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Extensions of Fisher information and Stam’s
inequality

Erwin Lutwak, Songjun Lv, Deane Yang, and Gaoyong Zhang

Abstract—We explain how the classical notions of Fisher
information of a random variable and Fisher information matrix
of a random vector can be extended to a much broader setting.
We also show that Stam’s inequality for Fisher information and
Shannon entropy, as well as the more generalized versions proved
earlier by the authors, are all special cases of more general sharp
inequalities satisfied by random vectors. The extremal random
vectors, which we call generalized Gaussians, contain Gaussians
as a limiting case but are noteworthy because they are heavy-
tailed.

I. INTRODUCTION

Two fundamental relationships among the entropy, second
moment, and Fisher information of a continuous random
variable are the following:

• (Moment-entropy inequality) A continuous random vari-
able with given second moment has maximal Shannon
entropy if and only if it is Gaussian (see, for example,
Theorem 9.6.5 in the book of Cover and Thomas [1]).

• (Stam’s inequality) A continuous random variable with
given Fisher information has minimal Shannon entropy
if and only if it is Gaussian (see Stam [2]).

A consequence of the inequalities underlying these facts is the
Cramér-Rao inequality, which states that the second moment
is always bounded from below by the reciprocal of the Fisher
information.

The authors [3] showed that these results still hold in a
broader setting, establishing a moment-entropy inequality for
Renyi entropy and arbitrary moments. Moreover, associated
with each λ-Renyi entropy and p-th moment is a corresponding
notion of Fisher information, which satisfies a corresponding
Stam’s inequality. Both inequalities have the same family of
extremal random variables, which the authors call generalized
Gaussians. These contain the standard Gaussian as a limiting
case but are notable in that they are heavy-tailed.

The authors [4] introduced different notions of moments
for random vectors, established corresponding sharp moment-
entropy inequalities, and identified the extremal random vec-
tors, which the authors also call generalized Gaussians. The
authors [5] then showed that the moment-entropy inequalities
established in [3] are special cases of more general inequalities
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that hold for random vectors and not just random variables (For
discrete random variables, also see Arikan [6]).

In this paper, we show that the concept of Fisher information
and the corresponding Stam’s inequality for random vectors
holds in an even broader setting than above. In one direction,
we show that associated with each λ-Renyi entropy and
exponent p ≥ 1, there is a corresponding notion of a Fisher
information matrix for a multivariate random vector. We also
show that there is a corresponding version of Stam’s inequality,
extending the one in [3]. These inequalities together with the
moment-entropy inequalities in [5] show that the Cramér-Rao
inequality in [3] holds for multivariate random vectors. Other
extensions of the results in [3] were also obtained in [7], [?]
and [?].

We also show that there is a notion of Fisher information,
which we call affine Fisher information, that is invariant
under all entropy-preserving (volume-preserving) linear trans-
formations. Such a notion is natural to study when there
is no a priori best or natural choice (of, say, weights in a
weighted sum of squares or other powers) for defining the
total error given an error vector. The affine Fisher information
is an information measure that is well-defined independent
of the weights used. Again, there is a corresponding Stam’s
inequality, where the extremal random vectors are generalized
Gaussians. This one is in fact stronger than and implies the
ones cited above, and a consequence is also an affine and
stronger version of the Cramér-Rao inequality.

II. PRELIMINARIES

Let X be a random vector in Rn with probability density
function fX . We also write fX simply as f .

A. Linear transformation of a random vector

If A is a nonsingular n × n matrix, then the probability
density of a random vector transforms under a linear transfor-
mation by

fAX(y) = |A|−1fX(A−1y), (1)

where |A| is the absolute value of the determinant of A. A
special case of this is the formula for scalar multiplication,

faX(y) = |a|−nfX

(y
a

)
, (2)

for each real a 6= 0.
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B. Entropy power

The Shannon entropy of a random vector X with density f
is defined to be

h(X) = −
∫
Rn

f(x) log f(x) dx.

The λ-Renyi entropy power for λ > 0 is defined to be

Nλ(X) =


(∫

Rn

f(x)λdx

) 2
n(1−λ)

if λ 6= 1,

e
2
n h(X) if λ = 1.

Note that
N1(X) = lim

λ→1
Nλ(X).

The λ-Renyi entropy of a random vector X is defined to be

hλ(X) =
n

2
log Nλ(X).

In particular, h1 = h. The λ-Renyi entropy hλ(X) is a
continuous and, by the Hölder inequality, decreasing function
of λ ∈ (0,∞).

By (1),
Nλ(AX) = |A| 2n Nλ(X), (3)

for any invertible matrix A.

