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ON THE Lp-MINKOWSKI PROBLEM

ERWIN LUTWAK, DEANE YANG, AND GAOYONG ZHANG

Abstract. A volume-normalized formulation of the Lp-Minkowski problem
is presented. This formulation has the advantage that a solution is possible
for all p ≥ 1, including the degenerate case where the index p is equal to the
dimension of the ambient space. A new approach to the Lp-Minkowski problem
is presented, which solves the volume-normalized formulation for even data and
all p ≥ 1.

The Minkowski problem deals with existence, uniqueness, regularity, and sta-
bility of closed convex hypersurfaces whose Gauss curvature (as a function of the
outer normals) is preassigned. Major contributions to this problem were made by
Minkowski [M1], [M2], Aleksandrov [A2], [A3], [A4], Fenchel and Jessen [FJ], Lewy
[Le1] [Le2], Nirenberg [N], Calabi [Cal], Pogorelov [P1], [P2], Cheng and Yau [ChY],
Caffarelli, Nirenberg, and Spruck [CNS], and others.

Variants of the Minkowski problem were presented by Gluck [Gl1] and Singer [Si].
The survey of Gluck [Gl2] still serves as an excellent introduction to the problem.

In this article we consider a generalization of the Minkowski problem known as
the Lp-Minkowski problem. This generalization was studied in [Lu1] and [LuO]. See
Stancu [St1], [St2] and Umanskiy [U] for other recent work on the Lp-Minkowski
problem.

In [Lu1] a solution to the even Lp-Minkowski problem in Rn was given for all
p ≥ 1 (the case p = 1 is classical), except for p = n. The solution to the even Lp-
Minkowski problem was one of the critical ingredients needed to obtain the sharp
affine Lp Sobolev inequality [LuYZ1].

The lack of a solution for the case p = n is troubling. In this article we present
a new volume normalized form of the classical Minkowski problem. This problem
has a natural Lp analog that can (and will) be solved for all p ≥ 1 for the even
data case. It must be emphasized that, except for the critical case p = n, both
the Lp-Minkowski problem and the volume normalized Lp-Minkowski problem are
equivalent in that a solution to one will quickly and trivially provide a solution
to the other. The road to the solution given here to the even volume normalized
Lp-Minkowski problem is quite different from the path taken in [Lu1] in solving
the even Lp-Minkowski problem. The solution to the volume-normalized even Lp-
Minkowski problem for all p ≥ 1 is needed in [LuYZ2].

A compact convex subset of Euclidean n-space Rn will be called a convex body.
Associated with a convex body K is its support function h(K, · ) : Sn−1 → R
which, for u ∈ Sn−1, is defined by h(K,u) = max{u · x : x ∈ K}. For each
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u ∈ Sn−1, the subset of K of the form {x ∈ K : x·u = h(K,u)} is called a face of
K with outer unit normal u. If the face has positive area (i.e., (n− 1)-dimensional
volume), then it is called a proper face of K. The distance from the origin to the
plane containing a proper face is called the support number associated with the face.
If u1, . . . , uN ∈ Sn−1 and c1, . . . , cN > 0, then a convex body P of the form

P =
N⋂
i=1

{x ∈ Rn : x·ui ≤ ci}

is called a convex polytope.
The Minkowski problem with discrete data asks: Under what conditions on the

unit vectors u1, . . . , uN and real numbers a1, . . . , aN > 0 does there exist a convex
polytope with N proper faces whose outer unit normals are u1, . . . , uN and such
that the face with outer unit normal ui has area ai? Minkowski’s solution to the
problem is as follows:

If the unit vectors u1, . . . , uN do not lie in a great subsphere of Sn−1 and the
positive numbers a1, . . . , aN are such that

N∑
i=0

aiui = 0,

then there exists a convex polytope in Rn with N proper faces whose outer unit
normals are u1, . . . , uN and such that the face with outer unit normal ui has area
ai. Furthermore, this polytope is unique, up to translation.

A special case is the solution of the Minkowski problem with even discrete data:
If u1, . . . , uN ∈ Sn−1 do not lie in a great subsphere of Sn−1 and a1, . . . , aN > 0 are
given, then there exists a convex polytope in Rn, symmetric about the origin, with
2N proper faces whose outer unit normals are ±u1, . . . ,±uN such that the faces
with outer unit normal ±ui have area ai. Furthermore, this polytope is unique (up
to translation).

