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Affine isoperimetric inequalities compare functionals, associated with convex (or more
general) bodies, whose ratios are invariant under GL(n)-transformations of the bodies.
These isoperimetric inequalities are more powerful than their better-known relatives of
a Euclidean flavor.

To be a bit more specific, this article deals with inequalities for centroid and pro-
jection bodies. Centroid bodies were attributed by Blaschke (see e.g., the books of
Schneider [S2] and Leichtweiß [Le] for references) to Dupin. If K is an origin-symmetric
convex body in Euclidean n-space, Rn, then the centroid body of K is the body whose
boundary consists of the locus of the centroids of the halves of K formed when K is cut
by codimension 1 subspaces. Blaschke (see Schneider [S2] for references) conjectured
that the ratio of the volume of a body to that of its centroid body attains its maximum
precisely for ellipsoids. This conjecture was proven by Petty [P1] who also extended the
definition of centroid bodies and gave centroid bodies their name. When written as an
inequality, Blaschke’s conjecture is known as the Busemann-Petty centroid inequality.
Busemann’s name is attached to the inequality because Petty showed that Busemann’s
random simplex inequality ([Bu]) could be reinterpreted as what would become known
as the Busemann-Petty centroid inequality. In recent times, centroid bodies (and their
associated inequalities) have attracted increased attention (see e.g. Milman and Pajor
[MPa1,MPa2]). In retrospect, it can be seen that much if not all of this recent interest
was inspired by Petty’s seminal work [P1].

Projection bodies are of newer vintage. They were introduced at the turn of the
previous century by Minkowski. He showed that corresponding to each convex body
K in Rn is a unique origin-symmetric convex body ΠK, the projection body of K,
which can be defined (up to dilation) by the amazing fact that the following ratio is

Research supported, in part, by NSF Grant DMS–9803261

Typeset by AMS-TEX

1



2 Lp AFFINE ISOPERIMETRIC INEQUALITIES

independent of the choice of 1-dimensional subspace l of Rn: the length of the image
of the orthogonal projection of ΠK onto l, to the (n − 1)-dimensional volume of the
image of the orthogonal projection of K onto the codimension 1 subspace l⊥. Interest
in projection bodies was rekindled by three highly influential articles which appeared
in the latter half of the 60’s by Bolker [Bol], Petty [P2], and Schneider [S1]. Projection
bodies have been the objects of intense investigation during the past three decades (see
e.g., Bourgain and Lindenstrauss [BourLin], Schneider and Weil [SW], Goodey and Weil
[GoW2] and the books of Schneider [S2], Gardner [G2], Leichtweiß [Le], and Thompson
[T]).

The fundamental inequality for projection bodies is the Petty projection inequality:
Of all convex bodies of fixed (say, unit) volume, the ones whose polar projection bod-
ies have maximal volume are precisely the ellipsoids. The inequality that states that
simplices are precisely the bodies that minimize this volume is known as the Zhang
projection inequality [Z1]. Petty [P2] established the Petty projection inequality as
a consequence of the Busemann-Petty centroid inequality. It was shown in [L1] that
this process could be reversed: the Busemann-Petty centroid inequality can be derived
as a direct consequence of the Petty projection inequality. Both the Petty projection
inequality and the Busemann-Petty centroid inequality have come to be recognized as
fundamental affine inequalities.

All centroid and projection bodies belong to the class of zonoids, Zn, in Rn. Zonoids
can be defined as limits, with respect to the Hausdorff metric, of (Minkowski) sums of
ellipsoids. The class Zn arises naturally in various guises. For example, zonoids are the
ranges of non-atomic Rn-valued measures. They are also the polars of the unit balls of
n-dimensional subspaces of L1([0, 1]).

To be even more specific this article concerns Lp-analogs of centroid and projection
bodies. The Lp-analogs of centroid bodies have already appeared. For example, the
L2-analog of centroid bodies is an ellipsoid (called the Legendre ellipsoid) that appears
in classical mechanics. However the Lp-analogs of projection bodies are first presented
here. In order to correctly define them one needs the recently introduced (in [L3] [L4])
notion of Lp-curvature. Both the Lp-analog of centroid bodies and the Lp-analog of
projection bodies belong to the class Znp of Lp-zonoids. While less well known than
the class of zonoids, the class Znp is not new (see e.g., Schneider and Weil [SW], and
Goodey and Weil [GoW2]). We shall derive the exact Lp-analogs of both the Busemann-
Petty centroid inequality and the Petty projection inequality (as well as their equality
conditions).

