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I wonder if it is as widely believed by the younger generation of mathemati-

cians, as it is believed by my generation, that Leopold Kronecker was the wicked

persecutor of Georg Cantor in the late 19th century and that, to the benefit of

mathematics, by the end of the century the views of Cantor had prevailed and the

narrow prejudices of Kronecker had been soundly and permanently repudiated.

I suspect this myth persists wherever the history of mathematics is studied,

but, even if it does not, an accurate understanding of Kronecker’s ideas about the

foundations of mathematics is indispensable to understanding constructive math-

ematics, and the contrast between his conception of mathematics and Cantor’s is

at the heart of the matter.

It is true that he opposed the rise of set theory, which was occurring in the

years of his maturity, roughly from 1870 until his death in 1891. Set theory grew

out of the work of many of Kronecker’s contemporaries—not just Cantor, but also

Dedekind, Weierstrass, Heine, Meray, and many others. However, as Kronecker

told Cantor in a friendly letter written in 1884, when it came to the philosophy of

mathematics he had always recognized the unreliability of philosophical specula-

tions and had taken, as he said, “refuge in the safe haven of actual mathematics.”

He went on to say that he had taken great care in his mathematical work “to

express its phenomena and truths in a form that was as free as possible from

philosophical concepts.” Further on in the same letter, he restates this goal of his



work and its relation to philosophical speculations saying, “I recognize a true sci-

entific value—in the field of mathematics—only in concrete mathematical truths,

or, to put it more pointedly, only in mathematical formulas.”

Certainly, this conception of the nature and substance of mathematics re-

stricts it to what is called “algorithmic mathematics” today, and it is what I had

in mind when I chose my title “Kronecker’s Algorithmic Mathematics.” Indeed,

these quotations from Kronecker show that my title is a redundancy—for Kro-

necker, that which was not algorithmic was not mathematics, or at any rate it was

mathematics tinged with philosophical concepts that he wished to avoid.

At the time, I don’t think that this attitude was in the least unorthodox.

The great mathematicians of the first half of the 19th century had, I believe,

similar views, but they had few occasions to express them, because such views

were an understood part of the common culture. There is the famous quote from

a letter of Gauss in which he firmly declares that infinity is a facon de parler and

that completed infinites are excluded from mathematics. According to Dedekind,

Dirichlet repeatedly said that even the most recondite theorems of algebra and

analysis could be formulated as statements about natural numbers. One only

needs to open the collected works of Abel to see that for him mathematics was

expressed, as Kronecker said, in mathematical formulas. The fundamental idea

of Galois theory, in my opinion, is the theorem of the primitive element, which

allowed Galois to deal concretely with computations that involve the roots of a

given polynomial. And Kronecker’s mentor Kummer—whom Kronecker credits



in his letter to Cantor with shaping his view of the philosophy of mathematics—

developed his famous theory of ideal complex numbers in an altogether algorithmic

way.

It is an oddity of history that Kronecker enunciated his algorithms at a time

when there was no possibility of implementing them in any substantial way. The

explanation is that the algorithms were of theoretical, not practical, importance to

him. He goes so far as to say in his major treatise Grundzüge einer arithmetischen

Theorie der Algebraischen Grössen that, by his lights, the notion of irreducibility

of polynomials lacks a firm foundation (entbehrt eine sicheren Grundlage) unless

a method is given that either factors a given polynomial or proves that no factor-

ization is possible.

When I first read this opinion of Kronecker’s, I had to read it several times

to be sure I was not misunderstanding him. The opinion was so different from my

mid-20th century indoctrination in mathematics that I could scarcely believe he

meant what he said. Imagine Bourbaki saying that the notion of an nonmeasurable

set lacked a firm foundation until a method was given for measuring a given set

or proving that it could not be measured!

But he did mean what he said and, as I have since learned, there are other

indications that the understanding of mathematical thought in that time was very

different from ours. Another example of this is provided by Abel’s statement in his

unfinished treatise on the algebraic solution of equations that “at bottom” (dans

le fond) the problem of finding all solvable equations was the same as the problem

of determining whether a given equation was solvable. It would be explicable if he



had said that the proof that an equation is solvable is “at bottom” the problem

of solving it, but he goes much further: If you know how to decide whether any

given equation is solvable you know how to find all equations that are solvable.