The Lp-Minkowski problem with discrete data asks the following question:
Suppose α ∈ R is fixed. Under what conditions on N unit vectors u1, . . . , uN

and positive real numbers a1, . . . , aN does there exist a convex polytope with N
proper faces whose outer unit normals are u1, . . . , uN , and such that if fi and hi
are the area and support number of the face with outer unit normal ui, then

hαi fi = ai, for all i.

Obviously, for the case α = 0 the Lp-Minkowski problem reduces to the classical
Minkowski problem.

A solution to the Lp-Minkowski problem with discrete even data was given in
[Lu1], as follows:

Suppose α ≤ 0 and α 6= 1 − n. If the unit vectors u1, . . . , uN do not lie in a
great subsphere of Sn−1 and a1, . . . , aN > 0 are given, then there exists a convex
polytope in Rn that is symmetric about the origin, with 2N proper faces such that
if fi and hi are the area and support numbers of the faces with outer unit normals
±ui, then

hαi fi = ai, for all i.
Furthermore, the polytope is unique if α < 0.

There is a Minkowski problem for arbitrary convex bodies. To state this problem,
some preliminary terminology and notation is helpful.
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A point x on the boundary ∂K is said to have an outer unit normal u if x · u =
h(K,u); i.e., the point x has an outer normal u if x belongs to the face of K that
has an outer normal u. (Obviously, a point of ∂K may have more than one outer
unit normal.) The surface area measure, S(K, · ), of a convex body K is a Borel
measure on Sn−1 that can be defined as follows: If ω is a Borel subset of Sn−1,
then S(K,ω) is the (n − 1)-dimensional Hausdorff measure of the set of points on
∂K that have an outer unit normal that is a member of the set ω.

If P is a polytope with N proper faces with areas f1, . . . , fN and corresponding
normals u1, . . . , uN , then the measure S(P, · ) is a discrete measure whose support
is {u1, . . . , uN} and such that

S(P, {ui}) = fi, for all i.

If K is a convex body whose boundary is sufficiently smooth and has positive Gauss
curvature, then the Radon-Nikodym derivative of S(K, · ), with respect to spherical
Lebesgue measure, is a function on Sn−1 whose value at the point u ∈ Sn−1 is the
reciprocal Gauss curvature of ∂K at the point whose outer unit normal is u.

The Minkowski problem asks: Under what conditions on a measure µ on Sn−1

does there exist a convex body K such that

S(K, · ) = µ?

The answer for this problem is as follows:
If µ is a Borel measure on Sn−1 whose support is not contained in a great

subsphere of Sn−1 and whose centroid is at the origin, i.e.,∫
Sn−1

u dµ(u) = 0,

then there exists a convex body K such that

S(K, · ) = µ.

Furthermore, the body K is unique, up to translation. For arbitrary convex bodies
this solution is due to Aleksandrov [A2], and Fenchel & Jessen [FJ].

To state the Minkowski problem with even data, recall that a measure is said to
be even if it assumes the same values on antipodal Borel sets. The solution to the
Minkowski problem with even data follows immediately from the general solution,
and has the following simple formulation:

If µ is an even Borel measure on Sn−1 whose support is not contained in a great
subsphere of Sn−1, then there exists a convex body K, symmetric about the origin,
such that

S(K, · ) = µ.

Furthermore, the body K is unique (up to translation).
The Lp-Minkowski problem asks the following question:
Suppose α ∈ R is fixed. Under what conditions on a measure µ on Sn−1 does

there exists a convex body K such that

h(K, · )αdS(K, · ) = dµ?

Obviously, for the case α = 0 the Lp-Minkowski problem reduces to the classical
Minkowski problem. For sufficiently smooth bodies and α = 1 the problem was
posed by Firey [Fi].



4 E. LUTWAK, D. YANG, AND G. ZHANG

A partial solution to the Lp-Minkowski problem with even data was given in
[Lu1]:

Suppose α ≤ 0 and α 6= 1 − n. If µ is an even Borel measure on Sn−1 whose
support is not contained in a great subsphere of Sn−1, then there exists a convex
body K, symmetric about the origin, such that

h(K, · )αdS(K, · ) = dµ.

