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Introduction

Many problems in differential geometry and in mathematical physics reduce to solving
nonlinear (systems) of partial differential equations. If a nonlinear PDE is elliptic,
hyperbolic, or parabolic, its solvability in the small follows in a (by now) straightforward way
from estimates on the solutions of the linearized PDE. However, a growing number of
applications do not fall in one of these classes, so a more general local solvability theorem
for nonlinear PDE’s is needed. Local solvability of a linear PDE of real principal type was
first proved by L. Hormander. We shall prove local solvability of nonlinear PDE's of real
principal type (see §1 for the definition).

Using the Nash-Moser implicit function theorem, the proof reduces to proving
so—calied Moser-type estimates far solutions: to linear PDE’s of real principal type. One
extremely tedious approach would be a detailed examination of Duistermaat-Hormander’s
microlocal Fourier integral aperator construction of a parametrix to a linear differential
operator. Much of this can be avoided by using two devices. The first involves the choice of
a “canonical problem”. Duistermaat and Hérmander show that any linear differential
operator of real principal type is microlocally either elliptic or conjugate, via Fourier integral
operators, to the canonical operator 3/9x™. Since both elliptic operators and 3/9x™ are

invertible, this shows that the differential operator is microlocally invertible. We show,

i;ﬁstead, that given any differential operator P of strong real principal type (see §1 for the
definition), any differe_ntial operator I’ obtained from P, by a sufficiently small perturbation

is conjugate, via global Fourier integral operators, to Py, This avoids microlocalization and

allows us to use a simpler and more explicit form of Fourier integral operatars which we call
“classical” (see §B.3). The second device is a painless induction proof of Moser-type

estimates (see §A.5 and §B.4)



We will also describe here the following applications of the result:

(1) It is well-known that the study of transonic flow involves the study of a nonlinear
Tricomi equation which is elliptic in the subsonic fegion and hyperbolic in the supersonic
region; see [CF] for a discussion.

(2) Recent work of Bryant-Griffiths-Yang shows that the problem of isometrically
embedding a Riemannian manifold in Euclidean space often reduc-es to a system of PDE's of
real principal type.

(3) DeTurck-Yang have shown that solving for a Riemannian metric on a 3-manifold with
prescribed Riemann curvature tensor (all indices down) also requires solving a system of real
principal type.

(4) The Moser-type estimates proved here can be used to generalize a local solvability
theorem proved m [Y1] for a certain class of linear overdetermined systems of PDE’s to the
corresponding class of nonlinear overdetermined systems. This represents a tiny bit of
progress towards proving a “C” Cartan-Kahler theorem”.

Solving a nonlinear PDE locally can be done in two steps. First, an approximate
solution is constructed in a neighborhood of a given point using a formal power series. The
formal power series is obtained by applying either the Cauchy-Kovalevskaia or
Cartan-Kahler theorems. The second and more difficult step is to use an implicit function
theorem to perturb the approximate solution into a true sofution. For the standard types of
PDE’s: elliptic, hypetbolic, and parabalic, the standard implicit function theorem for smooth
maps between Banach spaces and a judicious choice of norms yield the desired result. The
key step lies in defining an inverse to the linearized operator and proving that it is a bounded
operator.

For a PDE of real principal type, an inverse can be obtained from the parametrix

constructed by Duistermaat-Hormander. The problem lies in the fact that the inverse does



nat “regain” all the derivatives “lost” by the differential operator, so the standard implicit
function theorem cannot be used. Although hyperbolic equations suffer the same problem
when Sobolev norms are used, the existence of a special “time” co-ordinate allows the use of
special norms in which there is no loss of regularity. The Nash-Moser implicit function
theorem was devised by Nash to cope exactly with the loss of regularity by the inverse to a
differential operator. The price one pays, however, is that the inverse must satisfy so-cailed
Moser-type estimates.

In the appendices there is a short exposition on the Nash-Moser implicit function
theorem and one on the estimates and the symbol calculus for pseudodifferential and Fourier
integral operators. The key to using the Nash-Moser thecrem lies in proving Moser-type
estimates, also called smooth tame estimates (see [Ha] and references there). We describe
what they are and give a simple induction argument for proving them using a basic
interpolation inequality. This approach wotks in a wide range of situations; we apply it to
Iinear differential, pseudodifferential, and Fourier integral operators.

The description of the symbol calculus is included because, to obtain Moser-type
estimates, we need exact finite order expansions and not the usual infinite asymptotic
expansions that have infinitgly smoothing error terms. The finite expansion is easily
obtained by replacing the infinite Taylor series in the usual proofs with a finite Taylor series

with an explicit error term. The ideas presented here are based upon [BGY, appendix to

§V1
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have attempted to carry out the microlocal approach.

1. Statement of main theorem

Let X be a domain in R®. Given a function u: X - R, a nonlinear differential
operator of order p is a2 smooth function F(x, a%u(x), 0 < |al = p) of x, u(x), and the partial
derivatives of u at x up to order p. We will denote F(x, aau(x)) by F(u) for short. For
convenience we have restricted our attention to differential operators acting on real
scalar-valued functions. Nevertheless, everything done in this paper extends to real
vector-valued functions and nonlinear differential operators acting on them, i.e. systems of
PDE’s. When necessary, we will indicate how this is done; also, see [D] and
[Y1, Appendix] for a more general definition of a system of real principal type.

The linearization of a nonlinear differential operator F(u) at a function u is the

linear differential operator F'(u) defined as follows:

d
F =] _
(v m Flu+tv)
t=0

Given 2z linear differential operator P = X, a%(a/0x)% of order p, the symbol of P is
defined to be the following function ¢ of the cotangent bundle of X, TX = X xR™:
(1.1) o(x, b)) = %o 2%k
where ‘éa = (‘él)al(ﬁz)az. . .(gn)a“. If P is a matrix-valued differential operator, the symbol

is defined to be the determinant of the righthand side. Also, to save trouble, we have made ©
a real function; in order to make the defintion of ¢ agree with the notion of a symbol of a
pseudodifferential operator, it is necessary to include a factor of (v-T)F.

Let ¢ be a symbol of a differential operator P of order p on X. Since ¢ is a function on



T*X, which is a symplectic manifold, it induces a Hamiltonian vector field (defined in

§B.2), denoted

Note that ¢ is constant along the integral curves of Hg which are called

bicharacteristics. The integral curves of H; along which ¢ vanishes are called the null

bicharacteristics of the operator P. They foliate the zero set of ¢ which is called the
characteristic variety. A set K C X is pseudoconvex with respect to P if any null
bicharacteristic sitting over K leaves K, going forwards and backwards, in finite time. We
say that it is strongly pseudoconvex with respect to P if any bicharacteristic curve
sitting over K leaves K, going forwards and backwards, in finite time.

A key observation needed throughout this paper is that since the symbol o(x.t) and its

Hamiltonian vector field H ; are homogeneous in g, the construction of bicharacteristics and

the solution of first order linear ODE’s defined by H ; can all be catried out on the bundie of

unit covectors. If we restrict to 2 compact subset of X, the bundle is compact, allowing us
to obtain uniform estimates on the length of the aull bicharacteristics and on the norms of
solutions to ODE's. Details can be found in the proof to Theorem(A.6.11).

We now specify which nonlinear PDE's are solved by our theorem. Recall that the

differential operator P is elliptic if o(x,§)=0 whenever £=0. Following [DH, Definition

6.3.2], the operator P is said to be of real principal type at x5 € X if:

(1.2) There exists a pseudoconvex neighborhood of Xg-
It is of strang real principal type at x, € X if:

(1.3) There is a strongly pseudoconvex neighborhood of x.




Given a function uy, a nontinear differential operator F is of (strong) real principal
type atuy and xq if F'(ug) is a linear differential operator of (strong) real principal type
at XO

Remark. Using the fact that everything can be done on the bundle of vnit covectors, which

is compact, it is easy to see that (1.2) is equivalent to the following:

{1.2") There are no null bicharacteristics trapped over X

Similarly, (1.3) is equivalent to

(1.3") There are no bicharacteristics trapped over x;,.

Using these observations, we obtain the following:

(1.4)Lemma. A linear differential operator P is of real principal type at X if and only if it

is of strong real principal type at R

Proof. It suffices to show that if there is a bicharacteristic trapped over X, it must be a auil

bicharacteristic. This, however, follows easily from the homogeneity of the symbol. Along a
trapped bicharacteristic, 36/0% = 0 and if ¢ has order p, ¢ = p"lg-aofa‘é = 0.
Q.E.D.

The main result of this paper is the following:

Theorem 1. Let F be a nonlinear differential operator on X. Let fe C () and x5 € X

be such that thetre exists ug € CZ(X) satisfying
Fx, 3%uy() - £(x) = O(lx-xoi2),

and such that F is of real principal type at Uy and x;. Then there exists a function u €




C”(X) such that F(u)=f in a neighborhood of x,).

By Lemma(l.4) it suffices to restrict our attention ta differential operators of strong real

principal type.

2. Applications

Before proving Theorem 1, we describe briefly some applications of Theorems 1 and 3.
Sometimes we apply Theorem 3 (see §4) rather than Theorem 1 because the nonlinear PDE is
not of real principal type as defined in §1, but solving the 1inearized equation can be reduced
in a smooth tame way to solving a linear PDE of real principal type.

It is easily verified that the linear PDE

Uy + a(zc,y)uyy =f,
is elliptic when a > 0, hyperbolic when a < 0, and of real principal type if whenever a(x,y) =
0, 9a/9x(x,y) = 0. A nonlinear PDE whose linearization is of this form arises in the study of
transonic flow. The sign of a(x,y) reflects whether the flow is subsonic or supersonic.

A similar nonlinear PDE arises in the problem of isometrically embedding a given
Riemannian 2-manifold with Gauss curvature changing sign cleanly (i.e. dK(x) = 0 if K(x) =
0) into R3. Our results therefore imply a theorem of C. 5. Lin stating the local existence of
such isometric embeddings (see [L]), although he is able to avoid using the Nash-Moser
theorem and obtains much more precise results concerning the regularity of a solution.

Also, it is shown in [BGY, pp. 959-960] that the problem of isometrically embdding
any Riemannian 3-manifold with nonvanishing curvature into R6 and the generic

Riemannian 4-manifold into R10 reduces via the Nash-Moser implicit function theorem to
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solving a linear system of PDE’s of real principal type and proving Moser-type estimates.
For the 4-dimensional case they show that there exists a finite set of algebraic equations
invalving the curvature tensor and its covariant derivative such that if the equations do not
all vanish, the linearized operator can be reduced to a differential operator of real principal
type. We define a 4-dimensional Riemannién manifold to be generic if these algebraic
equations never vanish when evaluated on the manifold. No explicit description of these

algebraic conditions is given in [BGY]. Theorem 3 therefore implies the following:

(2.1)Theorem. Let M be a smooth n-dimensional Riemannian manifold withn =2, 3, or 4.