To be honest, I don’t feel I fully understand these extremely constructive

views of mathematics—I am a product of my education—but knowing that a

mathematician of Abel’s caliber and experience saw mathematics in this way is

an important phenomenon that a viable philosophy of mathematics needs to take

into account.

So Kronecker did mean it when he said that a method of factoring polynomials

with integer coefficients is essential if one is to make use of irreducible polynomials,

and he took care to outline such a method. I won’t go into any explanation of his

method—I doubt that it was original with him, but his treatise is the standard

reference—except to say that it is pretty impractical even with modern computers

and to say that in his day it was utterly out of the question even for quite small

examples.

This observation makes it indisputable that the objective of Kronecker’s algo-

rithm had to do with the meaning of irreducibility, not with practical factorization.

It is a distinction that at first seems paradoxical but that arises in many contexts.

If you are trying to find a specific root of a specific polynomial, Newton’s method

is almost certainly the best approach, but if you want to prove that every polyno-

mial has a complex root Newton’s method is useless; in practice it converges very

rapidly, but the error estimates are so unwieldy that you can’t prove that it will



converge at all until you are able to prove that there is a root for it to converge

to, and for this you need a more plodding and less effective method.

More generally, we all know that in practical calculations clever guesswork

and shortcuts can play important roles, and Monte Carlo methods are everywhere.

These are important topics in algorithmic mathematics, but not in Kronecker’s

algorithmic mathematics. I am not aware of any part of his work where he shows an

interest in practical calculation. Again, his interest was in mathematical meaning,

which for him was algorithmic meaning.

I have always fantasized that Euler would be ecstatic to have access to modern

computers and would have a wonderful time figuring out what he could do with

them, factoring Fermat numbers and computing Bernoulli numbers. Kronecker,

on the other hand, I think would be much cooler toward them. In my fantasy,

he would feel that he had conceived of the calculations that interested him and

had no need to carry them out in any specific case. His attitude might be the

one Galois expressed in his treatise on the algebraic solution of equations: “ . . . I

need only to indicate to you the method needed to answer your question, without

wanting to make myself or anyone else carry it out. In a word, the calculations

are impractical.” ( . . . je n’aurai rien à y faire que de vous indiquer le moyen de

répondre à votre question, sans vouloir charger ni moi ne personne de le faire. En

un mot les calculs sont impraticables.) Galois’s mathematics, like Kronecker’s, was

algorithmic but not practical. That’s why it is not so surprising that all of this

algorithmic mathematics—we could call it impractical algorithmic mathematics—

was developed at a time when computers didn’t exist.



This, in my opinion, was Kronecker’s conception of mathematics—that which

his predecessors had accomplished and that which he wanted to advance. What

generated the oncoming tide of set theory that was about to engulf this view of

mathematics?

Kronecker wrote about it in very few place, but when he did write about it he

identified the motive for its development: Set theory was developed in an attempt

to encompass the notion of the most general real number.

In 1904, after Kronecker had been dead for more than a dozen years, Fer-

dinand Lindemann published a reminiscence about Kronecker that has become

a part of the Kronecker legend and that is surely wrong. According to Linde-

mann, Kronecker asked him, apparently in a jocular way, “What is the use of your

beautiful researches about the number π? Why think about such problems when

irrational numbers do not exist?”

We can only guess what Kronecker said to Lindemann that Lindemann re-

membered in this way, but I am confident that he would not have said that irra-

tional numbers did not exist. To be persuaded of this, one only needs to know that

Kronecker refers in his lectures on number theory (the ones edited and published

by Kurt Hensel) to “the transcendental number π from geometry,” which he de-

scribes by the formula π
4 = 1 − 1

3 + 1
5 − 1

7 + · · · . Note that Kronecker introduces

π in his first lecture on number theory. Note also that he accepts π not only as

an irrational number but as a transcendental number; the proof of the transcen-

dence of π was of course the achievement for which Lindemann was, and remains,



famous. (His later belief that he had proved Fermat’s Last Theorem is benignly

neglected.)