C. Fisher information

The Fisher information of the random vector X is

Φ(X) =
∫
Rn

f−1|∇f |2 dx. (4)

The Fisher information matrix of the random vector X is

J(X) = E(X1 ⊗X1), (5)

where X1 = f(X)−1∇f(X). The Fisher information is the
trace of the Fisher information matrix.

By (1),
J(AX) = A−tJ(X)A−1, (6)

for any invertible matrix A, where A−t is the transpose of the
inverse A−1.

III. GENERALIZED GAUSSIAN DISTRIBUTIONS

For α > 0 and s < α
n , let Z be the random vector in Rn

with density function

fZ(x) =

bα,s (1− s
α |x|

α)
1
s−

n
α−1

+ if s 6= 0,

bα,0 e−
1
α |x|

α

if s = 0,
(7)

where t+ = max(t, 0) and

bα,s =


α
n |

s
α |

n
α Γ( n

2 +1)

π
n
2 B( n

α ,1− 1
s )

if s < 0,

Γ( n
2 +1)

π
n
2 α

n
α Γ( n

α +1)
if s = 0,

α
n ( s

α )
n
α Γ( n

2 +1)

π
n
2 B( n

α , 1
s−

n
α )

if s > 0,

(8)

Γ(·) denotes the gamma function, and B(·, ·) denotes the
beta function. The random variable Z is called the standard

generalized Gaussian. It is normalized so that the αth moment
is given by

E(|Z|α) = n. (9)

The mean of Z is 0 and the covariance matrix of Z is σ2
n I ,

where σ2 = σ2(Z) is the second moment of Z. The p-th
moment σp(Z) is

E(|Z|p) =


∣∣α

s

∣∣ p
α B( n+p

α ,1− p
α−

1
s )

B( n
α ,1− 1

s )
if s < 0,

α
p
α

Γ( n+p
α )

Γ( n
α ) if s = 0,(

α
s

) p
α B( n+p

α , 1
s−

n
α )

B( n
α , 1

s−
n
α )

if s > 0.

(10)

When α = 2 and s = 0, Z is the usual standard Gaussian
random vector. Any random vector of the form Y = A(Z −
µ), where A is a nonsingular matrix, is called a generalized
Gaussian. Let C be a positive definite symmetric matrix. If
we let C = AAt, then the density function of Y is given
explicitly by

fY (x) (11)

=


bα,s

|C|
1
2

(
1− s

α

(
(x− µ)tC−1(x− µ)

)α
2
) 1

s−
n
α−1

+
if s 6= 0,

bα,0

|C|
1
2
e−

1
α

(
(x−µ)tC−1(x−µ)

)α
2

if s = 0.

(12)

The mean of Y is µ and the covariance matrix of Y is σ2
n C.

Generalized Gaussians appear naturally as extremal dis-
tributions for various moment, entropy, and Fisher informa-
tion inequalities [3]–[5], [7]–[11]. The usual Gaussians and
t−student distributions are generalized Gaussians. Special
cases of generalized Gaussians were studied by many authors,
see for example, [?], [?], [?], [?], [?], [7], [10], [12], [13].
We also note that the term of generalized Gaussians in
the literature sometimes may refer to different families of
distributions.

IV. GENERALIZED FISHER INFORMATION

A. (p, λ)−Fisher information

Let X be a random vector in Rn with probability density
f . Define the λ-score of X to be the random vector

Xλ = fλ−2(X)∇f(X), (13)

and the (p, λ)−Fisher information of X to be the p-th moment
of the λ-score of X ,

Φp,λ(X) = E(|Xλ|p). (14)

The classical Fisher information Φ(X) = Φ2,1(X). Note that
the generalized Fisher information defined in [3] is normalized
differently.

Fisher information, as defined above, relies on the standard
inner product on Rn. The formula for how the Fisher infor-
mation behaves under linear transformations of the random
vector and an arbitrary inner product is given by the following
lemma.

Lemma 4.1: If A is a nonsingular matrix and Xλ is the
λ-score of the random vector X in Rn, then

(AX)λ = |A|1−λA−tXλ. (15)
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Proof: Let Y = AX . Since

fY (y) = |A|−1fX(A−1y),

∇fY (y) = |A|−1A−t∇fX(A−1y),

it follows that

(AX)λ = fλ−2
Y (AX)∇fY (AX)

= |A|1−λA−t(fλ−2
X (X)∇fX(X))

= |A|1−λA−tXλ.

B. (p, λ)−Fisher information matrix

The Fisher information matrix J(X) of a random vector X
can be characterized as the square of the unique matrix with
minimal determinant among all positive definite symmetric
matrices A such that E(|A−1X1|2) = n. This characterization
motivates the following definition.