Let Sn−1 denote the unit sphere in Euclidean n-space, Rn. Let B denote the origin-
centered standard unit ball in Rn, and write ωn for V (B), the n-dimensional volume of
B. Note that,

ωn = πn/2/Γ(1 + n
2 ),

defines ωn for all non-negative real n (not just the positive integers). For real p ≥ 1,
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define cn,p by
cn,p =

ωn+p

ω2ωnωp−1
.

For each compact star-shaped about the origin K ⊂ R
n, and each p such that

1 ≤ p ≤ ∞, let the norm ‖ · ‖Γ∗pK on Rn be defined by

‖x‖Γ∗pK =
{

1
cn,pV (K)

∫
K

|x·y|pdy
}1/p

,

where x·y denotes the standard inner product of x and y, and V (K) denotes the volume
of K. For the case p = ∞, this definition is to be interpreted as a limit as p → ∞.
The unit ball of the resulting n-dimensional Lp-space is denoted by Γ∗pK, and called
the polar Lp-centroid body of K. The (unusual) normalization above is chosen so that
for the standard unit ball B in Rn, we have Γ∗pB = B.

In [LZ] the following centro–affine inequality involving the volumes of K and its polar
Lp-centroid body, Γ∗pK was established:

If K is a star shaped (about the origin) subset of Rn, then for 1 ≤ p ≤ ∞,

V (K)V (Γ∗pK) ≤ ω2
n, (*)

with equality if and only if K is an ellipsoid centered at the origin.
If K is an origin-symmetric convex body then Γ∗∞K is just the polar, K∗, of K where

K∗ = {x ∈ Rn : x·y ≤ 1, for all y ∈ K}.

Thus, inequality (*), for p =∞, reduces to:

V (K)V (K∗) ≤ ω2
n,

with equality if and only if K is an ellipsoid.

This is the well-known Blaschke-Santaló inequality.

In light of the Blaschke-Santaló inequality, a stronger inequality than (*) was con-
jectured in [LZ]. This stronger inequality is the inequality of our first theorem:

Theorem 1. If K is a star body (about the origin) in Rn, then for 1 ≤ p <∞,

V (ΓpK) ≥ V (K),

with equality if and only if K is an ellipsoid centered at the origin.

Here ΓpK, the Lp-centroid body of K, is just the polar of Γ∗pK.
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For the case p = 1 the inequality of Theorem 1 is known as the Busemann-Petty cen-
troid inequality [P1] (see also the books of Schneider [S2], Gardner [G2], and Leichtweiß
[Le]). The case p = 2 is also well-known and goes back to at least, to Blaschke [Bl] (see
also Lindenstrauss and Milman [LiM], Milman and Pajor [MPa1] [MPa2], Petty [P1],
and also [LYZ]). For all other values of p the inequality of Theorem 1 is new.

The inequality closely related to the Busemann-Petty centroid inequality is known
as the Petty projection inequality [P3] (see also the books of Schneider [S2], Gardner
[G2], and Leichtweiß [Le]). The Lp-version of the Petty projection inequality will also
be established in this article.

It will be convenient throughout to restrict our attention to only those convex (and
star–shaped) bodies which contain the origin in their interiors. This assumption will
tacitly be made throughout.

1. The Lp version of the Petty Projection Inequality

If K is a convex body (i.e., a compact, convex subset containing the origin in its
interior) in Rn, then its support function, hK = h(K, · ) : Rn → (0,∞), is defined for
x ∈ Rn by h(K,x) = max{x·y : y ∈ K}.

For p ≥ 1, convex bodies K,L, and ε > 0 the Firey Lp-combination K+++ε···L is defined
as the convex body whose support function is given by

h(K+++ε···L, · )p = h(K, · )p + εh(L, · )p. (1)

Although Firey addition and scalar multiplication depend on p, our notation does not
reflect this fact. Firey combinations of convex bodies were defined and studied by Firey
[F] (who called them p–means of convex bodies).

For p ≥ 1, the Lp–mixed volume, Vp(K,L), of the convex bodies K,L was defined in
[L3] by:

n

p
Vp(K,L) = lim

ε→0+

V (K+++ε···L)− V (K)
ε

. (2)

That this limit exists was demonstrated in [L3].
It was shown in [L3], that corresponding to each K ∈ Kno , there is a positive Borel

measure, Sp(K, · ), on Sn−1 such that

Vp(K,Q) =
1
n

∫
Sn−1

h(Q, u)p dSp(K,u), (3)

for each convex body Q. The measure S1(K, ·) is just the classical surface area measure
of K. This measure is usually denoted by S(K, ·) or SK .

