
The Fundamental Theorem of Algebra from a Constructive Point of View

(Slides of a talk given at Carnegie-Mellon University, April 15, 2004)

Fundamental Theorem of Algebra. A polynomial of de-
gree n has n roots.

Some revisions. First,

Fundamental Theorem of Algebra. A polynomial of de-
gree n with integer coefficients has n roots.

In order to deal with multiplicities, it is better to say, since
α is a root of f(x) if and only if x− α is a root of f(x), that:

Fundamental Theorem of Algebra. A polynomial with in-
teger coefficients can be written as a product of linear factors

a0x
n + a1x

n−1+ · · ·+ an

= a0(x− α1)(x− α2) · · · (x− αn).
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Since f(x) can be written as a constant times a product of
factors linear in x if and only if the same is true of the monic
polynomial an−1

0 f(x/a0) = xn + a1x
n−1 + a0a2x

n−2 + · · · +
ai−1
0 aix

n−i + · · · + an−1
0 an, there is no loss of generality in

assuming that the given polynomial is monic and stating the
theorem in the form:

Fundamental Theorem of Algebra. A monic polynomial
with integer coefficients can be written as a product of monic
linear factors.
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Stating the theorem in this simple form has the great virtue
of showing that it is obviously false.

How, for example, could we factor x3 − 2 into monic linear
factors? You may say that the complex numbers contain three
cube roots of 2 and the needed factors are x−α for these three
complex numbers α.

In my opinion, resorting at this point to so sophisticated
a notion as the complex numbers—which entail real numbers
and limits and all the rest—is wholly premature.
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The fundamental theorem was known—it was more or less
an axiom—as early as the 17th century. One thinks of Girard
and Newton, among others.

Many attempts were made to prove it in the 18th century—
D’Alembert, Euler, Lagrange all wrote on the subject—but
Gauss in 1799 in his doctoral dissertation rejected all their
proofs as circular, saying that they used computations in the
roots to prove that the roots were complex numbers, and that
such computations could only be justified by first proving the
theorem.

He published another proof in 1815 which more or less fol-
lowed the lines of the proofs he had rejected in 1799. I like to
think that at this time he came to the realization that the real
theorem is the statement that:
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Fundamental Theorem. Given a monic polynomial with in-
teger coefficients, there is a valid way to compute with its roots.

I have come to believe that Euclid’s practice of having
two types of ‘propositions’—‘theorems’ and ‘constructions’—
should be revived and ‘constructions’ should play a much larger
role in our mathematics. The ‘Fundamental Theorem’ can be
stated as a construction:

Given a monic polynomial with integer coefficients, con-
struct a system of computation that extends rational compu-
tation with integers in such a way that it becomes possible to
factor the given polynomial into monic linear factors.
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To ‘construct a system of computation’ may sound like a
formidable task, but it isn’t at all. For example, it is easy to
construct a system of computation in which x3−2 has a monic
linear factor:

The objects with which we will compute will be polynomials
in an indeterminate y whose coefficients are rational numbers.
They will be added and multiplied in the usual way. Two such
polynomials will be considered to be equal if their difference is a
multiple of y3−2. Since constant polynomials are equal in this
sense only if they are identical, this ‘system’ of computation
includes within it ordinary computations with integers (and
therefore ordinary computations with rational numbers).
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Of course, we don’t want to be too permissive in accepting
something as a ‘system of computation’. Rational computa-
tion requires addition, subtraction, multiplication and division.
Aye, division, there’s the rub.

Division by a quantity can be described as multiplication by
its reciprocal, so what we want to know is that, in computations
with polynomials in y of the type described, every quantity
other than zero has a reciprocal.

Or, to use modern terminlogy, the ring Q[y] mod (y3−2) of
polynomials in y with rational coefficients modulo y3 − 2 is a
field.
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This follows from the ‘Euclidean algorithm’ for polynomials,
a simple construction that enables one to write the greatest
common divisor of two nonzero polynomials as a linear combi-
nation of them (just as the actual Euclidean algorithm enables
one to write the greatest common divisor of two integers as a
sum of multiples of the integers).

Thus, if h(y) is some polynomial in y that is not equal, mod
y3−2 to zero, then, because y3−2 is irreducible, h(y) and y3−2
are relatively prime, so, by the Euclidean algorithm, there are
polynomials r(y) and s(y) for which

r(y)h(y) + s(y)(y3 − 2) = 1.

Then r(y) is the reciprocal of h(y) in the ring Q[y] mod (y3−2),
which is therefore a field.
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In a similar way, given an irreducible monic polynomial g(y)
with integer coefficients, the ring Q[y] mod g(y) is a field. I’ll
call it the field obtained by adjoining a root of g(y) to
the field of rational numbers, because these computations
simply declare that g(y) = 0 and base all computations on that
declaration.

When we regard x3 − 2 as a polynomial with coefficients in
the field Q[y] mod (y3− 2) it has a linear factor—it has a root
in this field—explicitly

x3 − 2 ≡ x3 − y3 ≡ (x− y)(x2 + xy + y2) mod (y3 − 2).

But one root isn’t good enough. We want three.
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Recap: Given a monic, irreducible polynomial g(y) with in-
teger coefficients, the field obtained by adjoining one root of
g to the field Q of rational numbers is by definition the field
Q[y] mod g(y). It may well contain only one root of g, though,
and we want deg g roots.