Definition 4.2: For p, λ > 0, the (p, λ)-Fisher informa-
tion matrix Jp,λ(X) of a random vector X in Rn is the
pth power of the unique matrix with minimal determinant
among all positive definite symmetric matrices A such that
E(|A−1Xλ|p) = n.

The existence and uniqueness of the (p, λ)-Fisher informa-
tion matrix is established by the following theorem.

Theorem 4.3: If p > 0 and X is a random vector in Rn

with finite (p, λ)-Fisher information, then there exists a unique
positive definite symmetric matrix A of minimal determinant
so that E(|A−tXλ|p) = n. Moreover, the matrix A is the
unique positive definite symmetric matrix satisfying

E
(
|A−tXλ|p−2(A−tXλ)⊗ (A−tXλ)

)
= I. (16)

Proof: Theorem 4.3 will be proved by showing the exis-
tence and uniqueness of a positive definite symmetric matrix B
satisfying E(|BXλ|p) = n with maximum determinant. Then
A = B−t is the desired matrix. Existence follows by showing
that the set of positive definite symmetric matrices B satisfying
the constraint E(|BXλ|p) = n is compact. Since this set is
closed, it suffices to show that this set is bounded. This, in
turn, follows from an upper bound on the eigenvalues of any
matrix B satisfying the constraint. If e is a unit eigenvector
of B with eigenvalue η, then

ηpE(|e ·Xλ|p) ≤ E(|B ·Xλ|p) = n.

We claim that if X is a random vector in Rn with finite
(p, λ)−Fisher information for p > 0, then there exists a
constant c > 0 such that

E(|e ·Xλ|p) ≥ c > 0 (17)

for every unit vector e.
Since the left side of (17) is a continuous function of the

unit sphere, which is compact, it achieves its minimum. If the
minimum is zero, then there exists a unit vector e such that
e · ∇f(x) = 0 for almost every x in the support of f . This,
however, is impossible for a differentiable probability density
function on Rn. See the proof of Lemma 4 in [8] for details.
This shows the claim.

Therefore, there is a uniform upper bound for the eigenval-
ues of B, proving the existence of a minimum. The uniqueness
and (16) follow by the same argument used in the proof of
Theorem 8 in [5].

The Fisher information matrix is defined implicitly. When
p = 2, it has an explicit formula. For this case, equation (16)
holds if and only if

E(Xλ ⊗Xλ) = A2.

In other words,

J2,λ(X) = E(Xλ ⊗Xλ). (18)

This definition of the (2, λ)-Fisher information matrix was
given by Johnson and Vignat [7].

Using Lemma 4.1 and Theorem 4.3, we obtain the following
formula for the (p, λ)-Fisher information matrix when a linear
transformation is applied to the random vector.

Proposition 4.4: If X is a random vector in Rn with finite
(p, λ)-Fisher information and A is a nonsingular n×n matrix,
then

Jp,λ(AX) = |A|p(1−λ)(A−tJp,λ(X)
2
p A−1)

p
2 . (19)

Proof: Let
B = Jp,λ(AX)

1
p .

By Theorem 4.3 and (15),

I = E(|B−t(AX)λ|p−2(B−t(AX)λ)⊗ (B−t(AX)λ))

= |A|p(1−λ)E(|B−tA−tXλ|p−2(B−tA−tXλ)⊗ (B−tA−tXλ))

= E(|L−tXλ|p−2L−tXλ ⊗ L−tXλ), (20)

where
L = |A|−1+λBA.

Using polar decomposition, there exists an orthogonal matrix
T and a positive definite symmetric matrix P such that L =
T tP . Therefore, multiplying (20) on the left by T and on the
right by T t,

I = TT t

= E(|TL−tXλ|p−2(TL−tXλ)⊗ (TL−tXλ))

= E(|P−tXλ|p−2(P−tXλ)⊗ (P−tXλ)).

By Theorem 4.3 again, it follows that

Jp,λ(X) = P p = (TL)p = (|A|(−1+λ)TBA)p.

Solving for B,

B = |A|1−λT t(Jp,λ(X))
1
p A−1.

and, since Bt = B,

Bp = (BtB)
p
2

= |A|(1−λ)p(A−tJp,λ(X)
2
p A−1)

p
2 .

Also, a special case of (19) is the following formula,

Jp,λ(aX) = a(1−λ)np−pJp,λ(X) (21)

for any positive constant a and random vector X in Rn of
finite (p, λ)-Fisher information.
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C. Notions of affine Fisher information

Let X be a continuous random vector. There is the following
fundamental entropy Fisher information inequality,

N1(X)
2πe

≥ n

Φ(X)
, (22)

with equality if X is a standard Gaussian. This is an uncer-
tainty principle of the entropy and the Fisher information.