For positive, real p, let Cp denote the spherical Lp-cosine transform on Sn−1; i.e., for
each positive Borel measures, µ, on Sn−1, let Cp µ be the continuous function on Sn−1

defined by

(Cp µ)(u) =
{

1
nωncn−2,p

∫
Sn−1

|u·v|pdµ(v)
}1/p

,
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for each u ∈ Sn−1. The unusual normalization above was chosen so that for Lebesgue
measure S on Sn−1, we have Cp S = 1.

For p = 1 the spherical Lp-cosine transform is just the well-known spherical cosine
transform which is closely related to the spherical Radon transform (see e.g. Goodey
and Weil [GoW]). The operator C1 will be written simply as C. For p > 1 the spherical
Lp-cosine transform is also well known (see e.g., Koldobsky [K1], [K2], [K3], [K4], [K5],
and Rubin [R] for applications and references).

For each convex body K, define the Lp-projection body, ΠpK, of K to be the origin-
symmetric convex body whose support function is given by

h(ΠpK, ·) = Cp Sp(K, · ) (4)

The unusual normalization above is chosen so that for the unit ball, B, we have ΠpB =
B.

Just as Γ∗pK, rather than (ΓpK)∗, is used to denote the polar body of ΓpK, we will
denote the polar of the body ΠpK by Π∗pK, rather than (ΠpK)∗

A p = 1 is often suppressed. The convex body ΠK is known simply as the projection
body of K. Note again that we have adopted a normalization that differs from the
classical in that ΠB is simply B (rather than the classical ωn−1B). We note again that
in order to define Lp-projection bodies of a convex body, for p > 1, the notion of an
Lp-curvature measure (or function) is critical.

One of the classical affine isoperimetric inequalities is the Petty projection inequality
[P3]. It states that for each convex body K in Rn,

V (K)n−1V (Π∗K) ≤ ωnn ,
with equality if and only if K is an ellipsoid.

The Petty projection inequality is the statement that the quantity V (K)n−1V (Π∗K) is
maximized precisely when the body K is an ellipsoid. The Zhang projection inequality
[Z1] states that this quantity is minimized precisely by simplices.

We will establish the Lp-analog of the Petty projection inequality:

Theorem 2. If K is a convex body in Rn, then for 1 < p <∞,

V (K)(n−p)/pV (Π∗pK) ≤ ωn/pn ,

with equality if and only if K is an ellipsoid centered at the origin.

The special case p = 2 of Theorem 2 can be found in [LYZ].
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2. Outline of Proof

For real p ≥ 1 define the Lp-Petty projection product of a convex body K by

pp(K) = ω−n/pn V (K)(n−p)/pV (Π∗pK).

For real p ≥ 1 define the Lp-Busemann-Petty ratio of the star body K by

bp(K) = V (K)/V (ΓpK).

Note that while pp is defined only for convex bodies, bp is defined for all star bodies.
From the definition of Lp-projection body it follows immediately that for λ > 0 we

have ΠpλK = λ(n−p)/pΠpK, where λK = {λx : x ∈ K} is the dilate of K by a factor of
λ. Thus Π∗pλK = λ(p−n)/pΠ∗pK which shows that the functional pp is dilation invariant.
In the next section we prove (Lemma 2) that pp is in fact a GL(n)-invariant functional:
For each convex body K,

pp(φK) = pp(K), for all φ ∈ GL(n),

where φK = {φx : x ∈ K} is the image of K under φ.
In order to demonstrate the existence of a convex body at which pp attains a maxi-

mum, proceed as follows: Let p̂p denote the supremum of the functional pp taken over
all convex bodies. Let Ki denote a maximizing sequence for pp; i.e., Ki is a sequence
of convex bodies such that

lim
i→∞

pp(Ki) = p̂p.

In the next section we will use a class reduction technique to show (Lemma 7) that,
unless the body Ki is origin-symmetric, there exists an origin-symmetric body K̄i such
that pp(Ki) < pp(K̄i). Thus it may be assumed that the original maximizing sequence
consists solely of bodies that are origin-symmetric. A classical theorem of John (see e.g.
Thompson [T]) yields the existence of a sequence of origin-symmetric ellipsoids Ei such
that Ei ⊂ Ki ⊂

√
nEi. But since pp is a GL(n)-invariant functional, we may assume

that the maximizing sequence Ki is such that, for all i

B ⊂ Ki ⊂
√
nB,

where B denotes the origin-centered unit ball. The Blaschke selection theorem now
guarantees the existence of a body at which pp attains a maximum. Since this maxi-
mizing body is the limit (with respect to the Hausdorff metric) of a subsequence of the
Ki, it follows that this maximizing body contains the origin (in fact the interior of the
unit ball) in its interior.