Let me pause a moment to remark how easy it is compute
in the field Q[y] mod g(y) when g(y) is monic. In this case,
g(y) = ym + b1y

m−1 + b2y
n−2 + · · ·+ bm. Each element of the

field is represented by one and only one polynomial in y, with
rational coefficients, whose degree is less than m. Elements are
added in the obvious way, and multiplied by multiplying the
polynomials and then using ym = −b1ym−1−· · ·−bm to reduce
the degree.
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Fundamental Theorem (perhaps one should call it the
Fundamental Construction). Given a monic polynomial
f(x) with integer coefficients, construct an irreducible monic
polynomial g(y) with the property that adjunction of one root
of g(y) to Q gives a field over which f(x) factors into linear
factors.

In my abstract I mentioned Galois. In fact, Galois gave
a construction of such a g(y), which is often called a Galois
resolvent. But there is a catch. Galois’s ‘construction’ used
computations with the roots, so it can’t be used to justify com-
putations with the roots.

But it certainly gives a simple, concrete way to ‘extend com-
putations in Q’ in a way that factors f(x).
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The classic example is that f(x) = x3 − 2 can be factored
into linear factors if you adjoin a single root y of y6 +108. The
specific formula is:

x3 − 2

≡ (x− y4

18
)(x+

y4 − 18y
36

)(x+
y4 + 18y

36
)

mod (y6 + 108).

Indeed, one cube root of 2 comes from (y
4

18 )3 = (−108)2

183 =
6·6
18 = 2. To find two others, it is necessary and sufficient to
find two primitive cube roots of 1.

But the primitive cube roots of 1 are −1±
√
−3

2 , so all we need
is a square root of −3, which is provided by (y

3

6 )2 = −108
36 = −3,

whereupon the proof of the formula becomes a simple exercise.
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The name ‘Fundamental Theorem of Algebra’ is too firmly
settled on the statement that a polynomial of degree n has
n complex roots (counted with multiplicities) to expect it to
change, but in my opinion the theorem I just stated is much
more fundamental.

And it is a theorem of algebra, which the other is not.
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Kronecker in 1887 stated a generalization of the factorization
of x3 − 2, namely,

x3 − c

≡ (x− y4

9c
)(x+

y4 − 9cy
18c

)(x+
y4 + 9cy

18c
)

mod (y6 + 27c2).

Here both f(x) and g(y) have coefficients not in the ring of
integers but in the ring Z[c] of polynomials in one indeterminate
c with integer coefficients.

This is a very natural generalization of the fundamental the-
orem I have been talking about, that has no counterpart in the
case of the ‘Fundamental Theorem of Algebra’.

Note that the roots y4

9c , −y
4+9cy
18c , −y

4−9cy
18c are in the field

obtained by adjoining one root y of y6 + 27c2 to the field of
rational functions in c.
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Fundamental Theorem (Construction). Given a monic
polynomial f(x) with coefficients in the ring Z[c1, c2, . . . , cν ]
(polynomials in c1, c2, . . . , cν with integer coefficients), con-
struct a monic irreducible polynomial g(y) with coefficients in
the same ring such that adjunction of one root of g to the field
of rational functions in c1, c2, . . . , cν gives a field over which
f(x) factors into linear factors.

(The field of rational functions in c1, c2, . . . , cν is simply
the field of quotients of the integral domain Z[c1, c2, . . . , cν ].)
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This theorem can be proved—by which I mean, of course,
that the construction can be carried out—by very specific, finite
algorithms.

I don’t have time to describe them here. I will say that
the key element, which took me years to find, is an algorithm
that factors f(x) mod g(y) when f and g are monic irreducible
polynomials with integer coefficients, or, more generally, with
coefficients in Z[c1, c2, . . . , cν ].

Note that this is no problem at all if you take a nonconstruc-
tive view of it. Then you can just say: Keep factoring as long
as any of the factors you have can be factored further.

From a constructive point of view, even factorization over
Q requires more than this, not to mention factorization over
Q[y] mod g(y).
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One reason I consider the theorem I have stated more im-
portant than the usual fundamental theorem of algebra is that
it implies that theorem in a very simple way:

It says that all roots of a given f(x) can be expressed ra-
tionally in terms of one root of g(y). Once you have done this
you have expressions of all roots of f(x) as complex numbers
once you have an expression of one root of g(y) as a complex
number.

But to find one complex root of a given polynomial with
integer coefficients is a fairly easy calculus problem. Essentially
all you have to do is find a good approximation to a root and
then set up an iteration that will find it to more and more
decimal places.
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Another way to state what I have been saying is that:
(1) Given any monic f(x) with coefficients in Z[c1, c2, . . . ,

cν ], you can construct a splitting field for it by adjoining to
the field of rational functions in c1, c2, . . . , cν a single root of
a suitable monic irreducible g(y), with coefficients in the same
ring, that can be constructed.

(2) When ν = 0, so that the coefficient ring is the ring of
integers, this splitting field can be described as a subfield of the
field of complex numbers simply by finding one complex root
of g(y).
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In my opinion, it is an outright mistake, however, to regard
the splitting field as a subfield of the complex numbers. Com-
plex numbers are limits and can only be described by infinite
sequences of approximations. They are always in a state of
becoming, not of being. An element of a splitting field, on the
other hand, is a root of a polynomial equation and as such
can be described exactly in the sense that one can write down
a finite set of rules to make it possible to compute it to any
prescribed degree of accuracy.
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Kronecker took a position that seems extreme in our times—
he rejected the notion of a general infinite sequence and insisted
that mathematics should only deal with sequences that could
be generated by finite algorithms.

Now that I have come to see the fundamental theorem of
algebra in the way I have described, I no longer regard this as
such an outlandish idea. In fact, it presents a very worthwhile
challenge:

Develop mathematical subjects in ways that conform to Kro-
necker’s principles.

It’s not as hard to do as you might imagine, and it directs
your thoughts in invigorating ways.

The title of my forthcoming book is ‘Essays in Constructive
Mathematics’.


