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Abstract—The moment-entropy inequality shows that a con-  Analogues for convex and star bodies of the moment-

tinuous random variable with given second moment and maximal entropy, Fisher information-entropy, and C&miRao inequal-

Shannon entropy must be Gaussian. Stam’s inequality shows that ities had been established earlier by the authors [3], [4], [5]
a continuous random variable with given Fisher information and R

minimal Shannon entropy must also be Gaussian. The Cra#r- [61, [7]
Rao inequality is a direct consequence of these two inequalities.

entropy, p-th moment, and generalized Fisher information. Gen-
eralized Gaussian random densities are introduced and shown to

In this paper the inequalities above are extended to Renyi II. DEFINITIONS
Throughout this paper, unless otherwise indicated, all inte-

be the extremal densities for the new inequalities. An extension of grals are with respect to Lebesgue measure over the real line

the Cramér—Rao inequality is derived as a consequence of theseR. All densities are probability densities dh
moment and Fisher information inequalities.

Index Terms—entropy, Renyi entropy, moment, Fisher infor- A. Entropy

mation, information theory, information measure The Shannon entropypf a densityf is defined to be

9.6.5 in [1]). This follows from the nonnegativity of the
relative entropy of two continuous random variables. In this

Wf] = - /R flog f, 1)

HE moment-entropy inequality shows that a continUOL%rOVided that the ‘“teg“'?" a_bove .exists. Por- 0 the \-Renyi
random variable with given second moment and maximgptmpy powef a density is defined to be

Shannon entropy must be Gaussian (see, for example, Theorem = _
( / fA> if A1,
NAlfl = R

I. INTRODUCTION

)

paper we introduce the notion of relative Renyi entropy for two ehl?] if A=1,

random variables and show that it is always nonnegative. ;jyﬁ)vided that the integral above exists. Observe that

identify the probability distributions that have maximal Renyi
entropy with givenp—th moment and call them generalized lim Ny[f] = N1[f].
Gaussians.

A—1

In his proof of the Shannon entropy power inequality Sta%he A-Renyi entropyf a densityf is defined to be

[2] shows that a continuous random variable with given Fisher ha[f] = log Na[f].
information and minimal Shannon entropy must be Gaussian.

We introduce below a generalized form of Fisher im‘ormatio,-rl;he entropy /1, [ f]
associated with Renyi entropy and that is, in some sense, &

is continuous in\ and, by the Hlder
quality, decreasing in. It is strictly decreasing, unlesf

to the p—th moment. A generalization of Stam'’s inequality i&S & uniform density.

established. The probability distributions that have maximal

Renyi entropy with given generalized Fisher information af@. Relative entropy

the generalized Gaussians. Given two densitiesf,g : R — R, their relative Shannon

The Crangér-Rao inequality (see, for example, Theorermentropyor Kullback—Leibler distanc@l1], [12], [13] (also, see

12.11.1 in [1]) states that the second moment of a continucpsge 231 in [1]) is defined by
random variable is bounded from below by the reciprocal

of its Fisher information. We use the moment and Fisher hilf. 9] = / flog <£>, 3
R

information inequalities to establish a generalization of the

Cranér—Rao inequality, where a lower bound is obtained f@rovided that the integral above exists. Givan> 0 and
the p-th moment of a continuous random variable in term&vo densitiesf andg, we define theelative A-Renyi entropy
of its generalized Fisher information. Again, the generalizgpwer of f and g as follows. If X # 1, then

Gaussians are the extremal distributions.
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and, if A\ = 1, then informationof a densityf by ¢, [f] and define it as follows.

