
CURVATURE AND THE THEOREMA EGREGIUM OF GAUSS

DEANE YANG

In this note, we describe a simple way to define the second fundamental form of a hypersur-
face in Rn and use it to prove Gauss’s Theorema Egregium, as well as its analogue in higher
dimensions.

The basic idea is to approximate a hypersurface, near a given point, by the graph of a
quadratic polynomial near its critical point. In particular, given any point p in a hypersurface
S ⊂ Rn, the hypersurface can be positioned so that p is at the origin and S is tangent to the
hyperplane T = {xn = 0}. It follows that S is locally the graph of a function f(x1, . . . , xn−1)
satisfying f(0) = 0 and df(0) = 0. The second order Taylor expansion of f is therefore

f(v) = H(v, v) + o(|v|2), v ∈ T,

where H is a symmetric tensor. The second fundamental form at p is defined to be H. The
uniqueness of H implies that it is an extrinsic geometric invariant tensor of S.

The statement of the Theorem Egregium then falls out of a straightforward calculation that
seeks to identify a tensor invariant, defined in terms of the second fundamental form, that is
independent of the extrinsic isometric embedding. It therefore is an intrinsic geometric invariant
of the hypersurface. Another straightforward tensor calculation leads to an intrinsic definition
of Gauss curvature for a surface in R3 and, more generally, the Riemann curvature tensor.

Note that neither the Levi-Civita connection nor the Gauss map is used explicitly below.
The discussion below has a straightforward extension to submanifolds of higher codimension.

1. Rigid motions

Let e1, . . . , en denote the standard basis of Rn. Given a nonzero vector ν ∈ Rn, let ν⊥ denote
the linear hyperplane normal to ν.

A rigid motion is a map R : Rn → Rn given by

R(x) = p+ A(x− p),

where A ∈ SO(n) and p ∈ Rn.

2. Definition of a hypersurface

Define a hypersurface to be a subset S ⊂ Rn such that for each x ∈ S, there exists a linear
subspace T ⊂ Rn of codimension 1 such that S near x is graph of a smooth function of the
plane x + T . In other words, there exists neighborhood N ⊂ Rn of 0 and a smooth function
f : N ∩ T → R such that

(1) S ∩ (x+N) = {x+ v + f(v)u : v ∈ T ∩N},

where u is a nonzero vector normal to T and f(0) = 0.
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3. Tangent space

For each x ∈ S, there is a unique choice of T , which will be denoted TxS and called the tangent
plane to S at x, such that the corresponding function f satisfies f(0) = 0 and df(0) = 0. If S
is orientable, then there exists a smooth map u : S → Sn−1, where u(x) is normal to TxS. This
is called the Gauss map. We will not use the Gauss map below.

4. The second fundamental form

For each x ∈ S, let f be the function be the one in (1), with T = TxS. The second fundamental
form of S at x is defined to be the Hessian H(x) of f at 0. The Hessian H(x) is a symmetric
tensor on TxS, where, for any v ∈ TxS,

H(x)(v, v) =
d2

dt2

∣∣∣∣
t=0

f(tv).

Since f is uniquely determined by S and x ∈ S, so is H. It is therefore a geometric invariant
of the surface S. Since it depends on the embedding of S, it is an extrinsic invariant.

Given x ∈ S, we can apply a rigid motion to S so that x = 0, u(x) = en, and therefore, in a
neighborhood of 0 ∈ Rn,

S = {(x′, f(x′)},
where f(0) = 0 and df(0) = 0. For each v = v1e1 + · · ·+ vn−1en−1 ∈ T0S(= e⊥n ),

H(0)(v, v) = vivjH(0)(ei, ej) = Hijv
ivj, where Hij = Hji = H(0)(ei, ej).

5. Isometric hypersurfaces

Let T denote e⊥n .

Two hypersurfaces S and Ŝ are isometric if there exists a smooth diffeomorphism

Φ : S → Ŝ

such that the length of any smooth curve C ⊂ S is equal to the length of the curve Φ(C) ⊂ Ŝ.