Furthermore, the body K is unique if α < 0.
The restriction in the solution to the even Lp-Minkowski problem that α 6= 1−n

is troubling. It is shown in this article that if we normalize by the volume V (K)
of the solution K, then there is a solution to the even Lp-Minkowski problem
for all α ≤ 0 (with no additional restriction). Note that this normalized even Lp-
Minkowski problem is equivalent to the even Lp-Minkowski problem for all α except
1− n.

We first present a solution to the normalized even discrete Lp-Minkowski problem:

Theorem 1. Suppose α ≤ 0. If the unit vectors u1, . . . , uN do not lie in a great
subsphere of Sn−1 and a1, . . . , aN > 0 are given, then there exists a convex polytope
P in Rn that is symmetric about the origin, with 2N proper faces, such that if fi
and hi are the area and support numbers of the faces with outer unit normals ±ui,
then

hαi fi/V (P ) = ai, for all i.
Furthermore, the polytope is unique if α < 0.

This will yield the solution to the normalized Lp-Minkowski problem with even
data:

Theorem 2. Suppose α ≤ 0. If µ is an even Borel measure on Sn−1 whose support
is not contained in a great subsphere of Sn−1, then there exists a convex body K,
symmetric about the origin, such that

h(K, · )α
V (K)

dS(K, · ) = dµ.

Furthermore, the body K is unique if α < 0.

1. Basics from the Brunn-Minkowski-Firey theory

The Brunn-Minkowski-Firey theory provides the tools for the solution of the
Lp-Minkowski problem. For quick reference, the essentials are presented in this
section. The Brunn-Minkowski-Firey theory is not a translation-invariant theory.
All convex bodies to which this theory is to be applied must have the origin in their
interiors. It will be convenient to assume throughout that all convex bodies contain
the origin in their interiors, and that p denotes a fixed real number greater than
(or equal to) 1.

For convex bodies K,K ′, and λ, λ′ ≥ 0 (not both zero), the Minkowski linear
combination λK + λ′K ′ is the convex body defined by

h(λK + λ′K ′, · ) = λh(K, · ) + λ′h(K ′, · ).
For convex bodies K,K ′ and λ, λ′ ≥ 0 (not both zero), the Firey Lp-combination
λ·K +p λ′ ·K ′, is defined by

h(λ·K +p λ′ ·K ′, · )p = λh(K, · )p + λ′h(K ′, · )p.
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Note that “ · ” rather than “ ·p ” is written for Firey scalar multiplication. This
should create no confusion. Also note that the relationship between Firey and
Minkowski scalar multiplication is λ·K = λ1/pK. Firey Lp-combinations of convex
bodies were defined and studied by Firey, who called them p–means of convex
bodies (see, e.g., [BZ, pp. 161–162] and [S, pp. 383–384]).

The mixed volume V1(K,L) of the convex bodies K,L is defined by

nV1(K,L) = lim
ε→0+

V (K + εL)− V (K)
ε

.

For x ∈ Rn, let [−x, x] denote the convex body that is the closed line segment
joining −x to x. From the definition of V1 it is easily verified that for u ∈ Sn−1,

nV1(K, [−u, u]) = 2 voln−1(K|u⊥),

where voln−1(K|u⊥) denotes the area (i.e., (n − 1)-dimensional volume) of K|u⊥,
the orthogonal projection of K onto the codimension-1 subspace of Rn that is
orthogonal to u.

For p ≥ 1, the Lp-mixed volume Vp(K,L) of the convex bodies K,L was defined
in [Lu1] by

(1.1)
n

p
Vp(K,L) = lim

ε→0+

V (K +p ε·L)− V (K)
ε

.

That this limit exists was demonstrated in [Lu1]. Obviously, for each K,

Vp(K,K) = V (K).

