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Abstract

We show that for a special class of probability distributions that we call contoured distributions,

information theoretic invariants and inequalities are equivalent to geometric invariants and inequalities

of bodies in Euclidean space associated with the distributions. Using this, we obtain characterizations

of contoured distributions with extremal Shannon and Renyi entropy. We also obtain a new reverse

information theoretic inequality for contoured distributions.
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I. Introduction

That there is a connection between information theory and geometry was demonstrated

by Lieb [1] and later, unaware of Lieb’s earlier work, proposed by Costa and Cover [2].

This connection was developed in detail by Cover, Dembo, and Thomas [3] (also, see [4]).

We show in this paper that an even closer connection can be made through the study

of a special class of probability distributions that we call contoured distributions. Known

geometric inequalities can be obtained by applying basic information theoretic inequalities

to contoured distributions. Conversely, we show that new reverse information theoretic

inequalities for convex contoured distributions can be obtained from recently established

reverse geometric inequalities for convex bodies. An open question is whether these reverse

inequalities hold for a larger class of probability distributions.

Our work was originally motivated by ideas introduced by Lieb [1] and Costa and Cover

[2] and developed further by Cover, Dembo, and Thomas [3]. Costa and Cover observed

that the Brunn–Minkowski inequality, which is about the geometry of bodies, closely

resembles the Shannon power inequality, which is an information theoretic inequality for

probability distributions. They speculated that the similarity was not coincidental. It

turned out that Lieb [1] had already shown that the Brunn-Minkowski and Shannon

inequalities both followed from the sharp Young’s inequality proved by Beckner [5] (also,

see Brascamp-Lieb [6]). Cover, Dembo, and Thomas [3] found other parallels between

information theory and geometry, showing, among other things, that the isoperimetric
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inequality in geometry is analogous to an inequality relating the Fisher information and

entropy of a probability distribution.

The results obtained by Cover, Dembo, and Thomas apply to any probability distribu-

tion that satisfies mild regularity assumptions. They also show that inequalities involving

determinants of positive definite symmetric matrices can be proved by applying informa-

tion theoretic inequalities to Gaussian distributions. We show here that this approach

can be generalized and that geometric inequalities for bodies in Euclidean space can be

obtained by applying information theoretic inequalities to the larger class of contoured

distributions.

Roughly speaking, a distribution is called contoured, if there is a set in Rn such that

any level set of the probability density function is a dilate of this set. We call this set the

contour body of the distribution. Any reasonable star-shaped set in Rn that contains the

origin in its interior can be realized as the the contour body of a contoured distribution.

See §II for precise statements. Contoured distributions whose contour body is an ellipsoid

centered at the origin are known as elliptically contoured distributions and have been

studied extensively (see, for example, [7]).

The probability distribution function of a contoured distribution can always be repre-

sented as the composition of two functions, one that depends only on the norm of the

random vector and the other that depends only on the direction. Using this observation

along with polar coordinates on Rn, any information theoretic invariant of the distribu-

tion that is defined by an integral can be broken up into two parts, a radial piece and an

angular piece. A closer examination of the angular part shows that it is equal to a geomet-

ric invariant of the contour body. This approach to studying natural integrals involving

contoured functions is not new; it has been, for example, also used by Yamada, Tazaki,

and Gray [8] to obtain formulas and results for norm–based distortion functions that are

similar to those presented here.1

We provide a precise definition of a contoured probability distribution and its associated

contour body in §II. Next, in §III we use integration in polar coordinates to obtain formulas

for the mean and entropy of a contoured distribution in terms of the center of mass and
1We would like to thank the referee for bringing this paper to our attention.
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volume of the contour body. We also show that the covariance and Fisher information

matrices of a contoured distribution are closely related to geometrically natural ellipsoids

associated with the contour body.

In §IV we recall some well-known inequalities relating the entropy of a probability dis-

tribution to its covariance and Fisher information. These results, along with the polar

decomposition of a contoured distribution, lead to characterizations of a contoured distri-

bution with extremal entropy in terms of its radial profile and contour body (see §II for

the definitions). These characterizations, in turn, imply two geometric inequalities, one

classical and one recently discovered.

This naturally leads to the question of whether new information theoretic inequalities

can be proved using geometric inequalities. We demonstrate one case of this, where a

reverse geometric inequality recently established by the authors implies a new reverse

information theoretic inequality for contoured probability distributions. We end the paper

with an important conjectured geometric inequality and its analogue in information theory.