Kronecker, as one of the great masters of analytic number theory, made fre-

quent use of transendental methods and would have had no qualm about real

numbers. His qualm—and he stated it explicitly—had to do with the conception

of the most general real number.

My colleague Norbert Schappacher of the University of Strasbourg has dis-

covered a document that states Kronecker’s qualm about the most general real

number in a different way and confirms Kronecker’s statement to Cantor that his

notions about the philosophy of mathematics were taught him by Kummer. The

document is a letter from Kummer to his son-in-law H. A. Schwarz (the date is

15 March 1872) in which he tells Schwartz how he and Kronecker are in agree-

ment in their belief that the effort to create enough individual points to fill out

a continuum—that is, enough real numbers to fill out a line—is as vain as the

ancient efforts to prove Euclid’s parallel postulate.

In our time, when young students are routinely told that “the real line” con-

sists of uncountably many real numbers and that it is “complete” as a topological

set, this opinion of Kummer and Kronecker is heresy in the most literal sense—it

denies the truth of what young people are told has the agreement of all authorities.

So Kronecker, along with Kummer, saw what was going on—saw the push to

describe the most general real number, saw, as it were, the wish on the part of his

colleagues to talk about “the set of all real numbers.” Moreover, he responded to

it. His response was: It is unnecessary.



I have said that Kronecker says very little about the foundations of mathe-

matics in his writings. But in the few words he does say, this message is clear: It is

unnecessary. One of the main goals of his mathematical work was to demonstrate

that it was unnecessary by, as he told Cantor, expressing the truths and phe-

nomena of mathematics in ways that were as free as possible from philosophical

concepts. That would most certainly exclude any general theory of real numbers.

He wished to show such a theory was unnecessary by doing without it.

In view of the Kummer letter found by Schappacher, we see that he also

believed there was a special importance to his belief that the construction of the

set of all real numbers was not necessary, because he believed it was doomed to

fail.

In all likelihood you are now hearing for the first time the opinion that “the

real line” may not be a well-founded concept, so I probably have no realistic hope

of convincing you that this view may be justified. I won’t make a serious effort to

do so. I will let it pass with just a brief reference to complications like Russell’s

paradox, Gödel’s incompleteness theorem, the independence of the continuum hy-

pothesis and the axiom of choice, nonstandard models of the real numbers, and,

coming at it from a different direction, Brouwer’s free choice sequences. There is a

long history of unsuccessful efforts to wrestle with infinity in a rigorous way, efforts

which, so far as I have ever been able to see, have been consistently frustrated. As

Kummer and Kronecker foresaw.

But even if one accepts that one day it will succeed—or that it long ago

did succeed, except for uninteresting nit-picking—it seems to me that Kronecker’s



main message is still worth hearing and considering: It is unnecessary. Mathe-

matics should proceed without it to the maximum extent possible. Kronecker was

confident that in the end its exclusion would prove to be no impediment at all.

Well, of course modern mathematics has painted itself into a corner in which

dealing with infinity in a rigorous manner is necessary. If mathematics is defined

to be that which mathematicians do, then dealing with the real line is essential

to mathematics. If mathematics insists on talking about “properties of the real

line” as though the real line were a given, there is no room for the belief that “it

is unnecessary.”

Inevitably, then, Kronecker’s assertion is an assertion about the nature and

domain of mathematics itself. It asserts that that which lies outside the Kro-

neckerian conception of mathematics is unnecessary. (Instead of the Kroneckerian

conception, I would prefer to call it the classical conception of mathematics in

deference to Euler and Gauss and Dirichlet and Abel and Galois, but somehow

“classical mathematics” has come to mean the Cantorian opposite of this; therefore

I am forced to call it the Kroneckerian conception.)

With this meaning of “Kronecker’s algorithmic mathematics” in mind, we

can perhaps agree that it is unnecessary to attempt to embrace the most general

real number—to embrace “the real line.” What is lost by adopting this view of

mathematics?