Assume any of the following:

(a) 1 =2 and the Gauss curvature K satisfies dK(x) = 0 if K(x) = 0.

(b) n =3 and the Riemann curvature does not vanish.

(c) 1 =4 and the Riemann curvature tensor is generic,

Then given x € M, there exists a smooth isometric embedding of a neighborhood of x into
Rn(n+1)/2 '

Theorem 3 can also be applied to the local existence of metrics with a prescribed
curvature tensor. Recall that the Riemann curvature of a smooth Riemannian metric g is a

tensor of the form

Riem(g) = (4R (S AdxdXax adi), Rygyy + Rypyo + Ry = 0,
which depends smoothly on g and its derivatives up to second order. Now suppose that a
tensor R that has the symmetries of the curvature tensor is given; is there a Riemannian
metric whose curvature is R? This is a nonlinear second order system of PDE’s; moreover,

for n > 3 it is badly overdetermined (more equations than unknown functions). For n =3,

however, we get 6 equations for 6 functions. The equation is equivariant under the action of
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the group of diffeomorphisms; it is easily checked that this causes the system of PDE’s to be
degenerate. Nevertheless, a trick of D. DeTurck transforms the linearized system into a
nondegenerate system. When his trick is applied to the question of prescribed Ricci
curvature, the system to be solved is elliptic whenever the bilinear form defined by the Ricei
tensor is nondegenerate. A surprising result is that the same does not happen for prescribed
Riemann curvature in three dimensions, even though the Riemann curvature and the Ricci
curvature are in some sense equivalent here. Nevertheless, assuming that the tensor R
defines a nondegenerate bilinear form on AZM, the linearized system can be reduced to a
system of real principal type. Applying Theorem 3 and the Nash-Moser theorem, the local
existence of metrics with prescribed (nondegenerate) curvature is obtained. We refer to
[DY] for more details.

Another problem described in [DY] is the following: Let M be a smooth n-manifold.
Fix a constant A, Given a symmetric tensor Q = Q ijdxidxj, does there exist a Riemannian

metric g on M such that
Ric(g) + AS(g)g = Q,

where Ric(g) is the Ricci curvature of g and S(g) the scalar curvature? For A = -1/2(n-1) and
Q nondegenerate, DeTurck’s trick reduces the problem to a nonlinear elliptic system and
local salvability follows easily. On the other hand, when A = -1/2(n-1) and Q nondegenerate,
DeTurck-Yang show that it reduces to a system of real principal type. Again, Theorem 3
applies here.

Finally, Theorem 3 can be used to solve nonlinear overdetermined systems of PDE’s.
In [Y1] it is shown that a certain class of linear overdetermined systems of PDE's--including
elliptic ones--can be solved using the fundamental solution of a differential operator of real
principal type. The corresponding nonlinear overdetermined system of PDE’s can then be

solved by applying the Nash-Moser theorem for exact sequences (see [Ha, §II1.3]) and
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Theorem 3. The precise statement is the following (see [Y1], [Y2] and [BCG] for

definitions.):

(2.2)Theorem. Given a domain X C R®, fet

2.3) Fex, ux), 28 @) = 0
Jx

be nonlinear first order system of PDE's for the vector valued function u(x). Assume the

following:

(a) The system of PDE’s is involutive.

(b) There exists positive integers m < n and s such that the reduced Cartan
characters are S{= Sy =8 S =8, = 0.
{c) There exists X € X and a smooth function uo(x) such that

Flxg » g (g )%‘3.0 ) =0,
X

and the linear differential operator F’(uo) satisfies assumption (1.7) in [Y11.

Then there exists a smooth function u(x) such that (2.3) holds in a neighborhood of x.

As indicated in the introduction, this is a generalization of the Cartan-Kahler theorem
for a very special class of overdetermined systems of PDE’s. For other results in this

direction and a discussion of what the Cartan-Kdhler theorem is, see [Y2].

3. Properties of linear differential operators of (strong) real principal type
In the course of proving Theorem 1, we need to know that if a differential operator is of
(strong) real principal type, sufficiently small perturbations of it are also of (strong) real

principal type. In particular, the following holds:
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(3.1)Proposition. LetP = 2|0¢| <m aa(x)(ax)a be a linear differential operator of (strong)

real principatl type at x5. Then any differential operator Q = zlozl <m bu(x)(ax)a whose top

order coefficients b(x' lal = m, are sufficiently close to ag in the C1 aorm is also of (strong)

real principal type at x,. In particular, if a_ (x,) = b, (x) and da_,(xn) = db (X, Q] = m,
0 a0 ¥ 0/ L= a0 a0

then Q is of (strong) real principal type at x,.

Proof. The proposition follows easily from the following facts:

(1If the coefficients of P are Cl-close to those of Q, the corresponding coefficients of the
Hamiltonian vector fields, when projected onto the bundie of unit covectors, are Co-close.
(2) By the standard theorem on the continuous dependence of solutions of an ODE on a
continuous parameter, the (null) bicharacteristics of Q are uniformly close to those of P
(when projected onto the bundle of unit covectors).

Q.E.D.

Since there appears to be some confusion in the literature on the correct definition of
real principal type, we want to discuss this briefly. Differential operators of real principal
type have been stu.died primarily by microlocal analysts. An old definition of L. Hérmander
was tha}: P has “simple characteristics” if ¢ and d6/9k never vanish simultanenously. Using
the equations defining the ﬁull bicharacteristics,

(3.2) X =-90/dk, & =do/dx,
it is clear that this implies (1.2). Later, it was observed that the theorems and proofs on

operators of real principal type in [DH] still hold microlocally under the following weaker

assumption:
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(3.3) For any (x,£), £=0, such that o(x,§) = 0, the exterior derivative of ¢ at (x,%),

do(x,£), is not a scalar multiple of the canonical 1-form &idxl. This is

equivalent to saying that H 5 is never a scalar multiple of the radial vector

field

g o

3,
For this reason (3.3) is the definition adopted by microlocal analysts and stated in most
discussions on differential and pseudodiiferential operators of real principal type. We shall
say that an operator satisfying (3.3) is microlocally of real principal type.

Unfortunately, it is not equivalent to (1.2). The simplest example of a differential operator

that is microlocally but not locally of real principal type is

P=x~.;a... —y_a... on RZ
oy ox

which has null bicharacteristics trapped over the origin and is not locally solvable there. A

nondegenerate third order example can also be constructed without much difficulty.

4. Technical definitions and notations
Given a bounded open set X C R™ and X its closure, let C°°0(X) denote the space of

smooth functions on R™ with support in X and C*(X) the space of smooth functions on X

obtained by restricting smooth functions on R™. Given f € C*(X), denote

172
T - j %12 ax 1.
k [Ioz%k X * l

Let HX(X) be the completion of C*(X) with respect to the norm | |, and HkO(X) the

completion of C°°0(X) with respect to | "k‘ Given k, Uy € Hk, and £ > 0, denote
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BX (ug) = {ue X lu -yl <€),
Throughout this paper we will fix three bounded open domains: X C X' C X"'. Let
R: C¥X") - C”X) and R’: C7(X"") - CT(X)
denote restriction. We assuume that X and X' have smooth boundaries so that by [St] there

exist linear extension operators
E: C™(X) - C™((X’) and E': CT(X’) - C7p(X™)
which satisfy RE =1 and R’E’ = I and extend to bounded maps from HE to B, We will

define pseudodifferential operators and Fourier integral operators as maps from C°°0(X’ ") to

C°°0(X”). Given such an operator A: C°°0(X”) - COOO(X“), we use the restriction and

extension operators to define a corresponding operator RAE: CT(X) - CT(X). We will

sometimes denote RAE simply by A.

Meore notation related to symbols, phase functions, and pseudodifferential and Fourier

integral operators is defined in §§B.1-B.3.

5. Technical theorems

Theorem 1 follows rather easily from a semiglobal result (see §5 for the proof):

Theorem 2. Let F be a nonlinear differential operator on X where X is a bounded open

set with smooth boundary and v, eC™(X) such that the following hold:

(a) F is of strong real principal type at Uy

(b) X is strongly pseudoconvex with respect to F'(up).

(c) F'(ug): C™(X) - C*(X) is a surjective map.

Then there exists a positive integer k and € > 0 such that for
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anyfeCT(XE)N Bk (F(upn)), there exists ue C7(X) such that F(u)=f on X
any £ 0 o= ey o e

Theorem 2 in turn is proved by a direct application of the Nash-Moser implicit
function theorem and the following result (see appendix A for a discussion of the
Nash-Moser implicit function theorem; "smooth tame" is defined below and explained more

thoroughly in appendix A. ):

Theorem 3. Let F be a nonlinear differential operator on X, U, € C*(X) satisfying the

assumptions of Theorem 2. Then there exists j and & such that given any u €

Cm(i)ﬁBjS(uo), the linear map F'(u): C”(X) -» C”(X) is surjective and there exists a

linear right igverse

E@): C(X) -~ C*(X), F)Qu)f =T,

such that E(u)f isa smooth tame map of v and f.

To say that E(u) is smooth tame means that it satisfies what we call "Moser-type

estimates”. In other wards, given ug, there exists j, 8, @, B such that for any u €
CW(K)ﬁBj a(uo) and f € C7(K), the following estimate holds:
IE@l < Cplifl, o + Full glflg), k> j.

Here, the constant Ck depends on E, k, j, 8, but not on the functions v or f.

We provide a simple approach, one that does not use the full power of the modern
theory of the Fourier integral operator. We use what we call "classical Fourier integral
operators” which are globally defined integral operators with explicit kernels. Estimates for

such operators are quite easy to prove. The key observation allowing us to use such
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operators is that given two symbols of strong real principal type that are near each otheron a
strongly pseudoconvex damain, there exists a global canonical transformation near the
identity map which transforms one into the other. Using this we show that a differential
aperator of strong real principal type on a strongly pseudoconvex domain can be deformed to
any nearby one by conjugating with globally defined classical Fourier integral operators.

Therefore, no _microlocalization is ever needed. The symbols of these operators are solved

for using the symbol calculus for the composition of a Fourier integral operator with a

pseudodifferential operator. The operator E(u) is constructed by fixing a right inverse E for
the differential operator F'(ug) and using the (classical) Fourier integral operators that

deform F’(uo) into F’(u) to deform E into a right inverse E(u). Now, the dependence of E on

u is easily seen by examining the classical Fourier integral operators, for which we have

fairly explicit descriptions. We can then apply the Moser-type estimates proved in the

appendix.