By (3), the entropy power N1(X) is linearly invariant. How-
ever, the Fisher information Φ(X) is not linearly invariant. The
equality in (22) characterizes only the standard Gaussian. For
general Gaussians of fixed entropy, the Fisher information may
become very large when the covariance matrices skew away
from the identity matrix. Thus, the inequality (22) becomes
inacurate. Is there a natural notion of Fisher information that
is invariant under entropy-preserving linear transformations?
Such a notion is called the affine Fisher information. It would
give a stronger inequality than (22) which characterizes the
general Gaussian distributions. By (3), we note that entropy-
preserving linear transformations are the same as volume-
preserving linear transformations.

One possible way for doing this is to minimize the Fisher
information over all volume-preserving linear transformations
of X . We define

Φ̂p,λ(X) = inf
A∈SL(n)

Φp,λ(AX). (23)

We show that this is simply the determinant of the Fisher
information matrix.

Theorem 4.5: Let X be a random vector in Rn with finite
(p, λ)−Fisher information for p > 0. Then

Φ̂p,λ(X) = n|Jp,λ(X)| 1n . (24)

Proof: Let S denote the set of positive definite symmetric
matrices. Since E(|A−tXλ|p)|A|

p
n is invariant under dilations

of A and, for each A ∈ GL(n) and v ∈ Rn,

|A−tv| = |P−tv|,

where A = TP , T ∈ O(n), P ∈ S, is the polar decomposition
of A, it follows that

inf
A∈SL(n)

Φp,λ(AX)

= inf
A∈SL(n)

E(|A−tXλ|p)

= inf
A∈GL(n)

E(|A−tXλ|p)|A|
p
n

= inf{n|A|
p
n : E(|A−tXλ|p) = n, A ∈ GL(n)}

= inf{n|A|
p
n : E(|A−tXλ|p) = n, A ∈ S}

= n|Jp,λ(X)| 1n .

However, the above definition of linearly invariant Fisher
information does not have an explicit formula except for
special cases. This is because the (p, λ)−Fisher information
matrix Jp,λ is defined implicitly. Thus, it is not convenient for
computation.

The general approach we will take is the following: Let
F be a class of norms on Rn that is closed under linear

transformations in the sense that if ‖ · ‖ ∈ F , then ‖ · ‖A ∈ F
for each A ∈ GL(n), where

‖x‖A = ‖Ax‖.

A form of Fisher information that is invariant under volume-
preserving linear transformations can then be defined to be

inf
‖·‖∈F

V (B‖·‖)−p/nE(‖Xλ‖p), (25)

where B‖·‖ is the unit ball for the norm ‖ · ‖. In this general
approach, there is an important and natural class of norms
defined by the p-cosine transforms of density functions. We
use it to define the affine Fisher information of a random
vector.

The p-cosine transform C(g) of the density g of a random
vector Y is the function in Rn defined by

C(g)(x) =
∫

Rn

|x · y|pg(y) dy. (26)

It is a variation of the Fourier transform.
The p-cosine transform C(g) gives the following norm on

Rn,

‖x‖Y,p = (C(g)(x))
1
p , x ∈ Rn. (27)

If p > 0 and X is a random vector, then the affine (p, λ)-Fisher
information of X , Ψp,λ(X), is defined by

Ψp,λ(X) = inf
Nλ(Y )=c1

E(‖Xλ‖p
Y,p), (28)

where each random vector Y is assumed to be independent of
X and have λ-Renyi entropy equal to a constant c1 which is
chosen appropriately.

We shall show that the infimum in the definition above is
achieved, and an explicit formula of the affine (p, λ)-Fisher
information is obtained.

V. FORMULA OF THE AFFINE FISHER INFORMATION

A. Formula of the affine Fisher information

A random vector X in Rn with density f is said to have
finite p-moment for p > 0, if∫

Rn

|x|pf(x) dx < ∞.

The following is the dual Minkowski inequality established in
[4].