Nilf. ] = 1159 If p e (1,00), letq € (1,00] satisfyp~'4¢~! = 1, and define
1lJ,9] =€ s

g A—2 r/|q
provided in both cases that the righthand side exists. Define Opalf]" = /le P, (7)
the A-Renyi relative entropy of and g by provided thatf is absolutely continuous, and the norm above
A N X )
half, gl = log N [f, 9. is finite. If p = 1, theng, »[f]* is defined to be the essential
A4l g Nalf. gl supremum of|f*=2f’| on the support off, provided f is
Observe that,[f, g] is continuous in\. absolutely continuous, and the essential supremum is finite.
Lemma 1:If f andg are densities such that[f], ha[g], If p = oo, then¢, \[f]* is defined to be the total variation
andh,[f, g] are finite, then of 2/, provided thatf* has bounded variation. (see, for
example, [17] for a definition of “bounded variation”).
halfs 91 = 0. Note that our definition of generalized Fisher information

has a different normalization than the standard definition. In
particular, the classical Fisher information corresponds to the
are of(2, 1)-th Fisher information, as defined above.

he Fisher informatior,, »[f] is continuous in(p, A). For

a given)\ it is, by the Hlder inequality, decreasing in

A—1 1
P by
A—1 A A
/Rg = (/Rg ) </Rf ) ) E. Generalized Gaussian densities

Givent € R, let

Equality holds if and only iff = g.

Proof: The case\ = 1 is well-known (see, for example,
page 234 in [1]). The remaining cases are a direct consequeﬁ&%
of the Holder inequality. IfA > 1, then we have

and if A < 1, then we have

t4+ = max{¢t,0}.
A_ A—1 A A(1—N)
/Rf /R(g )y Let

(L) () o[ e

_ N _ N denote the Gamma function, and let
The equality conditions follow from the equality conditions of T(a)T(b)

the Holder inequality. [ B(a,b) = Tath)
a

denote the Beta function.
For eachp € [0,00] and A > 1 — p, we define the
For p € (0,00) definep-th momenbf a densityf to be correspondinggeneralized Gaussian densiy : R — [0, co)
as follows. Ifp € (0, 00), thenG is defined by

uplf]= /]R ) © Glz) = {am(l (= NPT A£L

C. Thep-th moment

P . (8)
provided that the integral above exists. ko€ [0, oc] define ap e~ 1! if A\=1,
the p-th deviationby where 1

p(1—A)?r :
i — — - ifA<1
exp /f:vlogmdw) if p=0, i1 1 ! ,
([ #@oela i —y
1 . p .
711 = § () f0<p<oo © 4 = 3 30T A=
p
€ess s : >0} if p= o0, p(A — 1)% ;
sup{|z| : f(z) >0} if p=ooc YT if A > 1.
ﬂ(pa )\_1)

provided in each case that the right side is finite. The deviation
o,[f] is continuous irp and, by the Wlder inequality, strictly If p=0andX > 1, then( is defined for almost every € R

increasing inp. by .
G(z) = ao(—loglz[) 17,
D. The(p, A)-th Fisher information where 1
Recall that the classical Fisher information [14], [15], [16] ap,\ = @

of a densityf : R — R is given by

¢mUP=Af”Wﬁ

provided f is absolutely continuous, and the integral exists. G(z) =
If p € [1,00] and A € R, we denote thegp, \)-th Fisher 0 if |z| > 1.

If p=ocandX > 0, thenG is defined by

1 .



For consistency we shall also denatg , = 1 We will also need the following simple scaling identities:

5.
For¢ > 0, defineG; : R — [0, 00) by

A 4l=X A
Gi(x) = G(z/t)/t. 9) /RGt =t /RG ) (14)
Sz. Nagy [8] established a family of sharp Gagliardoénd
Nirenberg inequalities orR and their equality conditions.
His results can be used to prove Theorem 3 and identify 0, [Ge] = to,[C] (15)
p - p :

the generalized Gaussians as the extremal densities for the
inequalities proved in this paper. Later, Barenblatt [9] showed
that the generalized Gaussians are also the self—similar so-
lutions of the L? porous media and fast diffusion equations.
Generalized Gaussians are also th@imensional versions of |t is well known that among all probability distributions with
the extremal functions for sharp Sobolev, log-Sobolev, amfiyen second moment, the Gaussian is the unique distribution
Gagliardo-Nirenberg inequalities (see, for example, [10]). that maximizes the Shannon entropy. This follows from the
positivity of the relative entropy of a given distribution and
a Gaussian distribution of the same variance. This result is