6. Proof of local solvability

The proof of Theorem 1 given Theorem 2 is well-known and straightforward. We

quickly recall it here. First, use the Cauchy-Kovalevski theorem (see, for example, [J] or

[F1) to extend the (p+1)th order Taylor expansion of uy centered at X, to a formal power

series solution of F(u) = f. This requires that there exist a noncharacteristic covector § €

T*XOX, but one always does for a differential operator of real principal type. By the Borel
theorem (see[Ta, pp.40-41]) there exists a smooth function on X--call it uy--such that its
Taylor series at Xq is the given formal power series. Since the old u, and the new v, agree

at X up to order (p+1), the corresponding linearized operators agree up to first order. By
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Proposition(3.1) the new linearized operator is still of real principal type on a neighborhood
of x5. Replace X by a bounded open neighborhood of xy which is pseudoconvex with respect
to F'(uy) and for which F'(uy) is surjective; such a neighborhood exists by the local

solvability theorem of a linear PDE of real principal type (see [DH] or [Y1, Appendix]).
Let p be a smooth compactly supported function on R™ which is identically { in a

neighborhood of the origin. Given § > 0, let

f5(x) = P8 Laxx )@ + (1-p8 L xx4))F(ug)).
For & sufficiently small, fg € BkC(F(uo)), where k and € are as given in Theorem 2. By
Theorem 2 there exists u € C*(X) such that E(u) =fg on X. Since fg = f in a neighborhood

of Xo» Theorem 1 follows.

7. Deforming a symbol of strong real principal type into a nearby one

Here, we use the definitions and ideas given in §B.2, as well as notations and

definitions given in §B.1. Let GO(X,E) be a symbol of a differential operator of strong real

principal type on X such that X is strongly pseudoconvex. Extend 6o(x,&) to be a compactly

supported symbol on the larger bounded open set X'’ and choose X*, X < X' € X" so that

toth X and X’ are strongly pseudoconvex.” We show that given any other symbol o(x,£)

which is sufficiently ciose to Oq in the appropriate norm, there exists a canonical
- 3 X LR * 1y M =

transformation C:T X'' - T X'’ near the identity map such that ¢ = 0g°C on the compact

set X'. We will, in fact, solve for a phase function @ near Pp(x,n) = xlni such that its

associated canonical transformation C(p deforms oy into . In the next section we will use

the phase function ¢ in constructing Fourier integral operators which will deform a
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differential operator with symbol 6, into a differential operatar with symbol o.

The precise result is the following:

(7.1)Propasition. Let co(x,‘é) € ,ghp‘w be of strong real principal type on X'’ such that

X' is strongly pseudoconvex. Then there exists k, 8 > 0 such that given any homogeneous

symbol o of order p satisfying

lo - couk,k < 5,

there exists a phase function ¢ € P such that

(a) ox.8) =oq °C¢,(x,§) for xEeT'X ;
) CoX" x RM{0}) = X' x RM{0}

Moreover the map G — @ can be defined so that it is smooth tame.

Proof. This is itself an application of the Nash-Moser implicit function theorem. We shall

use the spaces and norms of symbols and phase functions defined in §§B1-B2.

Fixing the symbol 0, we want to invert the map
PP — Bhp’oo(g') ,
(P — (OOBC{P)li}
which is smooth tame. Recalling the definition of Cp, 0 = D(P) is given implicitly as

follows:

2. 30
G(Xv'-é—;) =0 (5?]-,1'])'

A straightforward computation then shows that the linearization of ® at @ is given by ¢’ =

D' (@), where ©'(P): ,ghl’m(X”) - BhP>°° (X’) and
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. O 9C,, 9 o’ 9 o o
72) 0t 20y = 20X ¥ 29 32y
dx 3x an dg 9f ox ox
and o = P(P). Fix ¢ >n/2. IT 9 - (?0"01+1 1 and lo - 00"0!+2 5 are sufficiently small, the
vector field acting an @ in (7.2) is a homogeneous vector field which is “uniformly” close to

the Hamiltonian vector field Hco on X in the C-norm. Therefore, since X' is strongly

pseudoconvex, the integral curves of this vector field must pass through X' in finite time.
Given ¢’(x,%), we can then apply theorem (A.6.11) to solve (7.2) on X* for ¢'. Extending ¢

to a compactly supported symbol of degree | on X', we obtain a smooth tame inverse to
@*(9).

Using the Nash-Moser implicit function theorem (Theorem A.3.1), it then follows that
given ¢ sufficiently close to Og in the appropriate norm, there exists a phase function

PP such that o = 5p"Cy on X' x RM{0}.

Q.E.D.

8. Deforming a differential operator of strong real principal type into a

nearby one

Now let Py be a differential operator of strong real principal type on X’ for which X'
C X" is strongly pseudoconvex. Given P sufficiently close ta Pgon X', let ¢ and Gy be the

symbols of P and Py, respectively, and let @ be the phase function which deforms O into ©

as.described in §7. We want to show that there exists an elliptic Fourier integral operator
with phase function @ that deforms the operator P into P, modulo an operator of order [ess

than p.
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(8.1)Theorem. Let PO be a differential operator of strong real principal type on X’ such

that X' is strongly pseudoconvex. Then given N > 0 and any differential operator P on X"’

such that the symbol o, of P0 and the symbol ¢ of P satisfy the conditions of Theorem(7. 1),

there exists a symbol b(x,n) € )30’°° such that c(p(x,D) = Pb(p(x,D) - b(P(X,D)PO is a Fourier

integral operator of order p-N when acting on functions compactly supported in X'.

Moreover, for fixed N, the map from the coefficients of P to (P,b,c) can be defined to be

smooth tame.

Remarks.(1) For the proof of Theorem 3 we will not need anywhere near the full generality
of this theorem. As we will see in §8, it will suffice to know Theorem(7.1) for N = 1. The
proof of this case is trivial using the phase function @ given by Theorem(7.1)and the symbol
calculus developed in §B.5. Nevertheless, since the proof for general N is not much more
difficult, we include it here.

(2) Tt is possible to find a symbol b(x,M) so that the errar term is infinitely smoothing.
This, however, requires using an infinite Taylor series in the symbol calculus and therefore

an infinite number of derivatives of the coefficients of P. Such a construction could not be

stiooth tame,

Proof. The proof follows from the symbol calculus described in §B.5. We will be applying
Theorem(A.6.1) which means we need to view everything as lying on a compact manifold
with boundary. Again, this is possible if we assume that the appropriate symbols are
homogeneous in the fiber variable § or . Assume this to be true throughout the proof. In the
end, the actual Fourier integral operator b¢(x,D) is defined b).r replacing b(x,n) with the

smooth symbel b(x,n)(1 - (1)), where X(n) is compactly supported and is identically 1 in a
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neighborho?d of =0

Let ¢ be the phase function given by Theorem(7.1). We will solve for b(x,1) = bo(x,n)
4+t bN(X,n), where bk(x,n) S 2)h"k'°°(X' "), proceeding by induction on k. The idea is to
compare terms which are symbols of the same order.

Let Py = ag(x,D) + 4y(x,D) and P be a(x,D) + %(x,D), where ag(x,§) = oo(x,i"g),
a(x,£)=0(x,ik), and '50(1{,2_',), 4(x,£) are symbols of order p-1. Now apply the symbol
calculus derived in §B.5 to [ a(x,D) + a(x,D) ] bqj(x,D) - b‘P(X,D)[ ao(x,D) + EO(X,D)]. The
object is ta define by),..., by so that all the terms in the symbol calculus of order greater than
ot equal to -n vanish. First, observe that the top order term, which is of order p, is

a(x,39/3x)b 5 (x,1) - by(x.MagRP/3M, 1) = (V-TPoy(x, N 0(x,39/3x) - 64(3%/en, 7))

-0,

by the definition of @ (see Theorem(7.1)). Observe that this already proves the theorem for N

= 1.
Next, consider the terms of order p-1. A careful examination of the symbol calculus

shows that we get an expression of the form:
where A(x,1) is a smooth symbol of order p-1 which depends smoothly on a, 2y, %, %, ¢,

and their derivatives up to second order. Applying Theorem(A.6.1), we can solve for

bo(x,n), x,m e X x RM{0} such that (8.2) vanishes. Using the extension operator E’,
extend bo to a smooth symbol on X’. Since we will want to invert the operator b(P(x,D), it is

impartant that by(x,1N) be nonvanishing for x € X’. This is easily attained by modifying the

construction of the solution to the ODE described in Theorem(A.6.1); simply use sufficiently
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large positive initial data for each initial vatue problem on a co-ordinate chart. Note that in

doing this we need a uniform bound on the length of the null bicharacteristics. This exists if
"o”ooﬂowl,l < C for some fixed constants & > n/2, C > 0.
Finally, the each of the remaining terms of order p-k, 2 < k < N, is of the form:
(8.3) Hbp  + Ap 151+ B 1o
where Ay ; and B, ; depend smoothly on a fixed finite number of derivatives of @, b,...,

by o, and the coefficients of Py and P. Applying Theorem(A.6.1), we solve for by , on
X' xR®\{0} so that (8.3) vanishesand extend it to X

Si.nce the symbol b is constructed using a sequence of smooth tame maps, it is smooth
tame with respect to the coefficients of P.F Also, using the error terms ry and sy in
Theorem(B.5.2), the symbol c(x,n) has an explicit (but extremely long) description in terms
of a finite number of derivatives of @, b, and the coefficients of PO and P. It therefore also is

a smooth tame function of the coefficients of P.

Q.E.D.
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9. Construction of a smooth tame right inverse

Let Py denote F’(uo) and let QO: CT(X") » CT(X") be a parametrix to Py, as
constructed in [DH]. We use Q4 to construct a fundamental solution to Py. Observe that
PaQq =1+ 5, where 5 is an infinitely smoothing operator. Letl % be a smooth compactly
supparted function on X'’ that is identically 1 on X'. Then PQO - (I-X)SO =1+ xSO, viewed
as a map C°°0(X") - CWO(X”), is Fredholm of index 0. Assuming that Py, is surjective, the
operator Q can then be modified on a finite dimensional subspace of functions so that it is
still a parametrix and the operator (I+XSq): C™ o(X’") - CT(X"") is bijective. We then
obtain a right inverse Eg = R*Qq(I + xSO)'lE’: C*(X’) » C*(X’) which extends to a
continuous linear map

Ey HYX) — HEPL(®)

Now given u near Y. the differential operator P = F’(u) is close to PO' Let 9(x,1)) be
the phase function given by Theorem(7.1) and B = b[P(X,D), where blx,n) is identically 1. By
Theorem(8.1), PB - BP is an operator of orderp - 1. Set Q = RBEOB*E and observe that as
aperators on C7(X),

PQ = RPBE)BE

= RBB'E + R(PB - BP)E,B"E
=T1+35,

where S is a operator of order 0. By restricting u so that P is sufficiently close to Py and @ is

sufficiently close to @, in the appropriate norm, the L?-norm of S can be assumed to be less

than 1/2. By Proposition(B.6.2) we obtain a right inverse for P = F’(u),
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E(u) = QL+ )1 = BE,B" (T + 5)1 .