Lemma 5.1: Let p > 0, λ > n
n+p . If ‖ · ‖ is an n-

dimensional norm in Rn and X is a random vector in Rn

with finite p-moment, then∫
Rn

‖x‖pf(x)dx ≥ Nλ(X)
p
2

(
a1

∫
Sn−1

‖u‖−ndS(u)
)− p

n

,

(29)
where f is the density of X , Sn−1 is the unit sphere in Rn, and
dS denotes the standard surface area measure on Sn−1. The
equality in the inequality holds if ‖ · ‖ is the Euclidean norm
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and X is the standard generalized Gaussian Z with parameters
α = p and 1

λ−1 = 1
s −

n
α − 1. The constant a1 is given by

a1 =
Γ
(

n
2

)
Nλ(Z)

n
2

2π
n
2 σp(Z)

n
p

(30)

=


a0B

(
n
p , 1

1−λ −
n
p

)
, if λ < 1,(

pe
n

)n
p Γ(1 + n

p ), if λ = 1,

a0B
(

n
p , λ

λ−1

)
, if λ > 1,

(31)

where

a0 =
1
p

(
1 +

n(λ− 1)
pλ

) 1
λ−1

∣∣∣∣1 +
pλ

n(λ− 1)

∣∣∣∣n
p

.

Denote the volume of the unit ball in Rn by

ωn =
π

n
2

Γ(1 + n
2 )

,

and observe that ∫
Sn−1

dS(u) = nωn. (32)

Let e be a fixed unit vector, and let

ωn,p =
∫

Sn−1
|u · e|p dS(u) =

2π
n−1

2 Γ(p+1
2 )

Γ(n+p
2 )

,

and

c0 =
1

nωn

(
ωn,p

nωn

)n
p

=
Γ(n

2 )
2π

n
2

(
Γ(n

2 )Γ(p+1
2 )

π
1
2 Γ(n+p

2 )

)n
p

.

Choose the constant c1 in (28) as c1 =
(

a1
c0

) 2
n

.

The following theorem gives an explicit formula for the
affine Fisher information.

Theorem 5.2: If p > 0, λ > n
n+p , and X is a random vector

in Rn, then

Ψp,λ(X) =
(

c0

∫
Sn−1

E(|u ·Xλ|p)−
n
p dS(u)

)− p
n

.

Proof: Let f be the density of X and Y be a random
vector with density g that has finite p-moment and satisfies
Nλ(Y ) = c1. By Fubini’s theorem and applying Lemma 5.1
to the norm ‖y‖ = E(|y ·Xλ|p)

1
p , y ∈ Rn, we have

E(‖Xλ‖p
Y,p)

=
∫

Rn

(∫
Rn

|Xλ · y|pg(y) dy

)
f(x) dx

=
∫

Rn

(∫
Rn

|Xλ · y|pf(x) dx

)
g(y) dy

=
∫

Rn

E(|y ·Xλ|p)g(y) dy

≥ Nλ(Y )
p
2

(
a1

∫
Sn−1

E(|u ·Xλ|p)−
n
p dS(u)

)− p
n

.

B. Affine versus Euclidean

We show that the affine Fisher information is always less
than the Euclidean Fisher information. Thus, when the Fisher
information is used as a measure for error of data, the affine
Fisher information gives a better measurement.

Lemma 5.3: If p > 0 and X is a random vector in Rn, then

Ψp,λ(X) ≤ Φp,λ(X). (33)

Equality holds if the function v 7→ E(|v · Xλ|p) is constant
for v ∈ Sn−1. In particular, equality holds if X is spherically
contoured.

Proof: Let e be a fixed unit vector. By Theorem 5.2, (32),
Hölder’s inequality and Fubini’s theorem,

(nωnc0)
p
n Ψp,λ(X)

=
[

1
nωn

∫
Sn−1

E(|u ·Xλ|p)−
n
p dS(u)

]− p
n

≤ 1
nωn

∫
Sn−1

E(|u ·Xλ|p) dS(u)

=
1

nωn

∫
Rn

∫
Sn−1

|u ·Xλ|pf(x) dS(u) dx

=
1

nωn

∫
Sn−1

|u · e|p dS(u)
∫

Rn

|Xλ|pf(x) dx

=
ωn,p

nωn
Φp,λ(X).

The equality condition follows by the equality condition of
Hölder’s inequality.

C. Linear invariance of the affine Fisher information

Denote the inverse transpose of A ∈ GL(n) by A−t.
Lemma 5.4: If Y is a random vector in Rn and A ∈ GL(n),

then for each x ∈ Rn,

‖x‖AY,p = ‖Atx‖Y,p.

Proof: By (27), (1), and a change of variable, we have

‖x‖p
AY,p = |A|−1

∫
Rn

|x · y|pgY (A−1y) dy

=
∫

Rn

|x ·Az|pgY (z) dz

=
∫

Rn

|Atx · z|pgY (z) dz

= ‖Atx‖Y,p.

Proposition 5.5: If p > 0 and X is a random vector in Rn,
then

Ψp,λ(AX) = Ψp,λ(X), (34)

for each A ∈ SL(n).
Proof: Let U = AX . Then for each u ∈ Rn,

fU (u) = |A|−1fX(A−1u),
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and therefore

Uλ = fλ−2
U (U)∇fU (U)

= |A|1−λfλ−2
X (A−1U)A−t∇fX(A−1U)

= |A|1−λA−t(fλ−2
X (X)∇fX(X))

= |A|1−λA−tXλ.

