
THE EXTERIOR DERIVATIVE VIA STOKES’S THEOREM

DEANE YANG

The normal path to Stokes’s theorem is to begin by defining first differential forms, the
exterior derivative, and the integral of a differential form. The path then culminates with
the statement and proof of Stokes’s theorem.

We take a slightly different path here. First, differential forms and the integral of a
differential form are defined. We then seek a higher dimensional version of the fundamental
theorem of calculus for an integral over a rectangular domain. This is accomplished using the
fundamental theorem of calculus itself. The result is a simple version of Stokes’s theorem.
The exterior derivative of a differential form appears as the integrand of the integral over
the rectangular domain. It is therefore a consequence of Stokes’s theorem, rather than an a
priori definition.

It is, however, necessary to show that the exterior derivative is well defined, independent of
the coordinates used. This is accomplished by showing that exterior differentiation commutes
with pulling back the differential form by a smooth map from the range of a smooth map to
its domain.

Finally, we use the same approach to prove Stokes’s theorem on a simplex. This then
proves Stokes’s theorem on a smoothly triangulated manifold possibly with boundary.

For convenience, O ⊂ Rm will always denote a connected open set. The domain of
integration will always be a compact subset of O with piecewise smooth boundary. All
functions, maps, and differential forms are assumed to be smooth.

1. Orientation

The space of m-forms on Rm is a 1-dimensional vector space and therefore the set of
nonzero ones has two connected components. An orientation on Rm is one of the two com-
ponents. Given a non-zero m-form Θ, let [Θ] denote the orientation containing Θ.

We will always use the orientation [dx1 ∧ · · · ∧ dxm] on Rm.

2. Integral of a differential form on Rm

Any differential m-form Θ on a domain O ⊂ Rm can written as

Θ = a dx1 ∧ · · · ∧ dxm.

Written in this form, the integral of Θ over the compact domain C is defined to be∫
C

Θ =

∫
C

a dx1 · · · dxm,

where the right side is an iterated integral. In particular, the integral is independent of the
order of integration.

Date: April 29, 2019.
1



2 DEANE YANG

3. Pullback of a differential form by a smooth map

Given an open set O′ ⊂ Rn, a smooth map Φ : O → O′, and a differential m-form on O′,
the pullback of Θ by Φ is a differential m-form, denoted Φ∗Θ, on O, where, for each x ∈ O
and v1, . . . , vm ∈ Rm,

(Φ∗Θ)(x)(v1, . . . , vm) = Θ(Φ(x))(dΦ(x)v1, . . . , dΦ(x)vm),

where dΦ denotes the differential of Φ.

4. Integral of a differential form on a parameterized submanifold

Given an open set O′ ⊂ Rn and a smooth embedding Φ : D → O′, the integral of a
differential m-form Θ on O′ over the submanifold S = Φ(D) is defined to be∫

S

Θ =

∫
D

Φ∗Θ,

using the standard orientation on Rm. The integral is independent of the parameterization
Φ.

5. Integration over a rectangle

Recall that given an open set O ⊂ R2 and a function f : O → R, its differential is given
by

df(x, y) = ∂xf(x, y) dx+ ∂yf(x, y) dy.

Given δ, ε > 0, let

R = {(x, y) ∈ R2 : 0 ≤ x ≤ δ, 0 ≤ y ≤ ε}.

We will use standard orientation on R2, which is given by dx ∧ dy, and orient the boundary
of R counterclockwise. This is equivalent to saying that the orientation on each side of R is
[ncdx ∧ dy], where n ∈ R2 points outward.

Let Θ = a(x, y) dx + b(x, y) dy be a differential 1-form on R. Integrating it along ∂R, we
get ∫

∂R

Θ =

∫ x=δ

x=0

a(x, 0) dx+

∫ y=ε

y=0

b(δ, y) dy +

∫ x=0

x=δ

a(x, ε) dx+

∫ y=0

y=ε

b(0, y) dy

= −
∫ x=δ

x=0

a(x, ε)− a(x, 0) dx+

∫ y=ε

y=0

b(δ, y)− b(0, y) dy

= −
∫ x=δ

x=0

∫ y=ε

y=0

∂ya(x, y) dy dx+

∫ y=ε

y=0

∫ x=δ

x=0

∂xb(x, y) dx dy

=

∫
R

(−∂ya(x, y) + ∂xb(x, y)) dx ∧ dy

=

∫
R

(∂xa(x, y) dx+ ∂ya(x, y) dy) ∧ dx+ (∂xb(x, y) dx+ ∂yb(x, y) dy) ∧ dy

=

∫
R

da ∧ dx+ db ∧ dy.
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6. Integration over an m-dimensional rectangular region

Given δ1, . . . , δm > 0, let

R = [0, δ1]× · · · × [0, δm] ⊂ Rm.