Moreover, by the theorems in §B.4 and §B.6, the operators B,C , and (I + S)'1 are smooth
tame functions of the coefficients of P which in turn depeads smoothly on v and its partial
derivatives up to order p (Strictly speaking, S is not a pseudodifferential operator but is

constructed explicitly out of Fourier integral and pseudodifferential operators plus a single

fixed operator Ey. This suffices for the proof of Moser-type estimates as carried out in

Proposition(B.6.2)) . Therefore, the function E(u)f satisfies Moser-type estimates in terms

ofuandf.

Q.E.D.



Appendix A

A brief introduction to using the Nash-Moser implicit function theorem

A.1 Introduction
Although the Nash-Moser theorem can certainly be applied to other types of
functionals, we shall focus on its use to solve a noanlinear PDE. A typical situation is the

following: Let M be a domain in R®, and given k > 0, let HE be the space of functions on M

which are k-times differentiable in the L2 sense (i.e., a Sobolev space). Let H”= ka be

the space of smooth functions with finite nom in HE for all k = 0. A nonlinear PDE of order p
defines a smooth map

F: DP A HEYP _, g,
where DP is a fixed open set in HP. Now given f € HE, we want to solve for u € DP
satisfying

(A.1) F(u) =1.

Assume that we already have an approximate solution vy € DPAHE'P such that F(ug)
is "close” to f. Can We perturb u, into a solution u to (A.1)? The standard implicit function
theorem says that a solution u € DPNH¥*P exists for all f sufficiently near F(up) in H¥ if the
linearized operator at U

F'(sg): HSP o HE,
where F'(u)v = d/dt|t=0 F(u+tv), has a bounded, linear right inverse EO: Hk - HK+P
satisfying F'(ug)Eqv =v. |

When F is a nonlinear differential operator, F’'(u) is a linear differential operator of
order p. The linear map F'(u) "loses p derivatives" and the standard implicit function

theorem requires that we regain all p derivatives when we invert F'(u). Such an inverse
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exists for 2 linear differential operator P (= F’(u)) if and only if P satisfies a very restrictive
assumption known as hypoellipticity. In particular, if P is of real principal type, a bounded
right inverse exists if and only if it is elliptic. For the general differential operator of real
principal type, the best we can do is a right inverse of the form
E: Hk' . Hk+p—1‘
one that "loses one derivative".
Nash confronted a similar difficulty in his proof of the existence of isometric
embeddings. In fact, in his case, the right inverse is a zeroth order operator and loses all p
derivatives. In this situation, given f € Hk, there is no hope of selving for v € Hk+P.

Instead, let f€ Hk'. where k is taken large, and we shall solve foru € H, for some j<k+p.

One way of proving the standard implicit function theorem is to define a sequence ),
Uy,... of better and better approximations to a solution by using an iteration scheme. Given

uy and a right inverse Egto I (uo), one usvally uses Picard's scheme which is derived from

the tangent line approximation to F at Ug:
ui+1 = ui + Eo(f - F(ul)) .

If By H¥ - HE*P is bounded and |f—_F(u0)!k is sufficiently small, the sequence {u.} will

converge in HE*P. Nash’s idea was to modify this proof in the following way: First, use

Newton’s scheme:
=Y+ E(ui)(f - F(ui)), where E(u) is the right inverse to F'(u),

which, if it converges, converges at a much faster rate than Picard's scheme. Secondly,

since there is no hope of this sequence converging anywhere if E(u) loses derivatives--each

successive uy will be less smooth than the previous one, Nash further modified the scheme by

putting in a smoothing operator. Since Nash, in fact, used a very complicated scheme, we

will describe Moser's simplification:
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=6t SiE(ui)(f-F(ui)).

Here, S;: HO - B* ,lim; S. =1, helps to regain the derivatives lost by E(v;). This is now a

1007
delicate situation. On one hand, Newton's scheme drives u; to a solution of (A.1) but loses

derivatives. On the other, the smoothing operator regains the lost regularity but throws the
sequence off the path towards the solution. Remarkably, if E(u) is well-behaved, Moser’s
scheme can be made to converge by defining the smoothing operators carefully and choosing
the rate at which they converge to the identity operator appropriately. The catch is that the
sequence does not converge in HE*P but in HI, where j is much smaller than k+p.

The crucial ingredients in the estimates that lead to convergence of Moser’s scheme
are interpolation inequalities which, given i < j < k, estimate [u] ; in terms of Iuli and lulk and

the so-called Moser-type inequalities described in the next section.

As we have indicated before, Nash's original method was quite complicated but quite
powerful in the sense that he obtaias a solution in HJ where j is not much less than k+p. Of
the many versions of the Nash-Moser theorem that exist in the literature, we believe that
only [Ho3] attemfuts to reproduce Nash's optimal results (also, see [Gr]). Most follow
Moser's ideas instead which are simpler but obtain a solution in B with j much smaller than
k+p (so k‘ must be taken to be large_). Also, if f € H™, we want to obtain a smooth solution u

€ Hb°; it is shown in [Se] how to obtain this from Moser's scheme {(also, see [Ha]).

A.2 Tame scales of Banach spaces

In describing the Nash-Moser implicit function theorem one has the choice of talking
about a map between Fréchet spaces or between a scale of Banach spaces. Fréchet spaces
are used by Sergeraert and Hamilton. They have the advantage of providing the natural
abstract setting for the "C™" version of the theorem. We shall, however, use scales of

Banach spaces which allows for a 'K a5 well as a "C™" theorem. Observe that the two
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terms are essentially the same since the topology of a Fréchet space is given by a set of
seminorms and the scale of Banach spaces consists simply of the Banach spaces obtained by
completing the Fréchet space with respect to each of the seminorms. The Fréchet space is

simply the intersection of all the Banach spaces.

Definition. A scale of Banach spaces consists of a set of Banach spaces Hk, k=0,

1,..., with cotresponding norms | |k which satis{y the following:
(A2.1) ke, k>,
(A.2.2) iul1 < 1u|k LU € Hk, k> L

Let H” = r\ka. The space H” is a Fréchet space using the seminorms | [, k 2 0.

The scale of Banach spaces is tame if there exists a 1-parameter family of linear

smoothing operators
Sg HO-H, 621,

which satisfy the following estimates:

(A.2.3) ISl = ckek‘jm;j L ueH, j<k
(A.2.4) [u - Sgul; < C 0Kl vent jsk,
(A.2.5) limg v -Sgul, = 0, ueHE.

A tame scale of Banach spaces corresponds exactly to what Hamilton calls a tame
Fréchet space; we leave the proof of this assertion as a straightforward exercise. In general,
the index k indicates the order of differentiability of the functions in uk, Examples include
Holder and Sobolev spaces. In particular, we will show in §A.4 that Hk = Hp'k' or Ck(Rn),

define tame scales of Banach spaces.

1f oK = CK(M) or LPK(M), 1 < p <o, where M is a smooth compact manifold possibly
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with boundary, thea one simply "cuts up" the function using a partition of unity subordinate

to a collection of co-ordinate charts and smooths each piece individually using Sq as defined

above.

Definition. Let {Ek} and {Fk} be tame scales of Banach spaces and DY 2 bounded open
subset of EO. A map $: DO & F¥ is tame if it satisfies the following:

(A.2.6) oD NEX ¢ FK

(A.2.7) |<D(u)lk < Cklulk )

We collect some obvious facts:

(A.2.8) It {HX} is a tame scale of Banach spaces, so is (H<TP).

(A.2.9) Given tame scales {EX} and {FX}, the scale {EXxFX} with norms

A=l + vy, k=0,

is also tame.

(A.2.10)  Let @: DO EX o FR and w: BO~FX 5 GX, where B0 is an open set of FO, be

tame maps. Then the composition Ved: Dor"@'l(ﬁo) ﬁEk - Crk is tame.

As we shall see, the key to using the Nash-Moser theorem lies in proving that certain
maps are tame, The definition of a tame map seems innocent enough, and one might wonder
where the difficulty is. Usually the situation will be the following: Let {Ek}, {Fk}, and
{Hk} ‘be tame scales. Then © will be a map of the following form:

©: DO~ (BX Y « pBy L gk
where D is an open (and usually bounded) subset of EaxFﬁ. The map ® 1s tame if an _

estimate of the form

D@l = Culluly, + M) @) € DO B x EeP),
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This is what we call a Moser-type estimate. To see why this is usvally sot immediately
obvious, let’s look at a specific example. Let gk Fk = H1£ = Ck(Rn) and @@, v)=uv. To

say that @ is tame means that the product of two functions satisfies an estimate of the form:

(A.2.11) vl < Cy(luly + [¥ly) -

Although an estimate of the form Iuvik < ]ulkivlk is easy, one like (A..2.11) is not. We will

show in §A.4 that (A.2.11) holds as long as v and v are restricted to a fixed bounded subset of

CO(Rn). In other words, the constant Cy, depends on 1u|0 and |V|0.

More generaily, u will determine a linear operator A(u) and the map ¢ will be &(u,v) =
A(u)v. We will prove Moser-type estimates when A(u) is a linear differential operator,
pseudodifferential operator, solution operator to a linear first order ordinary differential
operator, and Fourier integral operator. The ultimate goal of this paper is to prove that ® is

tame when u determines the coefficients of a differential operator of real principal type and

A(u) is a right inverse.
A.3 The Nash-Moser implicit function theorem
The following version of the Nash-Moser implicit function theorem is taken from [Sc]

and [Se]:

(A.3.1)Theorem. Let {Ek} and {Fk} be tame scales of Banach spaces. Let Dk denote the

unit ball in EX and 5¥ the ball of radius 8 in F¥. Let @ DY n EX - F¥ be a came map

satisfying the following:

(A.3.2) @: DO N EE S FK i5 twice Fréchet differentiable.

Let &' and @'’ denote the first and second derivatives of .
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(A.3.3) @; (DY N E® x (DO N EK) - F¥ is came.
(A.3.4) (@ (w)v,W)| < Cyfuly|vle/wl, v EDONEX, v, w eEX.
(A.3.5) There exists & > 0 and a tame map

Q: (DQ'. A Ek'I-a)x ( 5klan+a) - Ek

such that Q(u)v is linear in v and @' (@)Q(u)v = v.

Then there exists 8 > 0, a positive integer [, and a tame map V. f)sa PP L p& A Ek

such that ©¥(v) =v. la particular, ‘P(I’.ﬁ‘3 Sr\F“’) c D%NE™,

A.4 Smoothing operators on RT

Throughout this section, let HP K denote the Banach space of functions whose

derivatives up to order k are LP-integrable and let
ip
= Xap
I, ¢ = ; E oy fiPax] .
lafsk J X

be the corresponding norm. For convenience we will sometimes denote IEuIIP o = Il o

We shall recall from [Sc] how to construct a family of smoothing operators for functions
on R, The smoothing operator will be defined to be convolution with a given smooth “bump
function” or mollifier. By choosing the bump function carefully and using Young's
inequality, we will obtain (A.2.3-5).