We will use a class reduction technique to show that all bodies at which the maximum
of pp is attained must be sufficiently smooth. This reduction will be critical in our proof.
Finally, to prove that bp < 1 for all star bodies (except ellipsoids), we will use a class
reduction result to show that this follows from the fact that pp < 1 for a small class of
convex bodies.
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Although we will not use either the Petty projection inequality nor the Busemann-
Petty centroid inequality to prove their Lp analogs, we do not wish to reprove these
classical inequalities. Thus, throughout we shall restrict our attention solely to the case
of real p > 1. Of course, by taking limits (as p → 1) one may recover the classical
inequalities (but not necessarily their equality conditions) from their Lp analogs. We
note again that we will be tacitly assuming throughout that all bodies contain the origin
in their interiors.

3. Mixed and dual mixed volumes and the operators Π∗p and Γp

For quick reference, we recall some basic properties of Lp-mixed and dual mixed
volumes. Some recent applications of dual mixed volumes can be found in [G1], [Z2],
[Z3] and [Z4]. For general reference the reader may wish to consult the books of Gardner
[G2] and Schneider [S2]. We emphasize again that we are assuming throughout that
1 < p <∞ and that our convex (and star-shaped) bodies all contain the origins in their
interiors.

The radial function, ρK = ρ(K, · ) : Rn \ {0} → [0,∞), of a compact, star–shaped
(about the origin) K ⊂ Rn, is defined, for x 6= 0, by ρ(K,x) = max{λ ≥ 0 : λx ∈ K }.
If ρK is positive and continuous, call K a star body (about the origin). Two star
bodies K and L are said to be dilates (of one another) if ρK(u)/ρL(u) is independent
of u ∈ Sn−1.

If K is a convex body, then it follows from the definitions of support and radial
functions, and the definition of polar body, that

hK∗ = 1/ρK and ρK∗ = 1/hK . (5)

For star bodies K,L, and ε > 0, the Lp-harmonic radial combination K +̃ ε·L is the
star body defined by

ρ(K +̃ ε·L, · )−p = ρ(K, · )−p + ερ(L, · )−p.

While this addition and scalar multiplication are obviously dependent on p, we have
not made this explicit in our notation. The dual mixed volume Ṽ−p(K,L) of the star
bodies K,L, can be defined by

n

−p
Ṽ−p(K,L) = lim

ε→0+

V (K +̃ ε·L)− V (K)
ε

.

The definition above and the polar coordinate formula for volume give the following
integral representation of the dual mixed volume Ṽ−p(K,L) of the star bodies K,L:

Ṽ−p(K,L) =
1
n

∫
Sn−1

ρn+p
K (v)ρ−pL (v) dS(v), (6)

where the integration is with respect to spherical Lebesgue measure S on Sn−1.
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From the definition of support function, it follows immediately that for a convex
body K, an x ∈ Rn, and a φ ∈ SL(n), we have hφK(x) = hK(φtx), where φt denotes
the transpose of φ and φK = {φx : x ∈ K} is the image of K under φ. This and the
definition of a Firey Lp-combination shows that for a Firey Lp-combination of convex
bodies K and L, we have

φ(K+++ε···L) = φK+++ε···φL.

This observation together with the definition of the Lp-mixed volume Vp shows that for
φ ∈ SL(n) and convex bodies K,L we have Vp(φK, φL) = Vp(K,L) or equivalently

Vp(φK,L) = Vp(K,φ−1L). (7)

From the definition of radial function, it follows immediately that for a star body K,
an x ∈ Rn, and a φ ∈ SL(n), we have ρφK(x) = ρK(φ−1x). This and the definition of
an Lp-harmonic radial combination shows that for a Lp-harmonic radial combination
of star bodies K and L,

φ(K+̃ε·L) = φK+̃ε·φL.

This observation together with the definition of the dual mixed volume Ṽ−p shows that
for φ ∈ SL(n) and star bodies K,L we have Ṽ−p(φK, φL) = Ṽ−p(K,L) or equivalently

Ṽ−p(φK,L) = Ṽ−p(K,φ−1L). (8)

We shall require two basic inequalities regarding the Lp-mixed volumes Vp and the
dual mixed volumes Ṽ−p. The Lp analog of the classical Minkowski inequality states
that for convex bodies K,L,

Vp(K,L) ≥ V (K)(n−p)/nV (L)p/n, (9)

with equality if and only if K and L are dilates. The Lp-Minkowski inequality was
established in [L3] by using the Minkowski inequality. The basic inequality for the dual
mixed volumes Ṽ−p is that for star bodies K,L,

Ṽ−p(K,L) ≥ V (K)(n+p)/nV (L)−p/n, (10)

with equality if and only if K and L are dilates. This inequality is an immediate
consequence of the Hölder inequality and the integral representation (6).