It was shown by Aleksandrov [A1] and Fenchel & Jessen [FJ] that the mixed
volume V1 has the following integral representation:

V1(K,Q) =
1
n

∫
Sn−1

h(Q, v) dS(K, v),

for each convex body Q. Since nV1(K, [−u, u]) = 2 voln−1(K|u⊥) for u ∈ Sn−1, by
taking Q = [−u, u] in the integral representation, we get

(1.2)
1
2

∫
Sn−1

|v ·u| dS(K, v) = voln−1(K|u⊥).

It was shown in [Lu1] that corresponding to each convex body K there is a
positive Borel measure Sp(K, · ) on Sn−1 such that the Lp-mixed volume Vp has
the following integral representation:

(1.3) Vp(K,Q) =
1
n

∫
Sn−1

h(Q, v)p dSp(K, v),

for each convex body Q. It turns out that the Lp-surface area measure Sp(K, · ) is
absolutely continuous with respect to S(K, · ), and has Radon–Nikodym derivative

(1.4)
dSp(K, · )
dS(K, · ) = h(K, · )1−p.

If P is a polytope with N proper faces with areas f1, . . . , fN , support numbers
h1, . . . , hN and corresponding unit normals u1, . . . , uN , then the measure Sp(P, · )
is a discrete measure whose support is {u1, . . . , uN} and such that

Sp(P, {ui}) = h1−p
i fi, for all i.
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The tool used to establish uniqueness in the classical Minkowski problem is the
Minkowski mixed volume inequality: For convex bodies K,L in Rn,

V1(K,L)n ≥ V (K)n−1V (L),

with equality if and only if K and L are homothets (i.e., there exist x ∈ Rn and
λ > 0 such that K = x+λL). It was shown in [Lu1] that there is an Lp-Minkowski
inequality: If K,L are convex bodies in Rn, and p > 1, then

(1.5) Vp(K,L)n ≥ V (K)n−pV (L)p,

with equality if and only if K and L are dilates (i.e., there exists a λ > 0 such that
K = λL).

The following two facts regarding the Lp-surface area measures are needed in this
article. First, if p > 1 and Sp(K, · ) is even, then the convex body K is symmetric
about the origin. This fact was established in [Lu1]. The other fact needed is that if
a sequence of convex bodies Ki converges, in the Hausdorff topology, to the convex
body K, then the sequence of Lp-surface area measures Sp(Ki, · ) converges weakly
to Sp(K, · ). This can be found in [Lu2, p. 251].

One new but easily established result, from the Brunn-Minkowski-Firey theory,
is needed:

Proposition. If K,L are convex bodies, then

Vp(K,L) = V (K) +
p

n
lim
λ→1−

V (λ·K +p (1− λ)·L)− V (K)
1− λ .

Proof. Let

l = lim
λ→1−

V (λ·K +p (1− λ)·L)− V (K)
1− λ .

Since

λ·K +p (1− λ)·L = λ·[K +p
1− λ
λ
·L],

we have

l = lim
λ→1−

λn/pV (K +p 1−λ
λ ·L)− V (K)

1− λ .

Substitute ε = (1 − λ)/λ, and for ε ≥ 0 define f, g by f(ε) = V (K +p ε ·L) and
g(ε) = (1 + ε)−n/p. Hence

l = lim
ε→0+

g(ε)f(ε)− g(0)f(0)
ε

(1 + ε).

But (1.1) gives f ′(0) = n
pVp(K,L), and hence

l =
n

p
[Vp(K,L)− V (K)].

�

An immediate consequence of the proposition (that is needed later) is

Corollary. If K,L are convex bodies, and there exists an εo < 1 such that

V (λ·K +p (1 − λ)·L) ≤ V (K), for all λ ∈ (εo, 1),

then Vp(K,L) ≤ V (K).
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2. The Lp-Minkowski problem with even discrete data

A minor reformulation of Theorem 1 of the introduction is:

Theorem 1. Suppose p ≥ 1. If u1, . . . , uN are N distinct unit vectors that do not
lie in a great subsphere of Sn−1 and a1, . . . , aN > 0 are given, then there exists a
convex polytope P in Rn that is symmetric about the origin, with 2N proper faces,
such that if fi and hi are the area and support numbers of the two faces with outer
unit normals ±ui, then

h1−p
i fi/V (P ) = ai, for all i.

Furthermore, the polytope P is unique. (If p = 1, the uniqueness is up to transla-
tion.)