Given functions u(x) and v(x), x € R®, the convolution of u and v is

(w V)X) = w(x-y)v(y) dy
Rn

We may assume thatu, vE C°°0(Rn). The following properties of convolution play a crucial

role in proving the necessary estimates:
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0 du av

A4.1 — = = = ur—

( ) axl(u % V) ox *v ¥
a42) ey s Wil qteeloropt

Estimate (A.4.2) is known as Young's inequality.
Define a smooth function a(x) as follows: Let a€), £ € R™ be a smooth compactly
supported function such that 4(%) = 1 for all § in a neighborhood of 0. Let

a®) = (211)"1[ eix€ 5 dt |

The function a(x) is a smooth Schwartz function, i.e. it satisfies the following estimates:

given any multi-index & and positive integer N,
@%@ < Cg, {1+

Also, if we take the Fourier transform of a(x) and its derivatives and evaluate at § =0, we

find that

(A.4.3) j ax) dx = 1 and j ¥ alx) dx=0 if o =0.

The smoothing operators are then defined to be Seu = 4g*u, 0 R, where ae(x) =
0ma(6x). Observe that (A.4.1) implies that
(A.4.4) . 3;5qu = Sgdu .

© We will prove' that SG satisfies estimates (A.2.3) and (A.2.4), demonstrating that

Proposition. {H?’k(Rn)} and {Ck(Rn)} are tame scales of Banach spaces,

Proof. First, observe that using (A.4.4), it suffices to prove the estimates for 0 = j< k.

Proving (A.2.3) is straightforward. Let B be a multi-index with |Bl < k and consider

19Psgul, = 1oPagrul, = oPliaPaygrul,
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olPhiaPaygl ol , by (a.4.2),

c:ez'f5'|1u||P .

Now sum over ali § with |B| < k to obtain the desired estimate.
Estimate (A.2.4) is a little trickier to prove. We will need the Nth order Taylor

expansion of a smooth function:

(A.4.Diemma. Let £:[0,1] - R be a smooth function. Then

N i
() =3 190 + "leT?,[O (s Ny gs

i=o
The following is a variant of Young's inequality:
(A.4.8)lemma. Givenu, ve CTqR™), 0=0, et

|
wix) = E j (1—5}\I v(y)u(x-s6 1y) dy ds .
0

Then Iwl, < (Ne) vl lel, 1< p<e.

proof. It suffices to show that given any f € C°°0(Rn),

j'f(x)w(x) dx s Il O+ vl

-1y

where p'1 +p . Consider

j fx)wx) dx =JA J-(I fx)u(x-sy) dx (1N w(y) dy ds.
0

Applying Hoélder's inequality to the inner integral yields the desired estimate.
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Now consider

Sgu) = [ ag(x-y)u(y) dy

i

| a(8(x-y))u(y) 6%dy = | a(z)u(x-6"12) dz.
Let f(t) = u(x-tﬂ'lz) and use (A.4.7) to obtain:
k-1 -1 o
= O e
S 4900 = ;} - lcx%j % (x)j az) dz

Qo

-k 1
= sk a@d . es1z) dz ds .
(k-l)!lo;;kj‘oj‘ ’ alelry (xs0772) gz &s

Observe that all of the terms in the first summation vanish except when & = 0. Applying

+

lemma(A.4.8) to each term of the second summation proves (A.2.4).

Q.E.D.
Now let M be a compact n-dimensional manifold, possibly with boundary. As observed
in §A.2, the use of co-ordinate charts, a corresponding partition of unity, and the extension

operator defined in [St] implies the following:

Corollary. Given 1 < p < oo, {HP'k(M) , k> 0} is a tame scale of Banach spaces. Also,

{CK(M)} is a tame scale.

A.5 An interpolation inequality and the basic Moser-type estimates
The foliowing interpolation inequality plays a crucial role in proving Moser-type

estimates:

(A.5.1)Lemma. Given a tame scale of Banach spaces {Hk}, i< i<k,

!ulj < Ckluli(k_j)[(k'i)lu|k(j_i)/(k'i), we gk
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Proof.

[l

i < fu- Seulj + ISeulj

< Gl + Ci1 ;.

Now set 0 =( lulkf IuSi)U(k‘”i) > 1.

The foliowing coroliary will produce the Moser-type estimates that we need:

(A.5.2)Corollary. Let {Ek} and {Fk} be tame scales of Banach spaces. Given

a<b,c<d such that a +d =b + ¢,

halytvl, < Cy( halbvly + fulglvl,) . foranyue E9 and v e F9,

Proof. First, observe that given 0 < @ < land %,y > 0, xuyl ® ox y. Now, applying the
proposition,
|“1b|V[c < C(|u]a)(d—b)/(d-a)(;uld)(b-a)/(d-‘a)dvla)(d—c)f(d~a)(|v|d)(c-a)f(d-a) .

Sinced-b=c-aandb-a=d-c,

lulyIvig < C(|u|a|v|d)(c‘a)/(d‘a)(mdivla)(d—c)/(d-a)

s CClul,vlg + Tulglvl,) .

The constant C depends on a, b, ¢, and d but since all are nonnegative, it can be taken to

depend only on d.

q.e.d.

From now on, we shall use Sobolev spaces. Let M be a compact manifold possibly with
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boundary. Let HP K genote the space of (sometimes R valued-)functions on M whose

derivatives up to order k are bounded in LP, { < p <. Asbefore, denote the norm on gP-k

by liulipj i Everything in this section also applies to the scale (CK(M)}. Analogous results

also hold for {CK'Q(M)}, 0 < @ < 1; see [H63]). Later, when we turn to estimating
pseudodifferential and Fourier integral operators, we will use only p =2.

First, recall the Sobolev inequality(see [Au] or [St] for proofs.):

Lemma. Let M be a compact Riemannian manifold of dimeasion n, possibly with

boundary. If ¢l> -1 k/n, then Hq'k(M) is continuously embedded in HE(M). In
houncacy q thea o

particular, if q > n/k, there exists a constant C.:1 such that

Xk
lell,, o < quiullq’k , for all u e HLX,

The fundamental Moser-type estimate is for the product of two functions. We give a

proof by induction, using the interpolation inequality above.

(A.5.3)Lemma. Given smooth functions fandgonM, | s p<e, k=0, and v > a/p, the

following holds:

Il g < Clitly lglly o+ 151, lghy

where Ck depends on M, p, k, Vbut not on f and g.

Proof. By the Holder and Sobolev inequalities,

Itgl, o < 181, olel., o= Cltly olely o

Now assume that the inequality holds for k = > 0 and considerk =j + 1. It suffices to

look at
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IIBi(fg)IIP‘j < Il(aif)gIlP'j + Ilf(aig)\lp,j
s Gyl gl o + 19l ylely 5+ Uy I3igly o + Wiy 12581, ).
by induction assumption,

< Gyl 5, gl o+ MLy, gl 5 + Uy gl o g 101 lelp i)

Now apply Corollary(A.5.2) with a =V and d = j+1 to obtain the desired estimate.

Q.E.D.

Later, we will use the same basic induction argument to prove Moser-type esimates
for classical pseudodifferential and Fourier integral operators.
Recall one particular case of the Gagliardo-Nirenberg inequality (see [Ga], [Ni3], or

[Au,pp.93-96] for proofs):
1-p/q plq -
Lemma.  Ifly o < Cpq oifl, o) P70, g3 p<gq, pB = g0

Next, we consider the composition of smooth functions.

(A.5.4)Lemma. Let B be a bounded open set in R™ v > a/p, and
| D = {u eHP¥ | u(M) C B}).

Then given k > 1, any smooth fonction ¢: B - R, andu€eD,

Pl < CC+ a0, huly g+ 19 sl o)

In particular, the rhap (9, u) — Py is smooth tame.

Proof. Observe that when M has dimension {, the following formula holds for k > 1:
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ok (u) i‘ S - o uaalu g
E = ’a 9 a PRI a
ox m=1 0 +--- 0, =k au™ Jx 1 x> m
CiJ 21

When n > 1, there is an analogous but more complicated formula for the partial derivatives of

Pou of order k. In any case, applying Holder's inequality, we get

k
1Pl 5 o = c% 190, loulg g - 1oulg g

m

where B = (Bq,..., By), Bj = - 1, 9; = p(k—m)/Bj, 1 < j < m, and du is the gradient of u.
Applying the Gagliardo-Nirenberg inequality,
1-Bi/k Bk
IIauIIqi,Bj < C(i!aullooio) (I[aullpjk_m) ,

and therefore,

2@ 5 g < ¢ foul ool L

The lemma now follows easily by applying corollary(A.5.2) witha=1,b=m,c =k -m, and
d =k -1 and by summing the estimate over all derivatives of Q«u of order k or less.

Q.E.D.

The following lemmas which give Moser-type estimates for linear and nonlinear

differential operators follow easily from the lemmas above:

(A.5.5)Lemma. Letv>n/p. The map
O: D N HEEH Vs gP KAV P KUY | P kY

%), lof < p; u(x) — Za%@dguE) |

where D is a bounded subset of HP' VxwxHP UxHDHF Y is a tame map.

(A.5.6)Lemma. Let ¥V > n/p and D a bounded subset of HY*E. A smooth nonlinear
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differential operator of order i,

E: DN HRHOFR Hkﬂ)'

is a tame map.

A.6 Moser-type estimates for global solutions to limear first order ODE’s

For this section let HE = H2X and [ul g = folly . We want to prove the following:

(A.6.1)Theorem. Let X be a smooth compact manifold with boundary. Let Vgbe a

smooth nonvanishing vector field on X such that every integral curve has finite length and

both endpoints lying on the boundary of X.

There exists § > 0 such that for any smooth vector field V on X satisfying

IV - Voly g < 8,

and smooth function b on X, there exists a linear map

ov,b): H® »HY

such that for any f € C7(X),

(A.6.2) (V +b)(V) =1,

(A63) IOVl < Cpf (L+lbl,, Il + (VI g g Hibl, o Ol 1. k2 0.

The constant Ck depends only on 8, VO, X and k. In particular, @ is a smooth tame function .

of V, b, and f.

Proof. First, embed X smoothly into a latger open n-manifold X' and extend Vjtoa

smooth nonvanishing vector field on X'. Since X is compact, there is a finite set of

(n-1)-dimensional balls B;...., By smoothly embedded in X' satisfying the following:
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(A.6.49) VO is never tangent to Bov << N

(A.6.5) X is covered by Ul""' Uns where UOt is the open set containing all

the integral curves of V; intersecting B,.