Given x ∈ S, let x̂ = Φ(x) ∈ Ŝ. Applying rigid motions to both S and Ŝ, we can assume

that that x̂ = x = 0 and the respective tangent hyperplanes are Tx̂Ŝ = TxS = T . This in turn
defines uniquely the functions f : T → R, whose graph near 0 is S, and f̂ : T → R, whose

graph near 0 is Ŝ.
Moreover, there is a diffeomorphism φ : T → T such that, for each v ∈ T ,

Φ(v + f(v)en) = φ(v) + f̂(φ(v))en.

The diffeomorphism Φ : S → Ŝ preserves the lengths of all curves if and only if

∂iŷ · ∂j ŷ = ∂iy · ∂jy,

where, for each v ∈ T ,

ŷ(v) = φk(v) + f̂(φ(v))en

y(v) = v + f(v)en,

for each v ∈ T . In other words,

(2) ∂iφ · ∂jφ+ ∂pf̂∂iφ
p∂qf̂∂jφ

q = δij + ∂if∂jf.
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Note that

∂if(0) = ∂if̂(0) = 0

∂iφ
j(0) = δji ,

for all 1 ≤ i, j ≤ n− 1. Therefore, if we differentiate (2) and evaluate at v = 0, we get

∂2ikφ
j + ∂2jkφ

i = 0.

This implies that, at v = 0,

(3) ∂2ikφ
j = −∂2jkφi = ∂2jiφ

k = −∂2ikφj,

and therefore

∂2jkφ
i(0) = 0, for all 1 ≤ i, j, k ≤ n− 1.

If we differentiate (2) again, evaluate at x = 0, and cycle through the indices i, j, k, l, we get

∂3iklφ
j + ∂3jklφ

i + ∂2ikf̂∂
2
jlf̂ + ∂2ilf̂∂

2
jkf̂ = ∂2ikf∂

2
jlf + ∂2ilf∂

2
jkf(4)

∂3jliφ
k + ∂3kliφ

j + ∂2jlf̂∂
2
kif̂ + ∂2jif̂∂

2
klf̂ = ∂2jlf∂

2
kif + ∂2jif∂

2
klf(5)

∂3kijφ
l + ∂3lijφ

k + ∂2kif̂∂
2
lj f̂ + ∂2kj f̂∂

2
lif̂ = ∂2kif∂

2
ljf + ∂2kjf∂

2
lif(6)

∂3ljkφ
i + ∂3ijkφ

l + ∂2lj f̂∂
2
ikf̂ + ∂2lkf̂∂

2
ij f̂ = ∂2ljf∂

2
ikf + ∂2lkf∂

2
ijf.(7)

Therefore, the equation

(8) (4)− (5) + (6)− (7)

eliminates φ and gives

(9) ∂2ikf̂∂
2
jlf̂ − ∂2ilf̂∂2ikf̂ = ∂2ikf∂

2
jlf − ∂2ilf∂2ikf,

Ig follows that, if H and Ĥ are the second fundamental forms of S and Ŝ at 0, then

(10) R̂ijkl = Rijkl,

where

Rijkl = HikHjl −HilHjk(11)

R̂ijkl = ĤikĤjl − ĤilĤjk.(12)

This leads to the definition of the tensor R, where, for any v1, v2, v3, v4 ∈ TxS,

R(v1, v2, v3, v4) = H(v1, v3)H(v2, v4)−H(v1, v4)H(v2, v3).

What (10) shows is that the tensor R for a surface S depends only on its intrinsic geometry
and not on the isometric embedding. The tensor R is, of course, the Riemann curvature tensor,
and the equations (11) are the Gauss equations.

If n = 2, then the only nontrivial component of the Riemann curvature tensor is

K = R(e1, e2, e1, e2) = H11H22 −H2
12,

which is known as the Gauss curvature, and equation (10) is the Theorem Egregium of Gauss.

Example 1. We can show that the standard sphere in R3 is not locally isometric to the plane
x3 = 0 using this. Using the definition of the second fundamental form, we can verify that, for
the plane, Hij = 0 and therefore R1212 = 0. On the other hand, for the sphere, Hij = δij and
therefore R1212 = 1. Therefore, the two surfaces are not locally isometric.
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6. Tensor identities

Most of the proof above involves only differentiation and straightforward calculations. The
only significant steps are the following:

(1) Definition of a hypersurface
(2) If a map between two hypersurfaces preserves lengths of curves, then the map satisfies

equation (2).
(3) Most importantly, the tensor calculations done in (3) and (8). These are equivalent to

the following tensor identities:

(T ⊗ S2T ) ∩ (Λ2T ⊗ T ) = {0}
(T ⊗ S3T ) ∩ (Λ2T ⊗ Λ2T ) = {0}.

