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A letter Kummer wrote in 1846 states that Gauss, fifty years earlier, when

he was writing the Disquisitiones Arithmeticae, had at his disposal a concept like

Kummer’s newfound “ideal prime factors,” but that he did not include it in the

Disquisitiones because he had not been able to put it on a firm foundation (“er

dieselben aber nicht auf sicheren Grund zurückgeführt hat”). The question of my

title refers to the “foundations of mathematics” in this sense. What, for Gauss,

would have constituted a firm foundation?

Another reference to the foundations of mathematics in the first half of the

19th century was Abel’s complaint in the opening pages of his article on the bino-

mial series (1826) that even such a frequently used tool as the binomial series for

fractional exponents had not been rigorously investigated. He said, “The number

of theorems regarding infinite series that can be regarded as rigorously established

is very limited.” What did “rigorous” mean to him?

I hope you will readily agree that in neither case did the question have any-

thing to do with set theory, the subject that in our day has somehow become

identified with “the foundations of mathematics.”

Abel states a specific goal: “Find the sum of the series
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for all values of x and m, real or imaginary, for which it converges.” That is

admirably specific, but it says nothing about how he will “rigorously establish”

his answer. He offers no definition of “real numbers”, much less of “imaginary

numbers.” He cites Cauchy’s “Cours d’analyse” and states what is today called the

Cauchy convergence criterion, but his statement of the criterion refers to “limits”

with no explanation whatever of the limit concept.

These observations about what Abel does not say about the foundations point

to a major difficulty in discovering what mathematicians in the past thought of

as the foundations of mathematics. The foundational ideas are the ones everyone

knows and agrees on, so they are the ones that need—and get—no explanation.

In Abel’s case, it would seem that “number” and “limit” are such ideas. The

mathematical culture of a period is the common property of all readers of the

period, but once those readers are gone it is very hard to reconstitute the things

they were all expected to understand.

An instance of this phenomenon that I am particularly fond of, for a reason

you will see in a moment, is the following experience I had in connection with

my book on Galois theory. Galois’s famous memoir on the algebraic solution

of equations is notoriously terse, and on no point is it more terse than in the

proof of his crucial Lemma III. I won’t take the time to explain what that lemma

states or what he offers in the way of proof. Suffice it to say that in my book

I gave a reconstruction of what I believed to be Galois’s argument, and that

Peter Neumann in his prize-winning review of the book called my reconstruction

“far-fetched.” The main step in the reconstruction—Galois’s key idea, as I saw



it—was that if two polynomials have just one root in common, then that root can

be expressed rationally in terms of the coefficients of the polynomials.

Some years later I was delighted to find this very statement in a work of Abel,

preceded by the phrase “as everyone knows” (“comme l’on sait”). The issue is a

little more nuanced than I have painted it, and I may not be doing justice to

Neumann’s criticism of my reconstruction, but I think you can see my point. It is

almost impossible to understand a text from a byegone era without understanding

what readers were expected to know, and, especially in the case of mathematical

writing, it is difficult to discover what readers were expected to know because—

well, because it wasn’t written. Everybody was expected to know it.

I have long believed that Kummer’s brief paper introducing his ideal prime

factors gives an exceptional window into the foundational ideas of his time, because

he was trying to present a profound new idea in a way that would be attractive and

comprehensible to his contemporaries. What we learn from reading this paper, I

believe, is that Kummer’s approach to his subject was fundamentally algorithmic.

He made no attempt to say what ideal prime factors were, and said only how to

compute with them. (A few decades later, Dedekind would complain about this

very property of Kummer’s method.) Given a rational prime, Kummer described

how to determine its ideal prime factors in a given cyclotomic field and, for any

cyclotomic integer, how to determine the multiplicity with which it is divisible by

a given ideal prime factor. In other words, he gives an operational definition of

the ideal prime factors.



Their usefulness lies in the theorem which states that one cyclotomic integer

divides another if and only if each ideal prime that divides it divides the other

with multiplicity at least as great. All of this is entirely algorithmic, and it was

firmly founded on what we know were voluminous calculations on Kummer’s part.

(In fact, in a few cases, Kummer’s conclusions were based only on voluminous

calculations, and the proofs he gave of some of them needed to be shored up years

after they had been published.)

More generally, I believe the same is true of most of higher mathematics in

the first half of the 19th century. What everybody was expected to know was how

to compute. The focus was not on “what is a number?” or “what is a limit” but

“how do you effectively compute with numbers?” and “how can you evaluate a

limit?” Abel’s study of the binomial series was directed at evaluating the sum

whenever the series converges.