Under these assumptions, the sets Ul""' UN form an atlas of co-ordinate charts for X with
the following co-ordinates:

(thl s xun) +— the point in Uy, reached by flowing for time x(xn along the integral
curve starting from (xal,..., xan'l) € B,

We can then define the Sobolev norm | ll, with respect to these co-ordinates, so that

||ll]|k2 = 2q ZlBISk J laBu|2 dx
where the partial derivatives are taken with respect to the co-ordinates xal,...,xan', and for
a vector field V,

V2 = S0 25 Mo e

where on U, the vector field V = vai(a/axai). Any other way of defining the norms gives

equivalent norms.

Given a smooth vector field V on X, we first use the extension operator E described in

§1 to extend it to X',

For § sufficiently small and [V-Vgll, o < 3, the vector field V will be nonvanishing in
X and never tangent to B,..., By Each of its integral curves will also still pass through X
in finite time and lie entirely within at least one of the U,..., U

On each co-ordinate chart an’
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a .
VO = -'5"—1-1 and V= Vl—a-{-
X 9xg,

where v1,.... v are uniformly close to 0 and v is close to 1.

Let hy,..., hys be a set of compactly supported smooth functions on X' such that
(A.6.8) SUpp hp. C U, for some & ,

(A.6.9) ZM hl-l= 1on X.

We now define ®(V) as follows: Given f € C™(X), extend it to X’ using the extension

operator E. For each p = 1,..., M, suppose that supp h, CU,. Now fet u, be the unique

B n

smooth solution on Uoz to

=0 .
Bg

{A.6.10) (Vv +b)uu_=h f, u

B n

Since the integral curves of V pass through X and do not become “trapped”, v is a

well-defined function on Ug,. Also, u, extends smoothly to be zero on X\J,. Define

B

PV,b)f = Z!-’- LT

D(V,b)f clearly satisfies (A.6.2).

In co-ordinates, equation (A.6.10) looks like the following:

3 n-1 .
at + Z VlEE-. +bu =h

f, u =0 .
oxfl i=1 axi R

x" =0
This is a 1-by-1 symmetric hyperbolic system,where x? should be viewed as a time

co-ordinate. Moser-type estimates, i.e. (A.6.3), for solutions to a symmetric hyperbolic

system on a bounded domain are proved in [K], [BGY], and [Hal.

Q.E.D.

Moser-type estimates can also be obtained for solutions to ODE’s on the cotangent
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bundle of a compact manifold with boundary, as long as everything is homogeneous in the

fiber direction. We shall study linear first order ODE’s on T*X\{0} involving homogeneous

symbols as defined in §B.2. We shall use the homogeneous norms | “j i s defined in §B.1.

Given aa integer m, a vector field V on T*X\{0} is homogeneous of order m if

[ _?_ , V] = -mV.
b

Observe that as a linear differential operator, V. /8hp,°° — /ghpﬂn,m_

It is also easily
checked that whea V is written in terms of 3/ox and a/af;i, its coefficients are homogeneous

symbols. By IIVltj K Ve shall mean the sum of the corresponding norms of the coefficients.

We then have the following modified version of Theorem(A.6.1):

(A.6.11)Theorem. Let V, be a smooth nonvanishing homogenenous vector field of order k

on T*M\{O} such that every integral curve has finite length and both endpoints lying over the

boundary of M.

Fix @ > n/2. There exists 8 > 0 such that for any smooth homogeneous vector field Vof

degree m on T'M satisfying

"V = Volla+1‘1 < 8)

and symbol b € ,8hm‘°°, there exists for each integer p, a linear map

(D(V,b) /ghp+m,0,0 s ghp,0,0

such that for any fe 8, PT%,
(A.6.12) (V+b)D(V b)f = 1,
(A.613) 1OV, = Ol (el Mgy o+ (Vi o 101 g Sl o]

k>n/2
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(5, w) v (=(-s@Dylu),

such that (I - s(x,D))v =u.

Proof. Choaose D such that the Lz-operator norms of both s(x,D) and s(x,D)*: X)) -
C®(X’) are less than 1/2. The operator must then be bijective , so that the desired map is
simply (s,u) +— (I - s(x,D))"iu. |

Fix & > n + 1 and choose D so that there exists R > 0 such that llsika,o <sRforallseD.
The Moser-type estimates
(B.6.3) ¥l < Cylsly,  ohully + o), s €D, weHS, v = (I-sx, D) L,
are proved by induction as follows: Denote S = s(x,D) and observe that if v=(1 - S)"lu,

V= 1u +Sv.

Therefore, iiviio < 2|Iu[i0. Now consider
(B.6.4) Il < lolly, + ISVl .

We shall omit the details, but a slight modification of the proof to Theorem(B.4.1) with ¢ =

P gives the following estimate:

(B.6.5) ISviy < ISHgivil, + Cyl Isl gy oVl + Isllg, olvllg_1)s
where S| is the 12 operator norm of S. The estimate (B.6.3) then follows by substituting

(B.6.5) into (B.6.4) and applying the inductive assumption.

Q.E.D.

It then follows from the results proved here that given an elliptic Fourier integral
operator F = a(P(x,D) near the identity operator, there exists a right inverse
F! = a®x D) o, D)) L,

where &(x,D) is the parametrix to a(P(x,D)a(p(x,D)* and S=1- a(p(X,D)a(P(X,D)*b(x,D).
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Moreover, the map (9,a,u) - F_lu is smooth tame for all phase functions @ near (PO,

symbols a near any fixed elliptic symbel ag, and 6 € Co(X).



Al9

The constant Ck depends only on 5, VO, X, p,m, o, and k. In particular, P isa smooth tame

function of V, b, and f.

Proaf. The trick is to reduce the homogeneous ODE to an equation on the bundle of unit
covectors, which is a compact manifold with boundary, and apply Theorem(A.6.1).
Fixing any smooth Riemannian metric on X, let $*X denote the bundie of unit

covectors. Observe that a natural homogeneous Riemannian metric is also induced on T X.

For each p, there is an obvious isomorphism /3hp'°° = C*($"X). The maps back and forth

are clearly smooth tame. Now given any homogeneous vector field V of order m on T X,
there is a unique splitting V = V' + v(§;9/8%,) such that V' is orthogonal to £:3/0%,. In

particular, V' along S*X is the orthogonal projection of V onto the tangent space of §'X.

Now, given homogeneous symbols b of order m and v of order p,
(A.6.14) (V+b)u = (V' + D(Eiafaﬁi) +bu =(V' +p + du

Observe that the last expression is well-defined when restricted to S*X. In fact, given a
homogeneous symbol f of order p+m, sofving (V+b)u =f on T'X is equivalent to sotving (V' +
pY +b)u=1fon S*X. The theorem now follows directly from Theorem(A.6.1), if we can show.
that the integral curves of V' have finite length and both endpoints on the boundary of S*X.
The details are left to the reader, but one simply verifies that if (x(t),&(t)) is a an integral
curve of V'’ then there exists 2 smooth function p(t) such that (x(t), p(t)E(1)) is an integral
curve of V.

Q.E.D.



Appendix B

Classical pseudodifferentiai and Fourier integral operators

We present here a stripped down theory of pseudodifferential and Fourier integral
operators. By sticking to a special class of operators on R® which can be described and
estimated explicitly, the necessary estimates--some well-known and some new--and the
symbol calculus are easily derived. The price paid is that many of the ideas and motivation
underlying the general theory are lost in our simplified proofs. For these we recommend

[BFG], [GS], [H62], [Ni2], and [Tr].

B.1 Symbols and pseudodifferential operators

For convenience, everything will be compactly supported and smooth on a bounded

_ 2k

apen set X’ € R®. Throughout this appendix, gk and |[ull, denotes ful; ¢.

Givenu € C”O(Rn), denote the Fourier transform of u by
(B.1.1) a®) = @)™ [ e X8 u@x) ox
the corresponding inverse transform is
ue) = | X% 0(g) dt
Recall the Planchere! theorem which states that IIﬁIIO = (Zn)nlzllullo. Observe that if the
support of u lies in a bounded set X'’, then applying Hélder’s inequality to (B.1.1) yields

(B.1.2) )| < @m) P vol(x )1 2l .

A symbol of order p is a smooth function ax,k), x,£) e R" x R™ which satisfies the

following estimates: given muiti-indices «,B, there exist a constant C,, B such that
k]
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%@ Pae Bl = Cq p1lehe Pl
Throughout this paper we restrict to symbols a(x,£) such that for any § € R7, a(nk) is

compactly supported in X''. Let 5P, denate the space of all such symbols of order p. We

will use two different kinds of norms for symbols. First, let
R -p+k Bac. .
||a||j1k supg (1+1&)) z]BIsk“(ai;) a( ,?,)Ilz,1 ,
where by lla(-,%)l, j We mean the T2 J-norm of a(,£) as a function of x and with & fixed,

Let Bp,j,k be the completion of §F° with respect to the norm | 511- - Observe that for

fixed p and j, { z,P’j'k} forms a tame scale of Banach spaces.

‘When using the symbol calculus, we will need to use homogeneous symbols. A
function a(x.£), (x,f) € X"’ x Rn‘\{()} isa hdmogeneous symbol of order p if given any t

> 0, a(x,tE) = tPa(x,£). As before, we always assume that a homogeneous symbol a(x,g) is
compactly supported in X' as a function of x. Let &, '“* denote the space of homogeneous
symbols of order p. For homogeneous symbols, the symbol norms will be defined as follows:
Jal, o = sopg 16125 2y 1@pPaCON, ;-
) ]
Let 2)hp,j,k denote the completion with respect to the norm | ||]g)k. Throughout this paper,

we will fix a smooth compactly supported function (&) such that = 1 in a neighborhood of
& = 0 and use it to define a embedding
g Pk, gPik

a(x,g) +— (1-XENax8) .

Next, denote
Am.8) = em™ [ e XM a@x,%) dx .

Define another set of norms on 2P as follows:

lal g = sopen gy eI PPl @R 0
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Since the support of a(-,§) always lies inside a fixed bounded set X', estimate (B.1.2)

implies that lalj,k < Cga"j,k )

Given a symbol a(x,t) of order p, we will denote the corresponding {classical)

pseudodifferential operator by

ax,DYo() = [ 8 a o) dt .
Observe that given a differential operator P = a“(ax)o‘, we have P = a(x,D), where a(x,§) =
a%@)i)”.