From the definition of the mixed volume Vp it follows immediately that for each
convex body K,

Vp(K,K) = V (K). (11)

From the definition of the dual mixed volumes Ṽ−p it follows immediately that for each
star body K,

Ṽ−p(K,K) = V (K). (12)



LUTWAK, YANG, AND ZHANG 9

Note that (11) holds only for convex bodies, while identity (12) holds for all star bodies.
An immediate consequence of the dual mixed volume inequality (10) and identity

(12) is that if for star bodies K,L we have

Ṽ−p(Q,K)/V (Q) = Ṽ−p(Q,L)/V (Q),

for all star bodies Q which belong to some class that contains both K and L, then in
fact K = L.

Lemma 1. If K is a star body and L is a convex body in Rn, then

Vp(L,ΓpK) =
ωn

V (K)
Ṽ−p(K,Π∗pL).

Proof. From the definition of the Lp-centroid body of K,

hpΓpK(u) =
1

cn,pV (K)

∫
K

|u · x|pdx,

the integral representation (3), Fubini’s theorem, (5), and the integral representation
(6), it follows that

Vp(L,ΓpK) =
1
n

∫
Sn−1

hpΓpK(u)dSp(L, u)

=
1
n

∫
Sn−1

(
1

cn,pV (K)

∫
K

|u · x|pdx
)
dSp(L, u)

=
1

n(n+ p)cn,pV (K)

∫
Sn−1

∫
Sn−1

|u · v|pρn+p
K (v)dS(v)dSp(L, u)

=
ωn

nV (K)

∫
Sn−1

ρn+p
K (v)hpΠpL(v)dS(v)

=
ωn

V (K)
Ṽ−p(K,Π∗pL).

For p = 1 the identity of Lemma 1 was presented in [L2].

From (5) and the transformation rules for support and radial functions we see that
for a convex body K and φ ∈ SL(n)

(φK)∗ = φ−tK, (13)

where φ−t denotes the inverse of the transpose of φ.
An immediate consequence of the definition of the Lp-centroid body of K,

hpΓpK(u) =
1

cn,pV (K)

∫
K

|u · x|pdx,

is that for φ ∈ SL(n),
ΓpφK = φΓpK. (14)
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Lemma 2. If K is a convex body that contains the origin in its interior, 1 < p < ∞,
and φ ∈ SL(n), then

ΠpφK = φ−tΠpK.

Proof. From Lemma 1, followed by (7), (14), Lemma 1 again, and (8) we have for each
star body Q,

ωnṼ−p(Q,Π∗pφK)/V (Q) = Vp(φK,ΓpQ)

= Vp(K,φ−1ΓpQ)

= Vp(K,Γpφ−1Q)

= ωnṼ−p(φ−1Q,Π∗pK)/V (Q)

= ωnṼ−p(Q,φΠ∗pK)/V (Q).

But Ṽ−p(Q,Π∗pφK)/V (Q) = Ṽ−p(Q,φΠ∗pK)/V (Q) for all star bodies Q implies that

Π∗pφK = φΠ∗pK,

and now (13) yields the desired conclusion

Lemma 2 for p = 1 was established by Petty [P2] by using a very different argument.

In Lemma 1, take L = ΓpK, use (11) and get

Lemma 3. If K is a star body in Rn then

V (ΓpK) = ωnṼ−p(K,Π∗pΓpK)/V (K).

In Lemma 1, take K = Π∗pL, use (12) and get

Lemma 4. If L is a convex body in Rn then

Vp(L,ΓpΠ∗pL) = ωn.

For p = 1 this identity was obtained in [L2].

Recall that the Lp-Petty projection product of the convex body K was defined by

pp(K) = V (K)(n−p)/pV (Π∗pK)ω−n/pn ,

while the Lp-Busemann-Petty ratio of the star body K was defined by

bp(K) = V (K)/V (ΓpK).

Our ultimate goal is to show that both pp and bp never exceed 1 and that in fact
they will attain the value of 1 only on ellipsoids.
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From Lemma 3 and the dual mixed volume inequality (10) we immediately obtain

Lemma 5. If K is a star body in Rn and 1 < p <∞, then

pp(ΓpK) ≥ bp(K),

with equality if and only if K and Π∗pΓpK are dilates.

From Lemma 4 and the mixed volume inequality (9) we immediately obtain

Lemma 6. If K is a convex body in Rn and 1 < p <∞, then

bp(Π∗pK) ≥ pp(K),

with equality if and only if K and ΓpΠ∗pK are dilates.

Combine Lemmas 5 and 6 to get:

Lemma 7. If K is a convex body in Rn then

pp(ΓpΠ
∗
pK) ≥ pp(K),

with equality if and only if K and ΓpΠ∗pK are dilates.