I often hear mention of what must be “thrown out” if one insists that mathe-

matics needs to be algorithmic. What if one is throwing out error? Wouldn’t that

be a good thing rather than the bad thing the verb “to throw out” insinuates? I



personally am not prepared to argue that what is being thrown out is error, but

I think one can make a very good case that a good deal of confusion and lack of

clarity are being thrown out.

The new ways of dealing with infinity that set theory brought into mathe-

matics can be seen in the method used to construct an integral basis in algebraic

number theory. Kronecker gave an algorithm for this construction. You could

write a computer program following his plan, and the program would work, al-

though it might be very slow. Hilbert in his Zahlbericht approaches the same

problem in a different, and outrageously nonconstructive, way. He imagines all

numbers in the field written as polynomials with rational coefficients in a particu-

lar generating element α. The polynomials are then of degree less than m, where

m is the degree of α. Moreover, there is a common denominator for all the integers

in the field when they are written in this way. Hilbert has the chutzpah to say:

For each s = 1, 2, . . . , m, choose an integer in the field which is represented as

a polynomial of degree less than s, and in which the numerator is the greatest

common divisor of all numerators that occur in such integers. Such a choice is to

be carried out for each s; the m integers in the field “found” in this way are an

integral basis.

Let me try to state in as simple a way as possible the process he is indicating:

The integers in the field are a countable set, so it is legitimate to regard them

as listed in an infinite sequence. The entries in the sequence are polynomials

in α of degree less than m whose coefficients are rational numbers with a fixed

denominator D. For each s, Hilbert wants us to first strike from the list all



polynomials of degree s or greater, and from among those that remain, chose one

in which the numerator of the coefficient of αs−1 is nonzero, but otherwise is as

small as possible in absolute value. (Hilbert looks at the greatest common divisor

of the numerators rather than the absolute value, but the effect is the same.) So,

not once but m times, we are to survey an infinite list of integers, and pick out a

nonzero one that has the smallest possible absolute value.

To put this in perspective, let me describe an analogous situation. Imagine

an infinite sequence of zeros and ones is given by some unknown rule. Would it

be reasonable for me to ask you to record a 1 if the sequence contains infinitely

many ones and otherwise to record a zero? In 20th century mathematics, one was

asked to do such things all the time. Therefore it is perhaps difficult to deny, as

I would like to do, that it is a reasonable thing to ask. But surely no one would

contend that it is an algorithm.

No doubt Hilbert regarded his as a simplification of Kronecker’s construction.

But only someone indoctrinated in the nonconstructive Hilbertian orthodoxy, as I

was, and as many of you surely were, could hear it called a “construction” without

leaping from his or her chair in protest.

To “throw out” from mathematics arguments of this type should be regarded

as ridding it of ideas that are at best sloppy thinking and at worst delusions. And

in this particular case, the argument for throwing out Hilbert’s argument is all the

stronger because Kronecker had already shown many years earlier that it was in

truth unnecessary.



This contrast, between Kronecker’s algorithm for constructing an integral ba-

sis and Hilbert’s nonconstructive proof (can it be called a proof?) of the existence

of an integral basis, illustrates the fork in the road that mathematics encountered

at the end of the 19th century. To follow Kronecker’s algorithmic path, or to

choose instead the daring new set-theoretic path proposed by Dedekind, Cantor,

Weierstrass, and Hilbert.

You all understand very well which path was taken and you all understand

as well how I feel about the choice that was made.

But now, in the 21st century, I hope mathematicians will begin to reconsider

that fateful choice. Now that there are conferences devoted to “Computability in

Europe” and mathematicians in their daily practice are dealing more and more

with algorithms, approaching problems more and more by asking themselves how

they can use their powerful computers to gain insight and find solutions, the

climate of opinion surely will change. How can anyone who is experienced in serious

computation consider it important to conceive of the set of all real numbers as a

mathematical “object” that can in some way be “constructed” using pure logic?

For computers, there are no irrational numbers at all, so what reason is there to

worry about the most general real number? Let us agree with Kronecker that

it is best to express our mathematics in a way that is as free as possible from

philosophical concepts. We might in the end find ourselves agreeing with him

about set theory. It is unnecessary.