Since pseudodifferential operators are defined using the Fourier transform, they are
most naturally studied in the setting of 2k spaces. Recall that a differential operator of
order p is a bounded operator as map of B2 E+P o HZ2'E The same is true of a
pseudodifferential operator of order p. Since we will need Moser-type estimates later, we
also need to know how the operator norm of a(x,D) depends on the symbol a. In fact, when
estimating the operator norm of a Fourier integral operator, we will need an estimate for a
more general type of pseudodifferential operator. A smooth function a(x.y.£), (x,y.£) eR™ x

RE x R, is also called a symbol of arder p if it satisfies the following estimates:
% yBayY | IVl
(0 0,)P ) alx.y B = Coy g y(1 + P

As always, we assume that for fixed §, a(-,,§) is compactly supported in X*' x X”. Denote

the Fourier transforms of a in y only by

3,08 = @) e hatxy ) dy
and in (x,y) by

L8 = @ry28 | AN YDay ) gy = @y e MLy o
Define the following set of norms for a symbol of order p: Given j.k,1 =0, let

lali ¢ 1 = Ziaget P 8) (A+mDICL+ DR+ EN P ¥ am L8l -

Given a symbol a(x,y £), we define the following (generalized) pseudodifferential operator:

a(x,Dux) =)™ | ei(x'y}ta(x,y,‘_'g)u(y) dy dg .
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It is not difficult to show that the a “generalized” pseudodifferential operators consists

merely of a classical pseudodifferential operator plus an infinitely smoothing operator (see

[Tal, [Tr], or [H&2]).

(B.1.3)Lemma. Let a(x,y,§) be a symbol of acder p and u(x) a smooth compactly supported

function on R®. Then the following_estimate holds:

+
"a(X'D)uHZ,s = C|a|s+n+1,s+n+1+tp|,0 "u"2.s+p , SERT,

where the constant C depends only on n.

Proof. Using the fact that the Fourier transform of the product of two functions is the
convolution of the Fourier transforms, we obtain
a(x,Dyux) = (Zn)'njei(x"y)'ta(x,y,"g)u(y) dy dt
= [ ePae tL 000 o ok,
Now take the Fourier transform of both sides and switch the order of integration (noting that

the integral is absolutely convergent):

DY) = an)‘ﬂj eix(M-€) gt Ba() df dt dx
{ am-t&, £, £)E) ot d&

Therefore,

(1+n)) TR < | aij,k,of A+ @+n-g) (ele el A+EP @l o ot -

Otserve that (1+ [nD® < (1 + In-&| + &-L1 + [d) (1+|ﬂ-§l)s(1+lt{|)s(1+lt..|)s, and

by a similar argument,
A+EDP < (1+eLhPlcle®! and (14l < (1+lg-gnPla+rgnlEl,

so that whether p is positive or negative, (1+/g))P < (1+|§—C|)IPE(1+|CI)P. It then follows that
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(o) GEDR! = foty ] (Lm0 ot * P D™ fol dg o

Taking the 12 norm of both sides and applying Young's inequality, we get
"a(X’D)UHZ,S = Cnlalj’k‘ollunz’ﬂp )

ifsj=s+lpl-k==n-1= j=s+n+landk=5+[pl+n+ 1

Q.E.D.

B.2 A little symplectic geometry
Recall that for any smooth domain X C R2 the cotangent bundie of X, T"X = X x RY,
has a canonical 1-form, denoted 6, characterized as follows:
0(c,8), V) = (&, m, V), VET T’ X, B T X

If xl,..., ¥ are local co-ordinates on X, then they induce local co-ordinates xl,...,xn,

(S g, on T*X and the canonical 1-form is 6 = & dxl. The exterior derivative of 0, d0 =

dti Ade s a closed, nondegenerate 2-form on T*X called the symplectic form. It

induces an isomorphism

(B.2.1) TxX =T X, x e X,

V +— i(V)do,
where i(V)dO denotes the 1-form obtained by contracting the tangent vector V with the
2-form d0.
Denote T*X\{0} = { (,§) e T*X | &€ = 0}. A smoothmap C: T*X\{0} » T X\{0} is
called a canonical transformation if C'0 = 8. In co-ordinates, (y,n) = C(x.,§) is

canonical if it satisfies the following system of PDE’s:

OATEE S 0, 1<isn.
fod i Fr

Observe that a canonical transformation must be an immersion since (d6)" is a volume form
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on T X and C’“(d‘é))‘1 = (de)ﬂ. The map C must also be homogeneous in the foliowing sense:

lemma. A canonical transformation C: T*X\{O} - T*X\{O} satisfies: C(x,t &) =(y, tn) for

all t > 0, where C(x,£) = (y,n). In other words, as a function of &, y(x,) is homogeneous of

degree 0 and 1(x,) is homogeneous of degree 1.

proof. This is easy and we just indicate the idea. Since the map C preserves 0 and d0O, it

also preserves the dual vector field to 0, which is ti(a/a‘*gi). This is the radial vector field in
the fiber of T" X and represents an infinitesimal dilation in the § co-ordinate. In particular,
a function f(x,§) is homogeneous of degree p if and only if f;i(a/a‘éi)f = pf. From these

observations the lemma can be proved.

g.e.d.

- ) - " * 3 LI
In this paper we only care about canonical transformations of T X'*, where X' isa
simply connected bounded domain of R™ It isncessary to “parameterize” the space of all
canonical transformations near the identity. This is best done using generating (or phase)

functions. Also, the phase function is a basic object in the definition of a Fourier integral
operator. The prototype is (Po(x,n) = xin ;» Which is what appears in the exponential factor of
a pseudodifferential operator. We shall consider only phase functions that are pertubations

of . Accordingly, a generating or phase function is a function @(x,n) such that @ - ¢4

S /Shl *** and that the following inequality holds:
a%p

(B.2.2) det &m) =0, (,n) e T*X O} .
oxon

Let T denote the space of smooth phase functions and ”Pj'k the completion of P with
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respect to the symbol norm | Hj g Observe that for fixed j , {'(pj‘k} is a tame scale of Banach
spaces. Using a generating function 9, we try to define implicitly a map Cq: T X\{0} -

T*Rn\{O} as follows:

_ KL KL
y.n) = C(P(X»t) & &= - and y= o

Without some further assumption, the map Cqy may not be globally well-defined. When 9 =
Pz, M) = xini, the corresponding map is the identity map. For phase functions sufficieatly
close to @ in the Cz-norm, the map Cg is still well-defined and is canonical. We leave the

proof as an easy exercise, Observe that since ¢ = @, outside a compact subset of X'', Cg

preserves a neighborhood of the boundary of X' xR™.

B.3 Classical Fourier imtegral operators

Let us begin by briefly describing the “modern” Fourier integral operator. It is a linear
operator F acting on functions on a manifold X such that in local co-ordinates, it can be
written in the following form:

Fu(x) = | ei(p(x’y'e)a(x,y,e)u(y) dy d0,

lv‘lrt';'ere 0(x,y.8) is a generalized phase function and a(x,y,0) is a generalized symbol. It can
be showﬁ* that if a is of order p, then F is a bounded map of HX'P ¢o HX, The generalized
phase function ¢ determines a Lagrangian submanifold of T*X\{O} X T*X\{O} (roughly
speaking, a submagifold of T X\{0} x T X\{0} is Lagrangian if and oaly if it is locally the
graph of a canonical transformation} .

The canonical transformation determined by @ controls how the singularities of u are

transformed by F. In particular, the singular set (or, to be more precise, the wavefront se t} of
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Fu is contained in the image under the canonical transformation of the singular set (or
wavefront set) of u. The sigaificance of this lies in the fact that any two differential or
pseudodifferential operators which have the same characteristics can be made to look alike
modulo infinitely smoothing operators by conjugating with appropriately chosen
pseudodifferential operators. Therefore, by conjugating a given differential operator with
both pseudodifferential and Fourier integral operators, we caa try to put the differential
operator into a normal form which is determined solely by the qualitative behavior of the
characteristics of the operator. Usually, this can only be done “microlocally”, in other
words, on a conic open subset of the cotangent bundle. For example, Egorov's theorem
states that a differential operator of real principal type is microlocally equivalent to the
differential operator 3/dx™. We show in this paper that any two sufficiently close differential
operators of strong real principal type are globally equivalent under conjugation by Fourier
integral operators.

We now restrict our attention to what we call “classical Fourier integral operators”.
Such operators are in fact the precursors of the modern Fourier integral operator as
developed in [Hol] (see [Ho1] p. 80, for a brief history). Given a phase function @(x,1) and
a symbol a(x,n) of order p on R™, define the following operator:

a(P(x,D)u(x) = ei(p(x'n)a(x,n)ﬁ(n) dan .

Such a linear operator is called a ¢iassical Fourier integral operator of order p. As

described above, the phase function ¢ determines a canonical transformation C(p which
describes how the operator a(P(x,D) transforms the singularities of its argument. Observe
that if 9(x,n) = (PO(X,T]) (= xini ), then a(‘u(x,D) = a(x,D), a pseudodifferential operator and
the canonical transformation C‘P is the identity map. The converse also holds: any Fourier

integral operator associated with the ideatity map is a pseudodifferential operator. It also

can be shown (see {Hol], [Ho2], [Ta],or [Tr]) that given two Fourier integral operators,
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a(P(x,D) and bw(x,D), the composition a(P(x,D)bw(x,D) is also a Fourier integral operator
whose associated canonical transformation is C‘P°C\If'

It can be shown that the Lz-adjoint a(‘p(x,D)* of a(P(x,D) is also a Fourier integral
operator of order p whose associated canonical transformation is the inverse map to C(p. In

particular, the operator a(P(x,D)a(P(x,D)* is associated with the identity map and therefore is
a pseudodifferential operator. We will compute the symbol of a(p(x,D)aq](x,D)* as a

pseudodifferential operator and apply lemma(B.1.1) to compute the operator norm of a(P(X,D).

Given k €R, let Dy be the pseudodifferential operator such that
e
Dou®) = (14l 0@ .

Observe that Dy is self-adjoint and D, Dy =L

(B.3.1)Proposition. Let $(x,n) be a phase function and a(x,n) a symbol of order p < -n/2

on R". Then atp(x,D)a(P(x,D)* is a pseudodifferential operator of order 2p. Moreover, there

exists & > 0 such that if |0 - Polpi1 1< 8, there is the following explicit formula:

a‘P(x,D)a‘P(x,D)"_‘ — A(x,D)

Here,

Ay = alx, n(xy.E)aly, nx.y.L)

) -1
‘Ee(x,y,i)l .
an

1
d
Payn = IO ‘é’j{" x+t (y=x)n) dt,

and N(x,y,§) is determined uniquely by the equation § = @' (x,y,n).

Proof. The L2-adjoint of a7(x,D) is
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mm) = je‘i“’(w .1 vx) dx

Therefore,
2, D3P DY u) = [ AP - PG Mgy nyaty, nu(y) dy dn
= [ HEIOCY o, nyaly,n)uly) dy dn .

Now observe that ¢4 (x,y,n) = 0. Therefore, given 19-Polly 4 < <1,
2 i o 2 @ e sty dsty < 19-9g], (<8
moC b = joaxT'q —0(y+sx—y s fy o1 1 .

