1 , RN
— /P (u)l/p lsprt f|7 7 </ (= f*(s)sV/" )pd5> '
p—n 0

Inequality (1.12) follows from (5.15) and (5.16).

Equality holds in (1.12) for any function having the form (1.13) with 2o = 0 and A = I; actually, any
such function is spherically symmetric, so that equality holds in (5.15), and renders the inequality in
(5.16) an equality. Equality continues to hold in (1.12) even if 29 # 0 and A # I in (1.13), owing to
the invariance of (1.12) under affine transformations. O
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