IIl. THE MOMENT INEQUALITY

F. Information measures of generalized Gaussians

If 0 <p<ooandX > 1/(1 + p), the A-Renyi entropy
power of the generalized Gaussiéhdefined by (8) is given

by

1
A >1—A .
e a”t ifA£L
N,A[G] = (p/\-i-)\—l P
e%a;& if A=1

If p=0and\ > 1, then

A

(5

-1

-1

NA[G] Qg x-

)1%
If p=o0candX > 0, then
N)[G] =2. (10)

If 0 <p<ooandX>1/(1+ p), then thep—th deviation
of G is given by

oplG = (pA+ A —1)77.
If p=0andX > 1, then

If p= o0, then
0xo]G] = 1.
If 1 <p<ooandA>1/(1+ p), then the(p, \)-th Fisher
information of the generalized Gaussiéhis given by

p AN A+ A= 1)T0TDN i p < oo,
dp[G] = ¥

2(1-3)/ /\1/A if p=oo.

In particular, observe that if <p < co andA > 1/(1+p),
then

NA[G]* ™ = Aoy [Glép A [G]. (11)
Observe that ifA # 1, then
[ 6 =@ - mic), (12)
and if A =1, then
RIG]) = —logay1 + up[G]. (13)

generalized tg-th moments in Chapter 11 of [1].

We show that a similar inequality for theth moment and
A—Renyi entropy follows from the positivity of tha—Renyi
relative entropy of a given distribution and the appropriate
extremal distribution with the sameth moment.

Theorem 2:Let f : R — R be a density. Ifp € [0, o],
A>1/(1+p), andNy[f],0,[f] < oo, then

olf] - 3[G]
SATISSAEN

(16)

whereG is given by (8). Equality holds if and only if = G;
for somet € (0, 00).
Proof: For convenience let = a, . Let

Up[f]

= Up[G].

17

First, consider the cask # 1. If p € (0,00), then by (8)
and (9), (5), (17), and (12),

/R Gy f

>a N (1 /\)a*‘ltl‘k‘p/ 2| f(2) dz
R
[/])

A e (S G\ a7
= AU+ (1 - A)pgy[G)

_ tlf)\/ G/\7
R

where equality holds if\ < 1. For p = oo observe thatf
vanishes outside the intervatt, t] and therefore by (8) and
(9) and (6),

(18)

¢
/ Gl f = a1 f(z)dx
R —t

e

:fAH/GA'
R

It follows that if p € (0,00] and X\ # 1, then by Lemma 1,

(19)



(4), (18), (19), and (14), and (17), we have Theorem 3:Let p € [1,00], A € (1/(1 + p),00), and f :
1< Ny[f, G R — [0, 00) be a density. lf{p < oo, then f is assumed to be
= AL absolutely continuous; if = oo, then f* is assumed to have

_ (/ GA> </ fA)ll* (/ GA1f>1A bounded variation. 1V, [f], ¢, [f] < oo, then

- t t
N]f[G] . . (20) Do ALFINALS] = dp A [GINA[G], (22)

= 75NA[f] where G is the generalized Gaussian. Equality holds if and
op[f] NA[G] only if there existt > 0 andzy € R such thatf(z) = G¢(z —

= NAlf] o,[G]” xp), for all z € R.

As mentioned earlier, Theorem 3, including its equality

If A =1andp € (0,00), then by Lemma 1, (3), (8), and conditions, follow from sharp analytic inequalities established

(9), and (17) and (13), we have by Sz. Nagy [8]. Inequality (22) complements the sharp
0 < h[f, G Gagliardo-Nirenberg inequalities oR™, with n» > 2 and

n/(n—1) < p < oo, established by Del Pino and Dolbeault

— _ -p
= —hlf] —loga+logt + 7" [ f] [10] and generalized by Cordero, Nazaret, and Villani [20].