II. Definitions

A. Preliminaries

Given an integer n ≥ 1, we shall denote n–dimensional Euclidean space by Rn. The

standard Euclidean norm on Rn will be denoted ‖x‖, for any x ∈ Rn.

The sphere of unit vectors in Rn will be denoted S. Recall that polar coordinates on

Rn are given by the map

S × [0,∞) → Rn;

(u, r) 7→ x = ru,

where r and u can be recovered from x ∈ Rn using the formulas

r = ‖x‖, u =
x

‖x‖
.

Standard Lebesgue measure on Rn will be denoted dx. The standard surface area

measure on S will be denoted du. Using polar coordinates, Lebesgue measure can be

written as

dx = rn−1 dr du.
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Definition: We shall denote the ball of vectors with Euclidean norm at most 1 by B and

its volume by vn; note that

vn =

∫
B

dx =
1

n

∫
S

du. (1)

B. Definition of a contoured distribution

Definition: A probability density function f(x) defines a contoured distribution, if using

polar coordinates there exists a decomposition of the probability density function f of the

following form:

f(x) = cφ(rλ(u)), (2)

where

c = a positive constant;

λ : S → (0,∞);

φ : [0,∞)→ [0,∞).

The constant c can, of course, be absorbed into the function φ, but it will be convenient

to have the extra degree of freedom in the normalizations discussed later. Given such a

decomposition, we call the function φ a radial profile and the set

C = {ru ∈ Rn | rλ(u) ≤ 1} (3)

a contour body of the distribution with density function f(x).

It is convenient to extend λ to be a homogeneous function on Rn by setting λ(0) = 0

and for x 6= 0,

λ(x) = ‖x‖λ
(

x

‖x‖

)
.

Using this definition, λ is positive away from 0 and homogeneous, which means that for

any x ∈ Rn and t ∈ R, t > 0,

λ(tx) = tλ(x).

With this definition of λ, the decomposition in (2) can be written as

f(x) = cφ(λ(x)).

May 13, 2002 DRAFT



6

C. The contour body and its shape function

Definition: We will call any function λ : Rn → R that is positive away from 0 and

homogeneous a shape function.

Definition: A set C ⊂ Rn is said to be star–shaped, if for any x ∈ C, the line segment

joining 0 to x lies in C.

Definition: We will call any compact star–shaped set that contains a neighborhood of

0 in Rn a contour body.

Associated to any shape function λ is the contour body

Cλ = {x ∈ Rn | λ(x) ≤ 1}. (4)

Conversely, associated to any contour body C is the shape function defined by

λC(x) = inf
{
t > 0 | x

t
∈ C

}
, (5)

for any x ∈ Rn.

Lemma 1: Equations (4) and (5) define a one–to–one correspondence between contour

bodies and shape functions.

For example, if the contour body C is a unit ball centered at the origin, then λ(x) = ‖x‖.

For convenience we will restrict our attention to contour bodies with continuous shape

functions. Stronger assumptions on the contour body will be stated explicitly as needed.

The most basic invariant of C is its volume V (C), and its formula in terms of the shape

function λC is needed throughout. Using polar coordinates, it is given by

V (C) =
1

n

∫
S

λC(u)−n du, (6)

where du is the standard surface area measure on the unit sphere S.
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D. The radial profile

Let f be the density function of a contoured distribution given by f(x) = cφ(λ(x)).

Since the total integral of f is equal to 1,

1 =

∫
Rn

f(x) dx

=

∫
S

∫ ∞
0

cφ(rλ(u)) rn−1 dr du

=

∫
S

∫ ∞
0

cφ(s)(λ(u)−1s)n−1λ(u)−1 ds du

= c

(
1

n

∫
S

λ(u)−n du

)(
n

∫ ∞
0

φ(s)sn−1 ds

)
= cV (C)

(
n

∫ ∞
0

φ(s)sn−1 ds

)
(7)

where V (C) is given by (6). It follows that a radial profile must be a measurable function

φ : [0,∞)→ [0,∞) such that ∫ ∞
0

φ(r)rn−1 dr <∞. (8)

Note that the radial profile can even be a generalized function, such as a Dirac delta

function, as long as (8) holds. Stronger assumptions about the radial profile φ will be

stated explicitly when needed.