For each 1 ≤ i ≤ m, let Fi denote the face that lies in the hyperplane xi = 0 and Fi + δiei
the one lying in the hyperplane xi = δi.

Let e1, . . . , em be the standard basis, dx1, . . . , dxm be the dual basis, and denote dx =
dx1 ∧ · · · dxm. For each 1 ≤ i ≤ m, let

d̂xi = eicdx.

and therefore, dx = dxi ∧ d̂xi.
Note that, for each 1 ≤ i ≤ m, [d̂xi] is an orientation on the faces Fi and Fi + δiei. On the

other hand, the orientations with respect to outward pointing vectors are [(−ei)cdx] = −[d̂xi]

for Fi and [eicdx] = [d̂xi] for Fi + δiei.
The integral of a differential (m− 1)-form

Θ = ai(x)d̂xi.

on ∂R using the outward pointing orientations is therefore∫
∂R

Θ =
i=m∑
i=1

−
∫
Fi

ai(x) d̂xi +

∫
Fi+δiei

ai(x) d̂xi

=
i=m∑
i=1

∫
Fi

(ai(x+ δiei)− ai(x)) d̂xi

=
i=m∑
i=1

∫
Fi

(∫ xi=δi

xi=0

∂iai(x+ xiei) dx
i

)
d̂xi

=
i=m∑
i=1

∫
R

∂iai(x) dx

=
i=m∑
i=1

∫
R

(∂jaj(x) dxj) ∧ d̂xi

=

∫
R

dai ∧ d̂xi.

This suggests that naturally associated with the differential (m−1)-form Θ is the differential
m-form

dΘ = dai ∧ d̂xi.

Using this definition, the above shows that∫
∂R

Θ =

∫
R

dΘ.
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7. The exterior derivative of a differential form

Based on the calculation above, it is reasonable to define the exterior derivative of a
differential k − 1-form

Θ =
∑

1≤i1,...,ik−1≤m

ai1···ik−1
dxi1 ∧ · · · ∧ dxik−1 ,

to be

dΘ =
∑

1≤i1,...,ik−1≤m

dai1···ik−1
∧ dxi1 ∧ · · · ∧ dxik−1 ,

It is, however, necessary to show that this definition is independent of the coordinates used.
This is a consequence of the next section.

8. The pullback of the exterior derivative

A crucial property of the exterior derivative is that, given any differential form Θ on an
open O′ ⊂ Rn and a map Φ : O → O′,

Φ∗dΘ = dΦ∗Θ.

We prove this below. For convenience we denote Φ(x) = (y1(x), . . . , yn).
First,

Φ∗(df) = Φ∗
(
∂f

∂yα
dyα
)

=
∂f

∂yα
∂yα

∂xi
dxi

and, by the chain rule,

d(Φ∗f) = d(f(y(x))

=
∂f

∂yα
∂yα

∂xi
dxi

= Φ∗(df).

Next, if θ = df , then, since partials compute,

dθ = d(df)

=
∂2f

∂yα∂yβ
dyα ∧ dyβ

= 0

and therefore

Φ∗(dθ) = 0.
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On the other hand,

d(Φ∗θ) = d(Φ∗df)

= d

(
Φ∗
(
∂f

∂yα
dyα
))

= d

(
∂f

∂yα
∂yα

∂xi
dxi
)

=

(
∂2f

∂yβ∂yα
∂yβ

∂xj
∂yα

∂xi
+

∂f

∂yα
∂2yα

∂xj∂xi

)
dxj ∧ dxi

= 0.

Finally, given a differential k−form

Θ = aα1···αk
(y) dyα1 ∧ · · · ∧ dyαk ,

Φ∗(dΘ) = Φ∗(daα1···αk
∧ dyα1 ∧ · · · ∧ dyαk)

= (Φ∗daα1···αk
) ∧ Φ∗(dyα1 ∧ · · · ∧ dyαk)

= d(Φ∗aα1···αk
) ∧ Φ∗(dyα1 ∧ · · · ∧ dyαk)

= d((Φ∗aα1···αk
) Φ∗(dyα1 ∧ · · · ∧ dyαk))

= d(Φ∗Θ).

A corollary of this is that the definition of the exterior derivative is invariant under changes
of coordinates. It also shows that the exterior derivative of a differential form on a subman-
ifold is independent of the parameterization.