Since the norm ‖ · ‖Y,p is homogeneous of degree 1,

E(‖Uλ‖p
Y,p) = |A|p(1−λ)E(‖A−tXλ‖p

Y,p).

In particular, if A ∈ SL(n), then the above, Lemma 5.4, and
(3) give

Ψp,λ(AX) = inf
Nλ(Y )=c1

E(‖Uλ‖p
Y,p)

= inf
Nλ(Y )=c1

E(‖A−tXλ‖p
Y,p)

= inf
Nλ(Y )=c1

E(‖Xλ‖p
A−1Y,p)

= inf
Nλ(A−1Y )=c1

E(‖Xλ‖p
A−1Y,p)

= inf
Nλ(Y )=c1

E(‖Xλ‖p
Y,p)

= Ψp,λ(X).

That proves the linear invariance of the affine (p, λ)-Fisher
information.

VI. CONTOURED RANDOM VECTORS

A random vector X is spherically contoured about x0 ∈ Rn

if the density function fX can be written as

fX(x) = F (|x− x0|2)

for some 1-dimensional function F : [0,∞) → [0,∞). A
random vector Y is elliptically contoured, if there exists
a spherically contoured random vector X and an invertible
matrix A such that Y = AX . Elliptically contoured random
vectors were studied by many authors, see for example,
[?], [14]. Many of the explicitly known examples of ran-
dom vectors are either spherically or elliptically contoured.
The contoured property greatly facilitates the computation of
information theoretic measures of the random vector [14].
We compute the (p, λ)-Fisher information matrix and the
(p, λ)-affine Fisher information for spherically and elliptically
contoured distributions.

A. Fisher information matrix of elliptically contoured distri-
butions

Proposition 6.1: If a random vector X in Rn is spherically
contoured, then

Jp,λ(X) =
1
n

Φp,λ(X)I. (35)

Proof: The λ-score of X is

Xλ = fλ−2(X)∇f(X)

= 2(X − x0)Fλ−2(|X − x0|2)F ′(|X − x0|2).
(36)

Then

E(|Xλ|p−2Xλ ⊗Xλ)

=
∫
Rn

|2Fλ−2(|x− x0|2)F ′(|x− x0|2)|p|x− x0|p−2

((x− x0)⊗ (x− x0))F (|x− x0|2) dx

=
∫
Rn

|2Fλ−2(|x|2)F ′(|x|2)|p|x|p−2(x⊗ x)F (|x|2) dx

= aI,
(37)

where by (37) and (36),

a =
1
n

tr
∫
Rn

|2Fλ−2(|x|2)F ′(|x|2)|p|x|p−2(x⊗ x)F (|x|2) dx

=
1
n

∫
Rn

|2Fλ−2(|x|2)F ′(|x|2)|p|x|pF (|x|2) dx

=
1
n

∫
Rn

|fλ−2(x)∇f(x)|pf(x) dx

=
1
n

E(|Xλ|p)

=
1
n

Φp,λ(X).

Equations (35) and (19) imply the following formula for the
(p, λ)-Fisher information matrix of an elliptically contoured
random vector.

Corollary 6.2: If Y = AX , where X is a spherically
contoured random vector in Rn with finite (p, λ)-Fisher in-
formation and A is an invertible matrix, then

Jp,λ(Y ) =
1
n

Φp,λ(X)|A|(1−λ)p(AAt)−
p
2 . (38)

B. Affine Fisher information of elliptically contoured distribu-
tions

Proposition 6.3: If a random vector X in Rn is spherically
contoured, then

Ψp,λ(AX) = Φp,λ(X), A ∈ SL(n). (39)

Proof: We first show that if X is spherically contoured,
then

E(|u ·Xλ|p) =
ωn,p

nωn
E(|Xλ|p).

Indeed, by the using polar coordinates, we have

E(|u ·Xλ|p) =
∫
Rn

|u ·Xλ|pf(x)dx

=
∫
Rn

|u · 2(x− x0)Fλ−2(|x− x0|2)

F ′(|x− x0|2)|pF (|x− x0|2) dx

= E(|Xλ|p)
1

nωn

∫
Sn−1

|u · v|p dv

=
ωn,p

nωn
E(|Xλ|p).

Then the desired equation follows from Theorem 5.2 and (34).