E. Normalization of c, φ, and C

First, observe that by (7) the constant c is uniquely determined by the radial profile

φ and the contour body C. Second, the decomposition f(x) = cφ(λC(x)) of the density

function f of a contoured distribution is not unique. Given positive constants a and b, if

C̃ = b−1C =
{x
b
| x ∈ C

}
,

λC̃(x) = bλC(x),

φ̃(r) = aφ(b−1r),

c̃ = a−1c,

it is clear that f(x) = c̃φ̃(λC̃(x)).

The radial profile φ can be partially normalized by requiring the spherically symmetric

function

fφ(x) = φ(‖x‖) (9)
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to be a probability density function, so that

1 =

∫
Rn

φ(‖x‖) dx = nvn

∫ ∞
0

φ(r)rn−1 dr,

where vn is given by (1). If this holds, then by (7)

f(x) =
vn

V (C)
φ(λ(x)) (10)

Throughout this paper, we will always use a decomposition of f that satisfies (10).

However, this normalization still does not uniquely determine φ, C, and c, because we

can still rescale as follows:

λ̃(x) = bλ(x)

φ̃(r) = b−nφ(b−1r)

c̃ = bnc

Ideally, there should be a natural unique normalized decomposition of f . Three possi-

bilities are described in the appendix. We do not find any of them satisfactory, and our

results in the following sections are presented without using any of the normalizations

discussed in the appendix.

III. Invariants of contoured distributions

In this section we show that by using polar coordinates to integrate over Rn, information

theoretic invariants of a contoured distribution always split nicely into two factors, one that

depends only on the radial profile and the other only on the contour body. In particular,

we observe that for a contoured distribution with zero mean the covariance and Fisher

information matrices are closely related to naturally defined ellipsoids associated with

the contour body. Here, by the Fisher information matrix we mean the n × n Fisher

information matrix obtained by translating the probability distribution in Rn.

A. The mean

Recall that a body C ⊂ Rn with constant mass density has a center of mass

x̂ =
1

V (C)

∫
C

x dx. (11)
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Lemma 2: Given a contoured distribution on Rn with probability density function f

given by (10), the mean of the distribution is given by

x =
n+ 1

n
r̂x̂,

where x̂ is the center of mass of C and

r̂ =

∫
Rn

‖x‖φ(‖x‖) dx.

Proof: Using integration in polar coordinates,

x =

∫
Rn

xf(x) dx

=
vn

V (C)

∫
S

∫ ∞
0

ruφ(rλ(u))rn−1 dr du

=

(
vn

∫ ∞
0

snφ(s) ds

)
1

V (C)

∫
S

uλ(u)−n−1 du

On the other hand,

x̂ =
1

V (C)

∫
C

x dx

=
1

V (C)

∫
S

∫ (λ(u))−1

0

rnu dr du

=
1

(n+ 1)V (C)

∫
S

uλ(u)−n−1 du

and

r̂ =

∫
Rn

‖x‖φ(‖x‖) dx

=

∫
S

∫ ∞
0

rnφ(r) dr du

= nvn

∫ ∞
0

rnφ(r) dr

It follows that a contoured distribution with bounded mean has mean equal to 0 ∈ Rn

if and only if the center of mass of its contour body is at the origin.

Definition: A contoured distribution is balanced if the center of mass of its contour body

is at the origin.

It is worth noting that if C is an ellipsoid centered at the origin or any other origin–

symmetric body (λC(−x) = λC(x)), its center of mass is at the origin and therefore the

contoured distribution is balanced.
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B. Volume and entropy

Definition: The (differential) Shannon entropy of a probability density function f on

Rn is defined by

h[f ] = −
∫

Rn

f(x) log f(x) dx.

More generally, given q ∈ R such that q > 0 and q 6= 1, the q–Renyi entropy is defined by

hq[f ] = − 1

q − 1
log

∫
Rn

f(x)q dx.

Note that limq→1 hq[f ] = h[f ] and therefore we can define h1 = h. Furthermore, if f has

compact support, then the 0–Renyi entropy h0[f ] is well–defined and equal to

h0[f ] = log V (supp f),

where

supp f = {x | f(x) > 0}.

Lemma 3: Given q ≥ 0 and a contoured probability distribution with density function

f given by (10), the q–Renyi entropy of f is related to the q–Renyi entropy of fφ, defined

by (9) and the volume of the contour body C via:

hq[f ] = hq[fφ] + log
V (C)

vn
.