= h[G] — h[f] +log o[ f] — log o, [G]. The proof presented here is inspired by the beautiful mass
If A\ =1 andp = oo, then by Lemma 1, (3), (1), (8) and (9)’transportation proof of Cordero gt_ al. Ob;erve, however, that
there is no overlap between their inequalities and ours.
and (17), (1), and (6), L .
Before giving the proof of this theorem, we need a change
0 < h[f, Gi] of random variable formula and a lemma on integration by
arts.
— [ 101~ [ floxG P
R R
= —h[f] —loga + logt A. Change of random variable
= —h[f] + h[G] +log oo [f] — log oo [G]. Let X be a random variable with densify Let the support

of f be contained in an intervdlS, T'). Given an increasing
absolutely continuous functiop : (S,7) — R, the random
variableY = y(X) has densityy, where

This gives inequality (16) fop = cc.
If p=0andX > 1, then from (8) and (6), we have

AN a1
/RG = —a”"logoy[G]. (21) f(x) = gly(x))y (z),
Therefore, by (8) and (9), (6), (17), and (21), for almost everyr, andg(z) = 0, for eachz € R\y((S,T)).
. Therefore, if N [g] < oo, then
Gy f 1
R T -
L PYSWAN DN if A 17
> M1 /R(logt —log |z|) f(x) dx Nalg] = (/S ) > tA# (23)
= a* 1t M (logt — log ag[f]) "] if A=1,
= —tMa* 1 log oo [G] where
T
—en [ ol = bl + [ Fa)logy @) dn. @4)
= s

The inequality forp = 0 and A > 1 now follows from (20).  Similarly, if the p-th moment ofg is finite, then it is given by
In all cases, Lemma 1 shows that equality holds if and only

T
it f=0G,. n :/ p _
A higher dimensional version of Theorem 2 was established pold] s (@) f(z) dz (3)
by the authors in [7]. The cage= 2 of Theorem 2 was also
established independently by Costa, Hero, and Vignat [18]B. Integration by parts
It is also worth noting that Arikan [19] obtains a moment- | emma 4: Let S,T € [~o00,00] and f : (S,T) — R be an
entropy inequality for discrete random variables analogous dBsolutely continuous function such that
Theorem 2. His inequality, however, is for the limiting case

A =1/(1 + p), where Theorem 2 does not apply. lim f(z) = lim f(z) = 0. (26)
IV. THE FISHER INFORMATION INEQUALITY Let g : (S,T) — R be an increasing absolutely continuous

function such that
Stam’s inequality [2] shows that among all probabilityu on su lim g(£) > 0

distributions with given Fisher information, the unique dis- t—T
tribution that minimizes Shannon entropy is Gaussian. Th@( the integral

following theorem extends this fact t&—Renyi entropy and T

(p, \)-th Fisher information. /S f'g



is absolutely convergent. Then Lemma 4, Hlder’s inequality, and (6) and (7), we have

/ g, h[g]=h[f]+/STf10gy’

Proof: It sufflces to prove

lim = lim =0. T
lim f(s)g(s) = lim f(t)g(t) :hmﬂog/ iy (28)
S
The same proof works for both limits, so we will show only
that the right limit vanishes. < h[f] +log (/ |(log f)' qf) (/ |y|pf)

= h[f] +1og ép[floplgl,

wheregq is the Hilder conjugate op.

0= lim U1 (@) de

By the equality conditions of the dider inequality, equality
> thf%\g \/ z)|dx holds for (27) and (28), only if there exist faf, co, 29 €
R such thaty = ¢;1(z — x¢), and f satisfies the differential
> hm lg(t) ‘/ (= equation
_ hm ‘g( ) ‘ (f(l‘))\)/ = CQ‘x - $O|p_2($ - [L‘())f(l')
This, in turn, implies that there exist¢ > 0 andz, € R such
m thatg = G, and f(x) = G (z — x0), for all z € R. On the
other hand, by (11) equality always holds for (22)fiE G;.
If p = oo, let g be compactly supported on the interval
C. Proof of Theorem 3 (=R, R) with R < oo, and extend the domain aof to the