An equivalent formulation is in:

Theorem 1′. Suppose p ≥ 1. If µ is a discrete even Borel measure whose support
is not contained in a great subsphere of Sn−1, then there exists a polytope P in Rn
that is symmetric about the origin and such that

Sp(P, · )/V (P ) = µ.

Furthermore, the polytope P is unique. (If p = 1, the uniqueness is up to transla-
tion.)

Let RN+ = {k = (k1, . . . , kN ) ∈ RN : ki ≥ 0 for all i}. Define the (N − 1)-
dimensional surface M by

M = {k ∈ RN+ :
1
n

N∑
i=1

ai kpi = 1}.

Since all the ai > 0, the surface M is compact. For each k ∈M , define the compact
convex set k by

k = {x ∈ Rn : |x·ui| ≤ ki for all i}.
The polytope k is symmetric about the origin and has at most 2N proper faces
whose outer unit normals are from the set {±u1, . . . ,±uN}. The important fact
here is that, in general,

h(k,±ui) ≤ ki;
however, if k has a proper face (i.e. with non-zero area) orthogonal to ui, then in
fact

h(k,±ui) = ki .
Since M is compact and the function k 7→ V (k) is continuous, there exists a

point k̄ ∈M such that

V (k) ≤ V (k̄) for all k ∈M.

Note that the minimum of the function k 7→ V (k) occurs on the boundary of the
surface M : For each point k on the boundary of the surface M we have some ki = 0,
and hence V (k) = 0.

We first show that

(2.1) V (k̄) ≥ Vp(k̄,k), for all k ∈M.

To do so, suppose k ∈M and λ ∈ [0, 1]. Define k̂ ∈ RN+ by

k̂i = (λ k̄pi +(1− λ) kpi )
1/p.
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Now, since k̄, k ∈M ,
1
n

N∑
i=1

ai k̄pi = 1 =
1
n

N∑
i=1

ai kpi ,

and hence 1
n

∑N
i=1 ai k̂

p

i = 1, which shows that k̂ ∈M . Now

h(λ·k̄+p (1−λ)·k,±ui)p = λh(k̄,±ui)p+(1−λ)h(k,±ui)p ≤ λ k̄pi +(1−λ) kpi = k̂
p

i .

This shows that
λ·k̄ +p (1− λ)·k ⊂ k̂,

and from the maximality of V (k̄) we have

V (k̄) ≥ V (k̂) ≥ V (λ·k̄ +p (1 − λ)·k).

The desired result (2.1) now follows immediately from the previously established
corollary.

Let f̄1, . . . , f̄N denote the areas and h̄1, . . . , h̄N denote the support numbers of
the faces of k̄ whose outer unit normals are ±u1, . . . ,±uN . While it can be easily
seen that since k̄ has maximal volume, h̄i = k̄i, for all i, this will follow from other
considerations at the end of the proof. For now, the only fact that is to be used is
that while in general h̄i ≤ k̄i, if however f̄io > 0, then h̄io = k̄io . Define

āi = f̄i k̄1−p
i , for i = 1, . . . , N.

There exists a neighborhood U = U(k̄) of k̄ in M with the following property:
If k̄ has a proper face (i.e., with positive area) orthogonal to a direction uio , then
for each k ∈ U , the polytope k has this property (i.e., has a proper face orthogonal
to the direction uio). Hence, if for a particular i we have f̄i > 0, then h(k, ui) = ki
for all k ∈ U . Thus, for all k ∈ U ,

(2.2) Vp(k̄,k) =
1
n

N∑
i=1

f̄i k̄1−p
i h(k, ui)p =

1
n

N∑
i=1

f̄i k̄1−p
i kpi =

1
n

N∑
i=1

āi kpi .

In particular, choosing k̄ for k gives

(2.3) V (k̄) = Vp(k̄, k̄) =
1
n

N∑
i=1

āi k̄pi .

Define the surface

M̃ = {k ∈ RN+ :
1
n

N∑
i=1

āi kpi = V (k̄)}.

From (2.3) it follows immediately that k̄ ∈ M̃ . Hence, the surfaces U and M̃ have
k̄ as a common point.