Proof: Note that∫
Rn

f(x)q dx =

(
vn

V (C)

)q ∫
S

∫ ∞
0

φ(rλ(u))qrn−1 dr du

=

(
vn

V (C)

)q ∫ ∞
0

φ(s)qsn−1 ds

∫
S

λ(u)−n du

=

(
vn

V (C)

)q−1

vnn

∫ ∞
0

φ(s)qsn−1 ds

=

(
vn

V (C)

)q−1 ∫
f qφ(x) dx,

where we have used (10), (9), and (1). The formula for h[f ] can be obtained either by

taking the limit q → 1 of the formula for hq[f ] or by a direct computation similar to the

one above.
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C. Ellipsoids

Two of the most important invariants associated with a probability distribution are its

covariance matrix and its Fisher information matrix, which are positive definite symmetric

matrices and therefore define ellipsoids in Rn. A contour body in Rn also has two naturally

defined ellipsoids associated with it. We show that for a balanced contoured distribution,

the ellipsoids associated with the contour body coincide with the ellipsoids associated with

the distribution.

First, recall that a symmetric positive definite n× n matrix A uniquely determines an

ellipsoid E in Rn centered at the origin:

E = {x ∈ Rn | x · A−1x ≤ 1}. (12)

Conversely, given an ellipsoid E in Rn centered at the origin, there is a uniquely determined

symmetric positive definite n× n matrix A such that (12) holds.

Definition: Given a symmetric positive definite matrix A, we will denote the correspond-

ing ellipsoid by EA. Conversely, given an ellipsoid E ⊂ Rn centered at the origin, we will

denote the corresponding symmetric positive definite matrix by [E].

We also recall that the volume of an ellipsoid is given by

V (EA) =
√

detAvn, (13)

where vn is given by (1).

D. Two ellipsoids associated with a set in Rn

Definition: Given a measurable set K ⊂ Rn with positive volume and center of mass

located at the origin, consider the following positive definite symmetric matrix

Aij =
n+ 2

V (K)

∫
K

xixj dx, (14)

and denote the corresponding ellipsoid by

Γ2K = EA. (15)

The ellipsoid is normalized so that for the unit ball B ⊂ Rn, Γ2B = B. The ellipsoid Γ2K

is called the Legendre ellipsoid or the ellipsoid of inertia in physics (see [9] for a discussion
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of its history). The matrix [Γ2K] is, up to a scale factor, the covariance matrix of the

uniform distribution on K.

More recently, Lutwak, Yang, and Zhang [10] have introduced another ellipsoid that is

naturally associated with a bounded convex set that contains the origin in its interior. It

is in some sense dual to the Legendre ellipsoid and can be described as follows.

Definition: Given a convex contour body K ⊂ Rn with shape function λ, let F be the

positive definite symmetric n× n matrix such that for any vector v ∈ Rn,

v · Fv =
n

V (K)

∫
K

(v · ∇λ)2 dx (16)

where ∇ denotes gradient, and denote

Γ−2K = EF−1 . (17)

Note that Γ−2K is defined using F−1. Again, the definition is normalized so that Γ−2B = B

for the unit ball B.

E. Two ellipsoids associated with a probability distribution

Definition: The covariance matrix of a probability distribution with density function f

on Rn with finite variance and zero mean, is given by

Aij =

∫
Rn

xixjf(x) dx. (18)

Denote the associated ellipsoid by

Γ2f = EA. (19)

Lemma 4: Given a contoured distribution having density f given by (10) with finite

variance and zero mean,

Γ2f = σ̂Γ2C,

where

σ̂2 =
1

n

∫
Rn

‖x‖2φ(‖x‖) dx. (20)

In particular, if the decomposition (10) is normalized as in Lemma 17, then the two

ellipsoids Γ2f and Γ2C coincide.
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Proof: First, observe that using polar coordinates on (14), given any v ∈ Rn,

v · [Γ2C]v =
n+ 2

V (C)

∫
C

(v · x)2 dx

=
n+ 2

V (C)

∫
S

∫ (λ(u))−1

0

(v · u)2rn+1dr du

=
1

V (C)

∫
S

(v · u)2λ(u)−n−2 du.

Therefore,

v · [Γ2f ]v =

∫
Rn

(v · x)2f(x) dx

=
vn

V (C)

∫
S

∫ ∞
0

rn+1φ(rλ(u))(v · u)2 dr du

=
vn

V (C)

∫ ∞
0

sn+1φ(s) ds

∫
S

(v · u)2λ(u)−n−2 du

= σ̂2v · [Γ2C]v.