7

C. The entropy and Fisher information of a generalized Gaus-
sian

A straightforward calculation shows that if
1

λ− 1
=

1
s
− n

α
− 1, (40)

then the λ-Renyi entropy power of the standard generalized
Gaussian Z is given by

Nλ(Z) =


b
− 2

n
α,s (1− sn

α
)

2
n(1−λ) if λ 6= 1,

b
− 2

n
α,0 e

2
α if λ = 1.

(41)

If, in addition to (40),
1
p

+
1
α

= 1, (42)

then the (p, λ)-Fisher information of the standard generalized
Gaussian Z is equal to

Φp,λ(Z) =

{
nb

(λ−1)p
α,s

∣∣1− s(n+α)
α

∣∣p if λ 6= 1,

n if λ = 1.
(43)

VII. INEQUALITIES FOR ENTROPY AND FISHER
INFORMATION

Define the constant cn,p,λ by

cn,p,λ = Φp,λ(Z)Nλ(Z)
p
2 ((λ−1)n+1), (44)

where the parameters α and s of the standard generalized
Gaussian Z satisfy (40) and (42). The necessary condition
s < α

n is equivalent to

λ ∈ (−∞, 0) ∪
(

n

n + α
,∞
)

. (45)

Theorem 7.1: If n ≥ 2, X is a random vector in Rn, 1 ≤
p < n, and λ ≥ (n− 1)/n. Then

Φp,λ(X)Nλ(X)
p
2 ((λ−1)n+1) ≥ cn,p,λ (46)

with equality if X is the standard generalized Gaussian Z with
parameters given by (40) and (42).

Proof: We use the following sharp Gagliardo-Nirenberg
inequality established by Del Pino and Dolbeault [9] (also, see
[11] and [8]): If n ≥ 2, w is a function of Rn, 1 ≤ p < n
and 0 < r ≤ np

n−p , then

‖∇w‖p ≥ c ‖w‖1−γ
q ‖w‖γ

r , (47)

where

q = r
(
1− 1

p

)
+ 1,

1
p
− 1

n
=

1− γ

q
+

γ

r
, (48)

and the constant c is such that equality holds when

w(x) =

{
b(1− a|x− x0|

p
p−1 )

p
p−r

+ , p 6= r

b exp(−a|x− x0|
p

p−1 ), p = r.
(49)

where a, b > 0 are constant and x0 ∈ Rn is a constant vector.
If p and λ satisfy the assumptions of the theorem, α satisfies

(42), and q and r are given by(
λ− 1

α

)
r = 1 and

(
λ− 1

α

)
q = λ,

then p, q, r satisfy (48). If

w = fλ− 1
α ,

where f is the density function of X , then

‖∇w‖p
p =

(
λ− 1

α

)p

Φp,λ(X),

‖w‖1−γ
q = Nλ(X)−

1
2 ((λ−1)n+1),

‖w‖r = 1.

These equations, the inequality (47), and (49) imply the
desired inequality (46).

The 1-dimensional analogue of Theorem 7.1 was proved in
[3]. In n-dimension, Theorem 7.1 was proved in [?] for the
case of λ = 1.

Theorem 7.2: If X is a random vector in Rn, A a nonsin-
gular n× n matrix, 1 ≤ p < n, and λ ≥ 1− 1

n , then

Φp,λ(AX)Nλ(X)
p
2 ((λ−1)n+1) ≥ cn,p,λ|A|(1−λ− 1

n )p. (50)

Equality holds if X is the standard generalized Gaussian Z
with parameters given by (40) and (42).

Proof: By equation (3) and inequality (46),

Φp,λ(AX)Nλ(X)
p
2 ((λ−1)n+1)|A|(λ+ 1

n−1)p

= Φp,λ(AX)Nλ(AX)
p
2 ((λ−1)n+1)

≥ Φp,λ(Z)Nλ(Z)
p
2 ((λ−1)n+1).

Theorem 7.3: If X is a random vector in Rn, 1 ≤ p < n,
and λ ≥ 1− 1

n , then

|Jp,λ(X)| 1n Nλ(X)
p
2 ((λ−1)n+1) ≥ cn,p,λ

n
. (51)

Equality holds if X is a generalized Gaussian.
Proof: Let A = Jp,λ(X)

1
p . Taking the trace of both sides

of (16), we get
E(|A−tXλ|p) = n. (52)

By equation (14), (15), and the definition of the Fisher
information matrix and (52),

Φp,λ(AX) = E(|(AX)λ|p)
= |A|(1−λ)pE(|A−tXλ|p)
= n|Jp,λ(X)|1−λ.

By this and Theorem 7.2,

n|Jp,λ(X)|1−λNλ(X)
p
2 ((λ−1)n+1) ≥ cn,p,λ|A|(1−λ− 1

n )p.