By combining (2.1) and (2.2) we see that for all k ∈ U ,

1
n

N∑
i=1

āi kpi ≤ V (k̄).

This and the definition of M̃ show that the surface M̃ is tangent to the surface U
at the point k̄ ∈ U ∩ M̃ . Taking gradients of U and M̃ at the point k̄ shows the
existence of a c > 0 such that

p
n (a1 k̄1−p

1 , . . . , aN k̄1−p
N ) = c pn (ā1 k̄1−p

1 , . . . , āN k̄1−p
N ).
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Since V (k̄) > 0, all the k̄i > 0. Hence

ai = cāi for all i.

Now k̄ ∈ U gives 1
n

∑N
i=1 ai k̄pi = 1, which in turn now gives c 1

n

∑N
i=1 āi k̄pi = 1. But

k̄ ∈ M̃ gives 1
n

∑N
i=1 āi k̄pi = V (k̄), and hence c = 1/V (k̄). Hence, āi = V (k̄)ai for

all i, or equivalently

f̄i k̄1−p
i = V (k̄)ai, for all i.

Since ai > 0 for all i, this shows that f̄i > 0 for all i, which in turn gives h̄i = k̄i
for all i. Hence

f̄ih̄
1−p
i = V (k̄)ai, for all i,

which completes the existence part of the proof.
To see that the solution is unique, suppose that there are two solutions, say P

and P ′. Hence,
Sp(P, · )/V (P ) = Sp(P ′, · )/V (P ′).

From this and the integral representation (1.3) we conclude that for all convex
bodies Q,

Vp(P,Q)
V (P )

=
Vp(P ′, Q)
V (P ′)

.

Now take P ′ for Q, Use the Lp-Minkowski inequality (1.5) and the fact that
Vp(P ′, P ′) = V (P ′), to get V (P ) ≥ V (P ′) with equality if and only if P and
P ′ are dilates. (For p = 1, with equality if and only if P and P ′ are homothets.)
By choosing P for Q, we see similarly that in fact V (P ) = V (P ′), and hence from
the equality conditions we see that P and P ′ are identical (for p = 1, identical up
to translation).

3. The Lp-Minkowski problem with even data

To prove that the solution of the Lp-Minkowski problem with even data follows
from the solution of the Lp-Minkowski problem with even discrete data involves
fairly standard approximation arguments. However, for the Lp-Minkowski problem
new a priori estimates are required to show that the minimizing sequence is bounded
from below as well as from above.

Theorem 2. Suppose p ≥ 1. If µ is an even Borel measure on Sn−1 whose support
is not contained in a great subsphere of Sn−1, then there exists a convex body K,
symmetric about the origin, such that

h(K, · )1−p

V (K)
dS(K, · ) = dµ.

Furthermore, the body K is unique. (If p = 1, the body is unique up to translation.)

For each positive integer i, partition Sn−1 into a finite collection Pi of Borel sets,
such that for each ∆ ∈ Pi its antipodal set −∆ is also in Pi, and diam(∆) < 1/i
for each ∆ ∈ Pi. For each ∆ ∈ Pi choose c∆ ∈ ∆ so that c−∆ = −c∆, and define
the Borel measure µi on Sn−1 by letting∫

Sn−1
f dµi =

∑
∆∈Pi

f(c∆)µ(∆),

for each measurable f . Obviously, each µi is an even discrete measure, and it is
easily seen that the sequence of measures µi converges weakly to µ.
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For each even Borel measure φ on Sn−1, consider the function defined on Rn by

x 7−→ 1
n

∫
Sn−1

|x·v|pdφ(v).

From the Minkowski integral inequality it follows that the p-th root of this function
is convex and hence is the support function of a convex body. Let Πpφ denote this
body; i.e., define Πpφ by

h(Πpφ, u)p =
1
n

∫
Sn−1

|u·v|pdφ(v),

for u ∈ Sn−1. Obviously, the support of an even measure φ is not contained in a
great subsphere of Sn−1 if and only if the continuous function h(Πpφ, · ) is strictly
positive on Sn−1, or equivalently if and only if the body Πpφ contains the origin in
its interior.