Note that if f is elliptically contoured, then the ellipsoid Γ2f is, up to a scale factor,

equal to the contour body C itself.

Definition: A probability distribution having density f(x) on Rn, has an n × n Fisher

information matrix F associated with the family of distributions obtained by translating

f(x). The components of F are given by

Fij =

∫
Rn

∂ log f

∂xi
(x)

∂ log f

∂xj
(x)f(x) dx (21)

and the corresponding Fisher information ellipsoid by

Γ−2f = EF−1 . (22)

Observe that Fisher information is well–defined only if the gradient of the square root of

density function f is L2.

Lemma 5: The Fisher information ellipsoid Γ−2f of a contoured probability distribution

with probability density function f is given by

Γ−2f = σ̃Γ−2C,
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where

σ̃−2 =
1

n

∫
Rn

(φ′(‖x‖))2

φ(‖x‖)
dx. (23)

Proof: Given any v ∈ Rn,

v · [Γ−2f ]−1v

=

∫
Rn

(v · ∇f(x))2(f(x))−1 dx

=
vn

V (C)

∫
S

∫ ∞
0

φ′(rλ(u))2

φ(rλ(u))
(v · ∇λ(u))2rn−1 dr du

=

(
vn

∫ ∞
0

φ′(s)2

φ(s)
sn−1 ds

)
· 1

V (C)

∫
S

(v · ∇λ(u))2λ(u)−n du

=

(
vn

∫ ∞
0

φ′(s)2

φ(s)
sn−1 ds

)
· n

V (C)

∫
S

∫ (λ(u))−1

0

(v · ∇λ(ru))2rn−1 dr du

= σ̃−2 n

V (C)

∫
C

(v · ∇λ(x))2 dx

= σ̃−2v · [Γ−2C]−1v

where we have used (10) and (16).

Again, observe that if f is elliptically contoured, then the ellipsoids Γ−2f , Γ2f , and C

are, up to scale factors, the same.

IV. Extremal contoured distributions

A. Maximum entropy contoured distributions

It is well–known that among all probability distributions with a given covariance matrix,

the unique distribution with maximum entropy is the Gaussian. In particular,

Theorem 6: (Theorem 9.6.5 of [4], using our notation in Equations (19) and (13).) Given

a probability density function f on Rn,

h[f ] ≤ log

[
(2πe)

n
2
V (Γ2f)

vn

]
,

with equality holding if and only if f is a Gaussian distribution function.

This theorem combined with Lemma 3 implies the following.
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Proposition 7: The entropy of a contoured probability distribution with density function

f given by (10) satisfies the inequality

h[f ] ≤ log

[
(2πeσ̂2)

n
2
V (C)

vn

]
,

where σ̂2 is given by (20) and equality holds if and only if the radial profile of f is

φ(r) =
1

(2πσ̂2)n/2
e−r

2/2σ̂2

.

In other words, among all contoured distributions with given contour body C and radial

variance, the entropy is maximal if and only if the radial profile is Gaussian.

B. Minimum entropy contoured distributions

It is well–known that the isoperimetric inequality for bodies in Rn can be proved by

differentiating the Brunn–Minkowski inequality. Stam [11] and Dembo [12] showed that a

similar argument applied to Shannon’s entropy power inequality results in the following

sharp lower bound for entropy in terms of Fisher information.

Theorem 8: Given a probability distribution with density function f on Rn,

h[f ] ≥ log

[
(2πe)

n
2
V (Γ−2f)

vn

]
, (24)

with equality holding if and only if f is a Gaussian distribution.

Again, note that we have used (22) and (13) to state the theorem in terms of the quantities

of this paper.

This inequality has many different equivalent forms and has been proven many times

in its different guises. The 1–dimensional case is due to Stam [11] in 1959. The higher

dimensional case was first proved by Weissler [13] in 1978. On the other hand, Beckner–

Pearson [14] prove that (24) is equivalent to the logarithmic Sobolev inequality proved by

Gross [15] in 1975. The logarithmic Sobolev inequality continues to be studied actively

[16], [17], [18]. The equality condition in Theorem 8 was established by Carlen [19].

This theorem combined with Lemma 5 implies the following.