This gives the inequality (51).
By (24) and Theorem 7.3, we have
Theorem 7.4: If 1 ≤ p < n, λ ≥ 1 − 1/n, and X is a

random vector in Rn, then

Φ̂p,λ(X)Nλ(X)
p
2 ((λ−1)n+1) ≥ cn,p,λ. (53)

Equality holds if X is a generalized Gaussian.
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VIII. INEQUALITIES FOR ENTROPY AND AFFINE FISHER
INFORMATION

A. A Sobolev inequality

The following is taken from [8].
Given a function w on Rn, define H : Rn → (0,∞) by

H(v) =
(∫

Rn

|v · ∇w(x)|p dx

) 1
p

, (54)

for each v ∈ Rn\{0}, and the set Bpw ⊂ Rn by

Bpw = {v ∈ Rn : H(v) ≤ 1}.

Using polar co-ordinates, note that the volume of the convex
body Bpw is given by

V (Bpw) =
1
n

∫
Sn−1

H−n(u) dS(u). (55)

The proof of Theorem 8.2 below requires the following:
Theorem 8.1 (Theorem 7.2, [8]): If 1 ≤ p < n and 0 <

r ≤ np/(n − p), then there exists a constant c(p, r, n) such
that for each function w on Rn,

V (Bpw)−
1
n ≥ c(p, r, n)|w|1−γ

q |w|γr ,

where |w|q and |w|r are the Lq and Lr norms of w respec-
tively, q and γ are given by (48), and equality holds if and
only if there exist b > 0, A ∈ GL(n) and x0 ∈ Rn such that

w(x) =

{
b
(
1 + (r − p)|A(x− x0)|p/(p−1)

)p/(p−r)

+
if r 6= p,

b exp(−p|A(x− x0)|p/(p−1)) if r = p.

B. Affine Fisher information inequalities

Theorem 8.2: Let X be a random vector in Rn, 1 ≤ p < n,
and λ ≥ 1− 1/n. Then

Ψp,λ(X)Nλ(X)
p
2 ((λ−1)n+1) ≥ cn,p,λ. (56)

Equality holds if and only if X is a generalized Gaussian.
Proof: Let r be given by(

λ− 1 +
1
p

)
r = 1, (57)

q and γ by (48), and w = f
λ−1+1/p
X . By (54), (55), and

Theorem 5.2,

Ψp,λ(X) =
(

λ− 1 +
1
p

)−p

(nc0V (Bpw))−
p
n

|w|1−γ
q = Nλ(X)−

1
2 ((λ−1)n+1),

|w|r = 1.

(58)

Inequality (56) now follows by Theorem 8.1 and (58). The
equality conditions follow from the equality conditions given
by Theorem 8.1.

By Lemma 5.3, inequality (56) is stronger than inequality
(46).

C. Strengthened Cramér-Rao inequality

The Cramér-Rao inequality is

1
n

σ2(X) ≥ n

Φ(X)
.

The reciprocal of the Fisher information Φ(X) gives a lower
bound of the second moment σ2(X). This inequality is gen-
eralized to p-moment and (p, λ)-Fisher information. We need
the following moment-entropy inequality proved in [4], see
also [5]. If p > 0 and λ > n

n+p , then

σp(X)
σp(Z)

≥
(

Nλ(X)
Nλ(Z)

) p
2

(59)

with equality if X is the generalized Gaussian Z with param-
eters α = p and (40).

Let p∗ be the conjugate of p. Note that p∗ < n implies
n−1

n > n
n+p . By Theorem 7.1 and (59), we have

Theorem 8.3: If X is a random vector in Rn, then for 1 <
p∗ < n and λ > n−1

n ,(
σp(X)
σp(Z)

)(λ−1)n+1

≥ Φp∗,λ(Z)
Φp∗,λ(X)

(60)

with equality if X = aZ, a > 0, where the standard
generalized Gaussian Z has parameters α = p and (40).

The 1-dimensional analogue of Theorem 8.3 was proved in
[3]. In n-dimension, Theorem 8.3 was proved in [7] for the
case of p = 2.

The Cramér-Rao inequality can be strengthened by using
the affine Fisher information. By Theorem 8.2 and (59), we
have

Theorem 8.4: If X is a random vector in Rn, then for 1 <
p∗ < n and λ > n−1

n ,(
σp(X)
σp(Z)

)(λ−1)n+1

≥ Ψp∗,λ(Z)
Ψp∗,λ(X)

(61)

with equality if X = aZ, a > 0, where the standard
generalized Gaussian Z has parameters α = p and (40).

By Lemma 5.3 and Proposition 6.3, inequality (61) is
stronger than inequality (60).
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