7. Intrinsic formula for Riemann curvature

The embedding of S as a graph over T is given by v ∈ T 7→ v + f(v)en and therefore, the
Riemannian metric is given by

gij(v) = ∂i(v + f(v)en) · ∂j(v + f(v)en)

= (ei + ∂if(v)en) · (ek + ∂jf(v)en)

= δij + ∂if∂jf.

Therefore, since df(0) = 0, it follows that at v = 0,

∂kgij = ∂k(δij + ∂if∂jf)

= ∂2kif∂jf + ∂if∂
2
kjf

= 0.

∂2ijgkl = ∂2ij(∂kf∂lf)

= ∂2ikf∂
2
jlf + ∂2ilf∂

2
jkf.

Permuting the indices, we get

∂2ikgjl = ∂2ijf∂
2
klf + ∂2ilf∂

2
jkf(13)

∂2jlgik = ∂2ijf∂
2
klf + ∂2jkf∂

2
ilf(14)

∂2ilgjk = ∂2ijf∂
2
klf + ∂2ikf∂

2
jlf(15)

∂2jkgil = ∂2ijf∂
2
klf + ∂2jlf∂

2
ikf.(16)

Therefore, the equation

(17) − (13)− (14) + (15) + (16)

implies that, at x = 0,

−∂2ikgjl − ∂2jlgik + ∂2ilgjk + ∂2jkgil = −∂2ilf∂2jkf − ∂2jkf∂2jlf + ∂2ikf∂
2
jlf + ∂2jlf∂

2
ikf

= 2Rijkl.

This proves, at least for a Riemannian manifold that can be isometrically embedded as a
hypersurface in Euclidean space, that the Riemann curvature tensor is an intrinsic geometric
invariant.
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8. The Riemann curvature of an abstract Riemannian manifold

Let M be a n-manifold with Riemannian metric g. Given local coordinates x1, . . . , xn, the
metric is

g = gij(x) dxi dxj,

where gij(x) = g(∂i, ∂j). The calculations in the previous section suggest the following: Given
p ∈ M , let x = (x1, . . . , xn) be coordinates such that x(p) = 0, gij(0) = δij and ∂kgij(0) = 0,
for all 1 ≤ i, j, k ≤ n. Then define the Riemann curvature tensor at p to be given by

R(v1, v2, v3, v4) = Rijklv
i
1v

j
2v

k
3v

l
4,

where, at x = 0,

Rijkl = −1

2
(∂2ikgjl + ∂2jlgik − ∂2ilgjk − ∂2jkgil).

To prove that this is a well defined tensor, it suffices to prove the following lemmas, which
have straightforward proofs.

Lemma 1. Let g be a smooth Riemannian metric on an n-manifold M . For each p ∈M , there
exist local coordinates x = (x1, . . . , xn) such that x(p) = 0 and g = gij dx

i dxj, where, for every
1 ≤ i, j, k ≤ n,

gij(0) = δij

∂kgij(0) = 0.

Remark. Exponential or normal coordinates satisfy Lemma 1. However, a direct proof of
Lemma 1 is a lot simpler than the construction of exponential coordinates.

Lemma 2. Let M and N be smooth n-manifolds, h be a Riemannian metric on N , Φ : M → N
a smooth map, and g = Φ∗h. Let x = (x1, . . . , xn) be local coordinates on a neighborhood of
p ∈M and y = (y1, . . . , yn) be local coordinates on a neighborhood of Φ(p) ∈ N such that

x(p) = 0

y(Φ(p)) = 0

∂yi

∂xj
(0) = δij

hij(0) = δij

∂khij(0) = 0.

Then at x = y = 0,

gij(0) = δij

∂kgij(0) = 0

∂2ikgjl + ∂2jlgik − ∂2ilgjk − ∂2jkgil = ∂2ikhjl + ∂2jlhik − ∂2ilhjk − ∂2jkhil.

The proofs of these lemmas can be found in A simple way to discover the Riemann curvature
tensor.
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