Proposition 9: The entropy of a contoured probability distribution with density function

f given by (10) satisfies the inequality

h[f ] ≥ log

[
(2πeσ̃2)

n
2
V (C)

vn

]
,
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where σ̃ is given by (23). Equality holds if and only if the radial profile of f is

φ(r) =
1

(2πσ̃2)n/2
e−r

2/2σ̃2

.

In other words, among all contoured distributions with given contour and radial Fisher

information, the entropy is minimal if and only if the radial profile is Gaussian.

V. Geometric inequalities and applications to Renyi entropy

A. A volume bound for the Legendre ellipsoid

Theorem 6 immediately implies the following well–known elementary geometric inequal-

ity.

Proposition 10: Given any contour body C ⊂ Rn,

V (C) ≤ V (Γ2C),

with equality holding if and only if C is an ellipsoid centered at the origin.

Proof: Let

φ(r) =
1

(2π)n/2
e−r

2/2,

f be given by (10), and fφ by (9). By Lemma 3, Theorem 6, and Lemma 4,

log V (C) = log vn + h[f ]− h[fφ]

≤ log V (Γ2f)

= log V (Γ2C)

Moreover, equality holds if and only if f is a Gaussian with mean zero, which implies that

C is an ellipsoid centered at the origin.

This result leads to the following characterization of contoured distributions with max-

imum Renyi entropy.

Corollary 11: Given q ≥ 0, the q–Renyi entropy of a contoured probability distribution

with density function f given by (10) satisfies the inequality

hq[f ] ≤ hq[fφ] + log
V (Γ2f)

σ̂nvn
,

with equality holding if and only if C is an ellipsoid, where fφ is given by (9) and σ̂ is

given by (20).
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In other words, among all contoured distributions with a given radial profile and covari-

ance matrix, the q–Renyi entropy is maximal if and only if the distribution is elliptically

contoured.

B. A volume bound for Γ−2C

Theorem 8 can be used to prove the following inequality that was recently established

by Lutwak, Yang, and Zhang [10].

Proposition 12: Given any contour body C ⊂ Rn,

V (Γ−2C) ≤ V (C),

with equality holding if and only if C is an ellipsoid centered at the origin.

Proof: Let φ, f , and fφ be as in the proof of Proposition 10. By Lemma 3, Theorem 8,

and Lemma 5,

log V (C) = log vn + h[f ]− h[fφ]

≥ log V (Γ−2f)

= log V (Γ−2C).

By the equality condition of Theorem 8, equality holds if and only if f is Gaussian with

mean zero and therefore C is an ellipsoid centered at the origin.

This result leads to the following characterization of contoured distributions with given

Fisher information and radial profile and minimal Renyi entropy.

Corollary 13: Given q ≥ 0, the q–Renyi entropy of a contoured probability distribution

with density function f given by (10) satisfies the inequality

hq[f ] ≥ hq[fφ] + log
V (Γ−2f)

σ̃nvn
,

with equality holding if and only if C is an ellipsoid, where fφ is given by (9) and σ̃ is

given by (23).

In other words, among all contoured distributions with a given radial profile and Fisher

information matrix, the q–Renyi entropy is minimal if and only if the distribution is

elliptically contoured.
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VI. Reverse information theoretic inequalities

Lutwak, Yang, and Zhang [10] show that if a contour body C is assumed to be origin–

symmetric2 and convex, the following reverse inequality holds:

Theorem 14: Given any origin–symmetric convex contour body C ⊂ Rn,

V (Γ−2C) ≥ 2−nvnV (C),

with equality holding if and only if C is a parallelotope centered at the origin.

We call a probability density function f(x) origin–symmetric, if for every x ∈ Rn,

f(−x) = f(x).

Note that a contoured distribution is origin–symmetric if and only if its contour body is

origin–symmetric and that an origin–symmetric contoured distribution is always balanced.

We will call a contoured distribution convex, if its contour body is convex.

Theorem 14, along with Lemma 3 and Lemma 5, immediately implies the following

remarkable reverse inequality:

Theorem 15: Let f be the density function of an origin–symmetric convex contoured

probability distribution, fφ be given by (9), and σ̃ be given by (23). Then given any

q ≥ 0,

hq[f ] ≤ hq[fφ] + log
V (Γ−2f)

σ̃nvn
+ log

2n

vn
,

with equality holding if and only if the contour body of f is a parallelotope.