entire real line by setting(z) = —R for all z € (-0, S|
Let ¢ be a density that is supported on an open intervahdy(z) = R for all z € [T, c). Following the same line of
(—R, R) for someR € (0,00]. Let S, T € [—oo0, 0] be such reasoning as (27), we get
that (S,T) is the smallest interval containing the support of T
f. Definey : (S,T) — (—R, R) so that for eachx € (S,T), Ni[f] A Nalg] < _/ (fM'y
S

[ seras= [ g < [ 1]
S -R A
= A0oo[9]Poo [ f]7

Observe that n?( is a random variable 'Wlth density, then Equality holds if and only if there exist;, ¢z, 20 € R such
the random variabl®” = y(X) has density. .
thaty = ¢1(z — xp), and |y| is constant on the support of

If A # 1andp < oo, then by (2) and (23), blders (f*). This is possible only ifS, T < co, and f is a uniform
inequality, Lemma 4, Hider's inequality again, and (6) anddensny for the intervalS, 7). In other words,f = G;, for

(7). we have somet € (0,00).
Ny[f]*N )
U] ’\[g]_ N ) V. THE CRAMER—RAO INEQUALITY
=X =X
_ /T 2 /T ) The following theorem generalizes the classical Ggam
s s Rao inequality [21], [22] (also, see Theorem 12.11.1 in [1]).
T Theorem 5:Let p € [1,00], A € (1/(1 + p),o0), and f
/ 2y be a density. Ifp < oo, then f is assumed to be absolutely

T continuous; ifp = oo, then f* is assumed to have bounded
_/ (FM'y (27)  variation. If o,,[f], pp.A[f] < oo, then
S

Op [pr)\[f] > 0p [G]Qsp,)\[G]‘

T
Y 1/p A—=1—1/p ¢1
/S W) 1) Equality holds if and only iff = G,, for somet > 0.

1/p 1/q The inequality is a direct consequence of (16) and (22).
<a([wen) (L)
R R
< /\ap[g]qbp,k[f]k, VI. INEQUALITIES FORSHANNON AND QUADRATIC
ENTROPY
whereq is the Hilder conjugate op. The casep = 1 and A = 1 of these theorems give the

If A =1 andp < oo, then by (24), Jensen’s inequality,following.



Corollary 6: If f : R — R is an absolutely continuous [7] —, “Moment-entropy inequalities,Annals of Probability vol. 32,

density with finite Shannon entropy, first moment, gmdl)-

th Fisher information, then
_ N
upltog £) " < "2 < [ als)

R

Equality holds for the first inequality if and only if there exisr[lo]
t > 0 andz, € R such that
1 ool

f@) = 5 7

for all x € R. Equality holds for the second inequality if and*?
only if there exists > 0 such that (29) holds with:y = 0.
The casep = 1,2 and\ = 2 give the following inequalities [13]
for quadratic entropy. [14]
Corollary 7: If f : R — R is an absolutely continuous
density with finite2-Renyi entropy, first moment, and, 2)-
th Fisher information, then

2 - 2
2([elsrar) < [ 222 el

Equality holds for the left inequality if and only if there existig]
t > 0 andz, € R such that
flz) = (1= |z — 2ol /1)1 /t,

for all x € R. Equality holds for the right inequality if and

only if there exists > 0 such that (30) holds withxyg = 0.
Corollary 8: If f : R — R is an absolutely continuous

density with finite 2-Renyi entropy, second moment, and?!!

(2,2)-th Fisher information, then
1/4
([urs)
R

5 —1/2
5;),/2(/R$2f(93)d$> S/Rf2§

Equality holds for the left inequality if and only if there exist
t > 0 andz, € R such that

fl@) = (1 — |z — ol /t%) 4 /1, (1)

(8]

El

(29) [11]

[15]

(16]

(17]

(30) (1]

(20]

612 [22]
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