Throughout, a convex body will be called smooth if its boundary is C2 with every-
where positive curvature. Thus smooth bodies have curvature bounded away from 0
and ∞. In the literature smooth bodies are often called C2

+.
Petty [P1] proved that all centroid bodies are smooth. The fact that this is also the

case for the Lp analogs of centroid bodies for p > 1 is much easier to see. Lemma 7 shows
that any body at which pp attains a maximum must be smooth and origin-symmetric.
Such class reduction methods were presented in [L1].

Our aim is to show that given any maximal bodyK for pp and any direction u ∈ Sn−1,
the midpoints of the chords of K in the direction u are coplanar. This together with the
classical Bertrand–Brunn theorem (see e.g. Thompson [T]) will allow us to conclude
that K is an ellipsoid. To this end a few preliminary lemmas are needed.

4. Some basic facts and lemmas

First we shall need the following trivial elementary inequality:

Lemma 8. If a, b ≥ 0 and c, d > 0, then for p > 1

(a+ b)p(c+ d)1−p ≤ apc1−p + bpd1−p,

with equality if and only if ad = bc.

Rewriting the inequality as

λ
a

c
+ (1− λ)

b

d
≤
{
λ
(a
c

)p
+ (1− λ)

(
b

d

)p}1/p

,

with λ = c/(c + d), shows that this is a direct consequence of the convexity of the
function t 7→ tp.
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If K is a convex body and ξ is a subspace of codimension 1, then SξK will denote
the Steiner symmetral of K with respect to ξ. Thus if K ⊂ Rn−1 × R, then

SRn−1 K = {(x, 1
2 t+ 1

2s) ∈ R
n−1 × R : (x, t) ∈ K, (x,−s) ∈ K}.

If K ⊂ Rn−1 × R is a convex body given by

K = {(x, t) ∈ Rn−1 × R : −g(x) ≤ t ≤ f(x), x ∈ Ko},

where Ko is the image of the orthogonal projection of K onto Rn−1 and f, g : Ko → R,
then

SRn−1 K = {(x, t) ∈ Rn−1 × R : − 1
2 (f(x) + g(x)) ≤ t ≤ 1

2 (f(x) + g(x)), x ∈ Ko},

We will need the following often used fact:

Lemma 9. Suppose K,L ⊂ Rn−1 × R are convex bodies. Then

SRn−1 K∗ ⊂ L∗,

if and only if

hK(x, t) = 1 = hK(x,−s), with t 6= −s =⇒ hL(x, 1
2 t+ 1

2s) ≤ 1.

In addition if SRn−1 K∗ = L∗, then hK(x, t) = 1 = hK(x,−s), with t 6= −s must imply
hL(x, 1

2 t+ 1
2s) = 1.

Lemma 9 is an immediate consequence of the definition of Steiner symmetrization,
identities (5) and the obvious fact that for each body Q, we have x ∈ Q\∂Q if and only
if ρQ(x) > 1.

Lemma 10. Suppose K ⊂ Rn−1 × R is a smooth convex body given by

K = {(x, t) ∈ Rn−1 × R : −g(x) ≤ t ≤ f(x), x ∈ Ko},

where Ko is the image of the orthogonal projection of K onto Rn−1 and f, g : Ko → R.
If h : Sn−1 → R is a continuous function then∫

Sn−1

h(u)
κK(u)

dS(u) =
∫

intKo

[h(u+
x )
√

1 + |∇f(x)|2 + h(u−x )
√

1 + |∇g(x)|2] dx,

where κK(u) is the Gauss curvature of ∂K at the point of ∂K whose outer unit normal
is u, while u+

x is the outer unit normal to K at (x, f(x)) and u−x is the outer unit normal
to K at (x,−g(x))

The Lemma is well known if h is the support function of a convex body. From
this it follows that the conclusion of the Lemma holds if h is the difference of support
functions of convex bodies. But all C2 functions can be written as the differences
of support functions and now the obvious approximation argument yields the desired
conclusion.
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Suppose A is an open subset of Rn−1 and f : A→ R is a C1 function, then 〈f〉 : A→ R

is the function defined by
〈f〉(x) = f(x)− x·∇f(x),

for each x ∈ A. Note that 〈·〉 is a linear operator; i.e., if f1, f2 : A→ R and λ1, λ2 ∈ R,
then

〈λ1f1 + λ2f2〉 = λ1 〈f1〉+ λ2 〈f2〉 .
We shall need the fact that the kernel of the operator 〈·〉 consists only of linear functions;
i.e.,

〈f〉(x) = 0 for all x ∈ A =⇒ f is linear on A.