This theorem, along with Theorem 8, shows that it is possible to bound the entropy

of an origin–symmetric convex contoured distribution from below and above using the

distribution’s Fisher information. An interesting question is whether there is a larger

class of probability distributions that can be called convex in some sense and that also

satisfy Theorem 15. It is worth noting, however, that the class of origin–symmetric convex

contoured distributions already contains most, if not all, commonly used explicit examples

of multidimensional probability distributions.

Given Theorem 14, it is natural to ask what is the best possible constant c such that

any origin–symmetric convex contour body C ⊂ Rn satisfies

V (Γ2C) ≤ cnV (C).
2A set Σ ⊂ Rn is origin–symmetric, if for any x ∈ Σ, −x ∈ Σ.
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Neither this nor the equality condition is understood. In particular, an important unsolved

conjecture in convex geometry is that c is a bounded function of the dimension n (see [20]

for details). This conjecture has the following information theoretic formulation.

Conjecture 1: For each q ≥ 0 there exists a constant c (independent of the dimension

n) such that the following holds: Any density function f of an origin–symmetric convex

contoured probability distribution on Rn satisfies

hq[f ] ≥ hq[fφ] + log
V (Γ2f)

σ̂nvn
− n log c,

where fφ is given by (9).

VII. Conclusion

We have demonstrated how basic information theoretic invariants of a contoured prob-

ability distribution are closely related to geometric invariants of its contour body and how

known information theoretic inequalities imply known geometric inequalities. On the other

hand, a recently established reverse geometric inequality yields a new reverse information

theoretic inequality for origin–symmetric convex contoured distributions. An outstanding

conjecture in convex geometry implies another new reverse inequality for origin–symmetric

convex contoured distributions.

Given the close relationship between the information theoretic properties of contoured

distributions and geometric properties of the associated contour bodies, we believe that

further study of contoured distributions would have significant impact in both information

theory and geometry.

We also believe that the observations and results established in this paper should extend

in some form to more general probability distributions. In particular, there should be

a general notion of a convex probability distribution for which the reverse inequalities

described here hold.

Appendix

Three different normalized representations of a contoured distribution are presented

below. The proofs are straightforward and therefore omitted.

The normalization given by Lemma 16 below is perhaps the most natural. It normalizes
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the contour body uniquely, so that information about the variance or the spread of the

distribution is completely contained in the radial profile. Although this is perhaps a

reasonable approach, it may be preferable to have the geometry of the contour body

reflect the spread of the distribution. The decompositions described in Lemmas 17 and 18

normalize the radial profile uniquely, allowing size of the contour body to reflect the spread

of the distribution. However this is at the expense of requiring additional assumptions on

f . Lemma 19 takes an approach based on robust statistics. It normalizes the percentile

associated with a contour body. The size of the contour body therefore does reflect the

spread of the distribution, while no assumptions on f are required. It does, however,

require fixing the value of a constant used in the normalization.

Normalizing the volume of the contour body C leads to the following result on the

contoured distribution:

Lemma 16: Given a contoured density function f , there is a unique decomposition of

the form

f(x) = φ(λC(x)).

With this normalization, the volume of the contour body is equal to the volume of a unit

ball.

Another possibility is to normalize the variance of the associated spherically contoured

density function fφ:

Lemma 17: Given a contoured density function f such that∫
Rn

‖x‖2f(x) dx <∞, (25)

there exists a unique decomposition

f(x) =
vn

V (C)
φ(λC(x)),

where vn is given by (1), such that the associated spherically contoured density function

fφ, as given by (9) satisfies ∫
Rn

‖x‖2fφ(x) dx = n.

We show in §III-A that the mean of a contoured distribution is proportional to the

center of mass of the contour body, viewed as a body with constant density. The two

vectors are equal, if the following normalization is used:
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Lemma 18: Given a contoured density function f such that∫
Rn

‖x‖f(x) dx <∞, (26)

there exists a unique decomposition

f(x) =
vn

V (C)
φ(λC(x)),

where vn is given by (1), such that the spherically contoured density function fφ as given

by (9) satisfies ∫
Rn

‖x‖fφ(x) dx = 1.

If, however, the density f has fat tails, neither of the two lemmas above may apply. We

can instead normalize the contour body using a given percentile:

Lemma 19: Let 0 < p < 1. For each contoured distribution with density function f ,

there exists a unique decomposition

f(x) =
vn

V (C)
φ(λC(x)),

where vn is given by (1), such that ∫
C

f(x) dx = p.
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