9. Stokes’s theorem for a rectangular region

Theorem 1. Let m ≤ n, R ⊂ Rm be a rectangular region, and S ⊂ Rn a submanifold
with a piecewise smooth boundary oriented by outward vectors, and parameterized by a map
Φ : R→ Rn. Given any differential (m− 1)-form Θ on an open neigborhood O′ of S,∫

∂S

Θ =

∫
S

dΘ.

Proof. ∫
∂S

Θ =

∫
Φ(∂R)

Θ =

∫
∂R

Φ∗Θ =

∫
R

d(Φ∗Θ) =

∫
R

Φ∗(dΘ) =

∫
Φ(R)

dΘ =

∫
S

dΘ.

�
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10. Integration over a triangle

Let T ⊂ R2 be the triangle with vertices at (0, 0), (1, 0), (0, 1). The integral of Θ =
a dx+ b dy along the boundary of T oriented counterclockwise is∫

∂T

Θ =

∫ x=1

x=0

a(x, 0) dx+

∫ x=0

x=1

a(x, 1− x)− b(x, 1− x) dx+

∫ y=0

y=1

b(0, y) dy

= −
∫ x=1

x=0

a(x, 1− x)− a(x, 0) dx+

∫ y=1

y=0

b(1− y, y)− b(0, y) dy

= −
∫ x=1

x=0

(∫ y=1−x

y=0

∂ya(x, y) dy

)
dx+

∫ y=1

y=0

(∫ x=1−y

x=0

∂xb(x, y) dx

)
dy

= −
∫
T

∂ya(x, y) dx ∧ dy +

∫
T

∂xb(x, y) dx ∧ dy

=

∫
T

(∂ya(x, y) dy + ∂xa(x, y) dx) ∧ dx+ (∂xb(x, y) dx+ ∂yb(x, y) dy) ∧ dy

=

∫
T

da ∧ dx+ db ∧ dy.

11. Integration over a simplex

Let ∆ ⊂ Rm be the simplex with vertices at 0, e1, . . . , em. In other words,

∆ = {(x1, . . . , xm) : 0 ≤ x1, . . . , xm, x1 + · · ·+ xm ≤ 1}.
The boundary of ∆ consists of (n+ 1) faces, given by

F0 = {(x1, . . . , xm) : x1 + · · ·+ xm = 1, 0 ≤ x1, . . . , xm ≤ 1}
and, for each 1 ≤ i ≤ m,

Fi = {(x1, . . . , xm) : xi = 0, 0 ≤ x1, . . . , xm, x1 + · · ·+ xm ≤ 1}
Corresponding outward vectors are n0 = e1 + · · · + em and, for each 1 ≤ i ≤ m, ni = −ei.
As before, denote dx = dx1 ∧ · · · ∧ dxm and

d̂xi = eicdx.

The integrals below use the orientations [d̂x1 + · · · + d̂xm] on F0 and, for each 1 ≤ i ≤ m,

[d̂xi] on Fi. Note that, if 1 ≤ j 6= i ≤ m, then d̂xj restricted to Fi is zero. The integral of a
differential (m− 1)-form

Θ = aj d̂xj

over ∂∆ with the orientation induced by outerward vectors is therefore∫
∂∆

Θ =

∫
F0

aj d̂xj −
m∑
i=1

∫
Fi

aj d̂xj

=
m∑
i=1

(∫
F0

aid̂xi −
∫
Fi

ai d̂xi
)
,

For each 1 ≤ i ≤ m, the face F0 can be parameterized by the map Φi : Fi → F0, where

Φi(x
1, . . . , xm) = (x1, . . . , xm) + (1− x1 − · · · − xm)ei.
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It follows that ∫
∂∆

Θ =
m∑
i=1

∫
Fi

ai(x+ (1− x1 − · · · − xm)ei)− ai(x) d̂xi

=
m∑
i=1

∫
Fi

(∫ xi=1−x1−···−xm

xi=0

∂iai(x+ xiei) dx
i

)
d̂xi

=

∫
∆

(∂jai(x) dxj) ∧ d̂xi

=

∫
∆

dai ∧ d̂xi

We therefore have proved the following theorem.

Theorem 2. Let m ≤ n, ∆ ⊂ Rm be a simplex, and S ⊂ Rn a submanifold with a piecewise
smooth boundary oriented by outward vectors with a parameterization Φ : ∆ → Rn. Given
any differential (m− 1)-form Θ on an open neigborhood O′ of S,∫

∂S

Θ =

∫
S

dΘ.

Corollary 3. If Θ is a differential (m− 1)-form on a smoothly triangulated m-dimensional
manifold M , then ∫

∂M

Θ =

∫
M

dΘ.
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