My thesis is that the metaphysical question “what is a number?”, although

it may have received some attention in connection with the solution of algebraic

equations in the 16th, 17th, and 18th centuries, and although it received great at-

tention in the second half of the 19th century—one thinks in particular of Dedekind

and Cantor—was not a major issue during the period under discussion, at least

not among the mathematicians we regard today as having been the foremost of

their contemporaries.

Without question, the foremost was Gauss, and the extent to which he avoided

metaphysical questions is especially noteworthy. The Disquisitiones Arithmeticae

are of course about arithmetic, which is to say about whole numbers. Was this an



avoidance of metaphysical questions by staying with the solidest of mathematical

subjects, the arithmetic of whole numbers? Hardly. He begins with the notion

of congruence of numbers. This is a subject on which much useless nonsense has

been written in our time, stating that one is “really” dealing with equivalence

classes of integers. From a set-theoretic point of view, it is probably inevitable to

think of congruences in that way, but clearly Gauss did not think of them in that

way, and set theory plays no role in his exposition. He says what it means for

two numbers to be congruent mod n and observes, in essence, that this relation

is consistent with addition and multiplication in the sense that if a ≡ a′ mod n

and b ≡ b′ mod n then a + b ≡ a′ + b′ mod n and ab ≡ a′b′ mod n. He uses the

congruence concept to frame his proofs and to simplify his computations, but he

pays no attention whatever to what its metaphysical significance might be.

This occurs at the very outset of the Disquisitiones Arithmeticae. There are

at least two later points in the book where he noticeably omits metaphysics and

remains firmly in the realm of computation.

One is his treatment in Section 5 of the operation of composition of forms—

one of his great innovations and one of his great contributions to mathematics.

Again he defines in a clear algorithmic way what it means to say that a binary

quadratic form composes two others. This is a subject on which much has been

written to explain what a composition “really” is. But Gauss gives it not a mo-

ment’s attention. In a tour de force of algebra, from his stupendously general and

concrete definition of the notion of composition, he deduces necessary and suffi-



cient conditions for a given pair of forms to have a composition and, when they

do have one, to find them all.

This is certainly the hardest part of the book, and much effort has been spent

on it in the last two centuries to try to simplify it and say what it is “really” about.

For example, there is a sort of associative law involved with compositions that one

feels “should” have a much more evident formulation than the one Gauss gives it.

But Gauss is pitiless, and many of the attempts to simplify and explain this part

of the book have been misguided and have lost a great deal in the translation.

(Much of what has been written in “explanation” of Section 5 ignores the

fact that Gauss does not “compose” two forms, but says what it means to say

that a form “composes” two others. It is in no way a binary operation in the way

that many treatments of it would have us believe. Two given forms may not be

composed by any form, but if they are composed by one form they are composed

by infinitely many.)

The third place in the Disquisitiones where Gauss conspicuously avoids meta-

physics is in the last section, Section 7, on the division of the circle. Here he makes

use not only of fractions—in a book about arithmetic, mind you—but also of com-

plex numbers. In one place (§353) he computes the 19th roots of unity to 10

decimal places! How does he justify the introduction of such alien topics in his

book?

“The reader might wonder that such researches are included in a book that at

first glance would seem to be dedicated to such different topics.” The reader might

well wonder. He goes on to say only that “the treatment itself will, however, show



clearly in what close connection this topic stands to the higher arithmetic.” Indeed,

it is in this part of the book that he proves a theorem that can be interpreted as

describing the number of solutions of x3 + y3 + z3 ≡ 0 mod p. (To give you

the number-theoretic flavor of the subject, let me say that this problem in the

Disquisitiones is the beginning of the study of arithmetical properties of elliptic

curves. The amazing answer he found is that the number of such solutions, counted

as in projective geometry, is p+ 1 +A, where A is is determined by two conditions

4p = A2 + 27B2 and A ≡ 1 mod 3.) No one could deny that that is a theorem

in higher arithmetic. Certainly the use of complex numbers is not essential to his

proof of the result, but it would seem that in Gauss’s mind there was no need to

keep them out if they were convenient to use. Certainly he didn’t worry at all

about the question “what are real numbers” or “what are complex numbers” that

would be worried about to such an extent later in the 19th century.

There are reasons these attitudes changed—chief among them was the success

of Fourier analysis and its encouragement of the most general possible conception

of the notion of a function of a real variable—but I feel that much was lost when

they did change, and that it is useful to remember that our present-day tendency

to see the foundations of mathematics as being inextricably linked with set theory

is at the very least optional.

Not many mathematicicans today share my belief that the modern set-

theoretic approach to the foundations of mathematics is harmful to mathematics.

But it seems to me indisputable that such modern prejudices are harmful to the

study of the mathematics of the first half of the 19th century. Let us recognize



this, and oppose efforts by our non-historian mathematical colleagues to tell us

what Gauss, in his clumsy way, was “really” trying to say.