Finally, we shall require the trivial observation that if A is origin-symmetric, then

f1(−x) = f2(x), for all x ∈ A, =⇒ 〈f1〉 (−x) = 〈f2〉 (x), for all x ∈ A. (15)

Lemma 11. Suppose K ⊂ Rn−1 × R is a smooth convex body given by

K = {(x, t) ∈ Rn−1 × R : − g(x) ≤ t ≤ f(x), x ∈ Ko},

where Ko is the image of the orthogonal projection of K onto Rn−1 and f, g : Ko → R.
Then

hK(−∇f(x), 1) = 〈f〉(x)

and
hK(−∇g(x),−1) = 〈g〉(x),

for all x ∈ intKo.

To see this note that for x ∈ intKo, the outer unit normal to ∂K at the point
(x, f(x)) is

u+
x =

(−∇f(x), 1)√
1 + |∇f(x)|2

(16+)

and the outer unit normal to ∂K at the point (x,−g(x)) is

u−x =
(−∇g(x),−1)√

1 + |∇g(x)|2
. (16−)

Hence

hK

(
(−∇f(x), 1)√
1 + |∇f(x)|2

)
= hK(u+

x ) = (x, f(x))·u+
x =

f(x)− x·∇f(x)√
1 + |∇f(x)|2

and

hK

(
(−∇g(x),−1)√

1 + |∇g(x)|2

)
= hK(u−x ) = (x,−g(x))·u−x =

g(x)− x·∇g(x)√
1 + |∇g(x)|2

.

The homogeneity (of degree 1) of hK now gives the identities of the Lemma.
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As an aside, we note that since K contains the origin in its interior, it follows that
for x ∈ intKo

〈f〉(x) = hK(−∇f(x), 1) > 0,

and
〈g〉(x) = hK(−∇g(x),−1) > 0.

5. Steiner symmetrization and the operator Π∗p

Lemma 12. Suppose K ⊂ Rn−1 × R is a smooth convex body given by

K = {(x, t) ∈ Rn−1 × R : − g(x) ≤ t ≤ f(x), x ∈ Ko},

where Ko is the image of the orthogonal projection of K onto Rn−1 and f, g : Ko → R.
Then the support function of ΠpK at (y, t) ∈ Rn−1 × R is given by

hpΠpK(y, t) =
1

nωncn−2,p

∫
intKo

[|t− y ·∇f(x)|p 〈f〉(x)1−p + |t+ y ·∇g(x)|p 〈g〉(x)1−p]dx.

Proof. It was shown in [L3] that the p-surface area measure Sp(K, · ) is absolutely
continuous with respect to the classical surface area measure SK and that the Radon-
Nikodym derivative

dSp(K, · )
dSK

= h1−p
K .

Since K is smooth, the measure SK is absolutely continuous with respect to spherical
Lebesgue measure S and the Radon-Nikodym derivative

dSK
dS

= 1/κK

where κK : Sn−1 → (0,∞) is the Gauss curvature of ∂K viewed as a function of the
outer normals (i.e., κK(u), for u ∈ Sn−1, is the Gauss curvature at the point of ∂K
whose outer unit normal is u).

These observations together with the definition of ΠpK show that for (y, t) ∈ Rn−1×R

hpΠpK(y, t) =
1

nωncn−2,p

∫
Sn−1

|(y, t)·u|p
h1−p
K (u)
κK(u)

dS(u).

Now if h : Rn → R is any continuous function that is homogeneous of degree 1, then
from (16+), (16−), and Lemma 10 it follows that∫

Sn−1

h(u)
κK(u)

dS(u) =
∫

intKo

[h(−∇f(x), 1) + h(−∇g(x),−1)] dx.

The desired result now follows from Lemma 11.
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If in addition, K is also origin-symmetric, then g(−x) = f(x) for all x ∈ intKo. Now
(15) shows that in this case Lemma 12 becomes:

Lemma 13. Suppose K ⊂ Rn−1 × R is a smooth origin-symmetric convex body given
by

K = {(x, t) ∈ Rn−1 × R : −g(x) ≤ t ≤ f(x), x ∈ Ko},
where Ko is the image of the orthogonal projection of K onto Rn−1 and f, g : Ko → R.
Then the support function of ΠpK at (y, t) ∈ Rn−1 × R is given by

hpΠpK(y, t) =
2

nωncn−2,p

∫
intKo

|t− y ·∇f(x)|p 〈f〉(x)1−p dx,

hpΠpK(y, t) =
2

nωncn−2,p

∫
intKo

|t+ y ·∇g(x)|p 〈g〉(x)1−p dx.