Since the support of µ does not lie on a great subsphere of Sn−1, the convex
body Πpµ contains the origin in its interior. Hence there exist a, b > 0 such that
a/2 ≥ h(Πpµ, · ) ≥ 2b on Sn−1. Since µi → µ weakly, it follows that h(Πpµi, · ) −→
h(Πpµ, · ) pointwise on Sn−1. But the pointwise convergence of support functions
is, in fact, a uniform convergence on Sn−1 (see, e.g., Schneider [S, p. 54]). Hence,
there exists an integer io such that on Sn−1,

a ≥ h(Πpµi, · ) ≥ b > 0, for all i ≥ io.

This shows (among other things) that for all i ≥ io the supports of the measures
µi do not lie in a great subsphere of Sn−1.

For each i ≥ io, we now use Theorem 1′ to get a polytope Pi, symmetric about
the origin, such that

(3.1) Sp(Pi, · )/V (Pi) = µi.

To see that the diameters of the polytopes Pi are bounded, define real Mi and some
ui ∈ Sn−1 by

Mi = max
u∈Sn−1

h(Pi, u) = h(Pi, ui).

Now, Mi[ui,−ui] ⊂ Pi, where as before [ui,−ui] denotes the closed line segment
joining ui and −ui. Hence, Mi|ui·v| ≤ h(Pi, v) for all v ∈ Sn−1. Thus, for all i ≥ io

Mp
i b
p ≤Mp

i

1
n

∫
Sn−1

|ui ·v|pdµi(v) ≤ 1
n

∫
Sn−1

h(Pi, v)p
dSp(Pi, v)
V (Pi)

=
Vp(Pi, Pi)
V (Pi)

= 1.

Thus, Mi ≤ 1/b for sufficiently large i, and hence the sequence of bodies {Pi} is
bounded from above.

For the Lp-Minkowski problem it is critical to show that the sequence {Pi} is
bounded from below as well as from above. To this end, define real mi and a
vi ∈ Sn−1 by

mi = min
u∈Sn−1

h(Pi, u) = h(Pi, vi).

Since each Pi contains the origin in its interior, each mi > 0. The fact that
a ≥ h(Πpµi, · ), for i ≥ io, together with (3.1), (1.4), Jensen’s inequality, and
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(1.2), shows that, for i ≥ io,

a ≥
(

1
n

∫
Sn−1

|vi ·u|pdµi(u)
) 1
p

=
(

1
n

∫
Sn−1

|vi ·u|p
dSp(Pi, u)
V (Pi)

) 1
p

=
(

1
n

∫
Sn−1

(
|vi ·u|
h(Pi, u)

)p
h(Pi, u)dS(Pi, u)

V (Pi)

) 1
p

≥ 1
n

∫
Sn−1

|vi ·u|
dS(Pi, u)
V (Pi)

=
2

nV (Pi)
voln−1(Pi|v⊥i ).

Since Pi is contained in the right cylinder (Pi|v⊥i ) × [−h(Pi, vi)vi, h(Pi, vi)vi], we
have

2mi voln−1(Pi|v⊥i ) = 2h(Pi, vi) voln−1(Pi|v⊥i ) ≥ V (Pi).
Thus,

a ≥ 2
n

voln−1(Pi|v⊥i )
V (Pi)

≥ 1
nmi

,

which shows that mi ≥ 1
na , for sufficiently large i.

Since the sequence of bodies {Pi} is bounded from above, by the Blaschke se-
lection theorem there exists a subsequence, which we also denote by {Pi}, which
converges to a convex body, say K. Since the Pi are symmetric about the origin,
the body K is symmetric about the origin as well. Since mi ≥ 1/na for sufficiently
large i, we know that K contains the origin in its interior. Since Pi −→ K and K
contains the origin in its interior, the Lp surface area measures Sp(Pi, · ) converge
weakly to Sp(K, · ), and 1/V (Pi) converges to 1/V (K). Thus the measures

Sp(Pi, · )
V (Pi)

−→ Sp(K, · )
V (K)

weakly on Sn−1.

But from (3.1), Sp(Pi, · )/V (Pi) = µi, and the µi converge weakly to µ. Hence,

Sp(K, · )
V (K)

= µ.

The uniqueness part of Theorem 2 follows in exactly the same manner as the
uniqueness part of Theorem 1.
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