By the implicit function theorem (the easy one!), there exists a unique smooth function
nx,y,&) close to T]O(x,y,ﬁ) = & such that § = ¢ (x,y,n(x,y.k)). Now, since la(x,n)aly,n)i <

(1+]T]|)2P, 2p < -n, the integral is absolutely convergent. We can therefore change the order
of integration, change the variable of integration from 1 to €, and then change the order
back. This results in the desired formula.

Q.E.D.

(B.3.2)Corollary. Given a phase function @(x,m) satisfying the assumptions of

Proposition(B.3.1), a symbol a(x,n) of order p, and a smooth compactly supported function v,

9 172
2% Dyl < CUAL 1 304,00 Hol,

where the constant C depends only on n and 8 > 0 (as given by Proposition(B.3.1)).

Proof. First consider the case p < -n/2. QObserve that the operator norm of a(P(x,D) is the

same as the operator norm of a(p(x,D)*. On the other hand, by the proposition,

1a%G, D) ully? = (w,a%x, D)%, D) w = (u,AGx, D)W

2
< CAL 1 1oens10lely -

Therefore, if p=-n/2 - 1
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la®,Dyully = 1AL, 30,1 0 Pl g -
Now take p > -n/2. First, observe that a(P(x,D)D_P_nle = E(P(X,D), where a(x,M) =
(1+In)y P22 15(x 1) is a symbol of order -n/2-1. We then have:

la®x,Dyal, = Ha(P(X,D)D_P_nlz-lbp+m'2+1““0
o 112
= 17 DXDp,qpp4 100 < CUAY, 3n1241,0 Ppinne1®lnn-1

_ 1/2
- CGEA"n,Sn/2+1,O) "\lﬁp .

Q.E.D.

B.4 Maoser-type estimates
We now want to prove Moser-type estimates for pseudodifferential and Fourier

integral operators like those proved for linear differential operators in §A.5. Since a

pseudodifferential operator is simply a Fourier integral operator whose phase function is @0

it suffices to consider only Fourier integral operators. As in the proof of lemma(A.5.2), we
proceed by induction. The key point is what happens when we differentiate aq)(x,D)u(x)

and, as before, the product rule for differentiation (“integration by parts”!) plays a key role.

(B.4.1)Thecrem. Let & > O be as given by Proposition(B.3.1) and fix B > 0. There exists

azn+1 such that given any phase function ¢ satisfying 19-9, <8and My, {o<B

n+1,1

and symbal a(x,n) of order p, the following estimate holds:

la®Ge,Dyulg = Cf Gatg,q o + Nl 1Pl sy g Ml + Il gbulg, ] o520,

where the constant C_ depends only on n, 3, B, and s.

In particular the map (@, a, v) — a(P(X,D)u is a smooth tame map for all (¥,a,u) such

that @ lies in the open neighborhood of §, given by the assumptions.
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Proof. In the following estimates, the constant C changes from line to line. In particular, it

will be “absorbing” |9}, ; o whenever this norm appears.

First, by Corollary(B.3.2), we can choose ¢’ > 0 so that
1a®Ge,Dyuly < Claly, glul,
Set ¢ = @' + 1. Observe that if we differentiate a{p(x,D)u, we get
327x.Dya9) = @) *x. Dy + (G2, D),
where (9 ja)(?(x,l)) is a Fourier integral operator of order p and (iad j(P)q](x,D) is of order p + 1.
Considler
13;2%c.Dyuly < 163;2) . Dyully + 1Gad#) . Dyl
< C[ ilalla’OHUilP + "aaj(P"OL’ ,Oiiutipﬂ
< Cllalla’oﬂullpﬂ .
Now we proceed by induction. Assume that the estimate holds for s < k. For cenvenience,

we denote the symbol norm | fig o by Il I . Consider
19;2%e. Dol < 12;2)° e Dyuly. + 1G22 (x,Dyull
< C[ (||a-alla+k + 1!3-a||0t|l(P|| a+k+1)llun + |la-alla||u||k+P
+ (l|a6 (P"Ot+k + fag; @l |I(P||a+k+1)||ullp+1 + g9l al®lgipir]

< al uaumm1 ol + Nl 180l g, gk, + ol g0l

+ (lab Pl g g + Nl (1P, g + T2l d Pl (1Phgy g 0l g

Jal Py, 110y 1 -

Now applying Corollary(A.5.2) to all but the first and last terms, we obtain
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19,5 . Dyl < O Mallg e, g + Ity ppdlol, + Halgluly, o
Q.E.D.

Setting ¢ = @, we also obtain Moser-type estimates for pseudodifferential operators:

(B.4.2)Corollary. The map (a, u) — a(x,D)u is a smooth tame map.

B.5 Composition of a pseudodifferential operator with a classical Fourier

integral operator and vice versa

(B.5.1)Theorem. Let ®(x,n) be a phase function, a(x,£) a symbol of order p, and b(x, M) a

symbol of order q: Then

ax,D)6%x,D) = ¥ (x,D)

and
6%, D)atx,b) = ¥, D),
where
& e = @it [V ey e o o
and
& wm = emn | MY o 0@ (x, e myy) dy
Here,
i 30
9 Gx,y.m) =j S ert(yx)M) de
0 ox
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P bm) =j1

O n +sE&m) de
o oM

(Observe that both ¢’ and ¢'* are vector-valuved.)

Remark. The integrals above and below are convergent only as iterated integrals; they are

generally not absolutely convergent.

Proof.

a(x,DYo’ (x,D)u(x) = j ei"'&a(x,&)[ (2n)‘ﬂj 0 ER0MD oymum) anay ] o
- jei[("“”'ﬁ + 9G] 4 Bo(y,mum) on dydt .

Expand 0(y,n) = 0(x,n) - (x-y)}® (x,y,1). We now want to switch the order of integration
from dn dy d§ ta dy d§ dn. Since the integral is not absolutely convergeat, we must first
integrate by parts, using the following identity:

(@ + NGt - A NACT 2 6N

where N is a nonnegative integer and A (6/ayi)2. By choosing N large enough,

y = Z1<izn
integrating by parts, we obtain a new integral which is absolutely convergent. We can then
switch the order of integration and reverse the integration by parts, obtaining:

a0 D)0 D) = [T+ GV E T T oty o) e dtan

Setting €' = & - ¢'(x,y,1n), we obtain the desired formula.

Now consider

6 (x.D)a(x, D)u(x) =[ dP008) bix paEn mam) dn e

Expand 9(x,£) = 9(x,n) + €)' (x,&,n). Using the same trick as above to switch the order

of integration, we then obtain
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b“’(x,D)a<x,D)u<x)=jei‘*’(x-") j A& ®EN) b LaEn,ndk o) dn

:j. 26 o) @y an

Q.E.D.

Using the Taylor series formula, the symbols cl(x,n) and cz(x,n) can be expanded into

the usual description of the symbol calculus using an asymptotic sum. The asymptotic sum
describes the composition modulo an infinitely smoothing operator. We shall need an exact
expression which contains only a finite number of terms in the asymptotic expansion. This

is easily obtained by using the finite Taylor expansion, writing the error term down explicitly

as an integral, leading to the following: Given a multi-index Q, let Dga = (iag)a.

(B.5.2)Theorem. Let cl(x,n) and cz(x.n) be the symbols defined by Theorem(B.5.1). The

following hold:

N
1
¢, () =ZT; 2| T3 s Geynor) 1 + )
=07 al=j 7|, _
y=X
and
N 1 o
& (x) =Z.—,; Dg |l 6O a@ @EN).M] +syxn)
=0 Mol ley
where

A 1
g cem =@ j I (15N g a0 G,y m)+sE ol M) ds dy dE'
Nt loe|=N+ 0 g '

and
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i o
X)) =(%) n; r[ fo SMEY (N0 £)3%a(@ (& sy M) ds dy dt
T a|=N+

are symbols of order p-N- 1 andq-N- 1, respectively.

Proof. Let f(s) = a(x,®(x,y,n) + s§’). The desired formula for cl(x,'r]) is obtained by
substituting in the Nth order Taylor expansion for f centered at s = 0 and evalvated at s = 1.
The formula for c, is obtained in a similar fashion, using f(s) = b(P'(x,£,n) + sy, 1)

Q.E.D.

Setting ¢ = fPO and letting N — «, we obtain the usual symbol calculus for

(pseudo)differential operators.

B.6 Ianverting elliptic pseudodifferential and Fourier integral operators

A symbol a(x,£) of order p is elliptic if there exists a homogeneous symbol ao(x,E) of

order p such that a5(x,£) = 0, (x,§) € X' xR™{0}, and a - aq is a symbol of order p - 1. A

pseudodifferential operator a(x,D) is elliptic if the corresponding symbol a(x,£) is. Similarly,
a Fourier integral operator a[p(x,D) is elliptic if a(x,k) is. Observe that if a(x,k) is a
polynomial in &, then we recover the standard definition of an elliptic differential operator.

It is well-known that an elliptic pseudodifferential operator a(x,D) has a parametrix
b(x,D), i.e. an elliptic pseudodifferential operator such that a(x,D)o(x,D) - 1 and
b(x,D)a(x,D) - I are infinitely smoothing operators, where I is the identity operator. An
asymptotic expansion of the symbol b(x,E) is easily constructed using the symbol calculus for
the composition of pseudodifferential operators. This may be found in any standard

reference on pseudodifferential operators (cf. [Ni2], [Tal, [Tr], [Ho1], [H62]). We do not
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want to recall the details again here, but simply want to observe that if we use only a finite
partion of the asymptotic expansion of b(x,%) and the explicit description of a(x,D)b(x,D) and

b(x,D)a(x,D) given in §B.5, we obtain the following:

(B.6.1)Proposition. Let ay(x,§) be an elliptic symbol of order p. Then there exists k > 0,

a neighborhood D C gP'k'k of aq such that given N > O, there exists a smooth tame map

D — BP’O'O
a(x,§)— b(x,5),

where a(x,D)o(x,D) - I and b(x,D)a(x,D) - I are operators of order p - N when acting on

functions compactly supported on X'.

Using this proposition and proposition(B.3.1), it is a simple matter to construct a right
parametrix for an elliptic Fourier integral operator. Given a Fourier integral operator
a(P(X,D), proposition(B.3.1) states that aq)(x,D)a&(‘u(x,D)’k = A(x,D), where the symbol Alx,y.8)
is a smooth tame function of a(x,n) and ®(x,1). The desired right parametrix is simply

Q =a’@D)'B@&D),
where B(x,D) is a parametrix of A(x,D) as given by proposition(B.6.1). If we fix an elliptic

symbol a5(x,N), the symbol B(x,§) is a smooth tame function of (9(x,n), a(x,n)) lying in a
ﬂ.éighborhood of (Py(x, M), ay(x,M)).

Fihally, we want to constract a right inverse from the parametrix. It suffices to prove

the following:

(B.6.2)Proposition., There exists k > 0, a_neighborhood D of 0 & ,80’1('0 and a smooth

tame map

D x HoX) — H%X)
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