Lemma 14. Suppose 1 < p < ∞ and K is a smooth origin-symmetric convex body in
R
n. If ξ is a subspace of codimension 1, then

Sξ Π∗pK ⊂ Π∗p SξK,

with equality if and only if the chords of K orthogonal to ξ have midpoints that are
coplanar.

Proof. Without loss of generality assume ξ = R
n−1 and K ⊂ Rn−1 × R is given by

K = {(x, t) ∈ Rn−1 × R : −g(x) ≤ t ≤ f(x), x ∈ Ko},
where Ko is the image of the orthogonal projection of K onto Rn−1 and f, g : Ko → R,
while

SRn−1 K = {(x, t) ∈ Rn−1 × R : − 1
2 (f(x) + g(x)) ≤ t ≤ 1

2 (f(x) + g(x)), x ∈ Ko}.
Now suppose,

hΠpK(y, t) = 1 = hΠpK(y,−s), with t 6= −s.
Since K is smooth and centered, obviously so is SRn−1 K. Now Lemma 13, the triangle
inequality, Lemma 8, and Lemma 13 again, give

hpΠp SξK
(y, 1

2 t+ 1
2s)

=
2

nωncn−2,p

∫
intKo

∣∣( 1
2 t+ 1

2s)− y ·∇( 1
2f + 1

2g)(x)
∣∣p 〈 1

2f + 1
2g
〉

(x)1−pdx

≤ 1
nωncn−2,p

∫
intKo

(|t− y ·∇f(x)|+ |s− y ·∇g(x)|)p(〈f〉(x) + 〈g〉(x))1−pdx

≤ 1
nωncn−2,p

∫
intKo

[|t− y ·∇f(x)|p 〈f〉(x)1−p + |s− y ·∇g(x)|p 〈g〉(x)1−p]dx.

= 1
2h

p
ΠpK

(y, t) + 1
2h

p
ΠpK

(y,−s)
=1.
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Thus hΠp SξK(y, 1
2 t+ 1

2s) ≤ 1 which by Lemma 9 yields the desired inclusion.
If Sξ Π∗pK = Π∗p SξK then by Lemma 9, we have hpΠ∗p SξK

(y, 1
2 t+

1
2s) = 1 which would

force equality in the inequalities above. The equality conditions of Lemma 8 now forces

|t− y ·∇f(x)| 〈g〉(x) = |s− y ·∇g(x)| 〈f〉(x)

for all x ∈ intKo. Choose y = 0 and (since s, t are such that (0, t), (0,−s) ∈ ∂Π∗pK) we
must have s = t and thus 〈g〉(x) = 〈f〉(x) for all x ∈ intKo. But

〈f − g〉 = 0

implies that f − g is linear and hence that the chords of K orthogonal to Rn−1 have
coplanar midpoints.

The fact that the coplanarity of the midpoints of the chords of K that are orthog-
onal to ξ forces Sξ Π∗pK = Π∗p SξK is left to the reader (and will not be used in this
article). �

Note that an obvious limit argument shows the inclusion of Lemma 14 for p > 1
and K origin-symmetric and smooth immediately yields exactly the same inclusion for
all p ≥ 1 and all arbitrary origin-symmetric bodies K. However, the critical equality
conditions are lost in the limit process.

6. Proofs of the theorems

Since the volume of convex bodies is obviously unaffected by Steiner symmetrization,
Lemma 14 and the definition of pp immediately yield:

Lemma 15. If K is a smooth origin-symmetric convex body and ξ is a codimension 1
subspace, then

pp(K) ≤ pp(SξK),

with equality if and only if the chords of K orthogonal to ξ have coplanar midpoints.

Now a body at which pp attains a maximum must be (by our class reduction argu-
ments) both origin-symmetric and smooth. But the body’s maximality together with
Lemma 15 shows that any parallel set of chords of the body must have coplanar mid-
points. The classical Bertrand-Brunn theorem now allows us to conclude that this
maximal body must be an ellipsoid. This proves Theorem 2.

Lemma 5 shows that Theorem 2 immediately gives Theorem 1.

7. Open problems

Question. Suppose 1 ≤ p <∞ and K is a convex body in Rn. If ξ is a subspace of Rn

of codimension 1, then is it the case that

Sξ Π∗pK ⊂ Π∗p SξK,
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with equality if and only if the chords of K orthogonal to ξ have midpoints that are
coplanar?

A positive answer to this question would immediately and directly yield a proof of
Theorem 2 (and thus Theorem 1 as well).

Conjecture. If K is a convex body such that ΓpΠ∗pK is a dilate of K, then K must be
an ellipsoid.

A proof of this together with Lemma 7 immediately proves Theorem 2 (and thus
Theorem 1 as well). Obviously, this is the true for p = 2.
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