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Euler begins the preface to volume one of his multivolume work on the differential and
integral calculus1 with the statement:

Often I have considered the fact that most of the difficulties which block the progress of students

trying to learn analysis stem from this: that although they understand little of ordinary algebra, still they

attempt this more subtle art. From this it follows not only that they remain on the fringes, but in addition

they entertain strange ideas about the concept of the infinite, which they must try to use.2

This describes perfectly the situation of the authors of the preceding article. They are
attempting to understand how Euler uses differentials in later volumes without having
understood his explanation in the first volume of what he is using differentials for. As a
result, they have, as Euler foretold, come to entertain strange ideas about the concept of
the infinite. Their strange ideas derive, however, from 20th century notions of set theory
and nonstandard analysis that are far stranger than anything Euler could have imagined.

The authors cite H. J. M. Bos’s article Differentials and Derivatives in Leibniz’s Calculus
[Bos 1974], but they appear to have read it no more carefully than they read mine [Edwards
2007], because Bos’s descriptions of Euler’s ideas concur with those in my paper, not with
those being advanced by the authors.

Bos writes on page 66:

The aim of [Euler’s] arguments is to establish that, although the concept of the infinitely small cannot

be rigorously upheld, still the computational practice with differentials leads to correct results. . . . Euler

claimed that infinitely small quantities are equal to zero, but that two quantities, both equal to zero, can

have a determined ratio. This ratio of zeros was the real subject-matter of the differential calculus . . .

He goes on to say that “Euler also considered this ratio of zeros as a limit” and quotes
(p. 67) a statement from Euler’s Institutiones Calculi Differentialis describing the limit
in a way that fully substantiates my claim that “of course Euler understood limits.” Bos
then quotes another passage in which Euler explains his understanding of the meaning of
dy
dx :

Although the rules, as they are usually presented, seem to concern evanescent increments, which have

to be defined; still conclusions are never drawn from a consideration of the increments separately, but

always their ratio . . . . But in order to comprise and represent these reasonings in calculations more easily,

the evanescent increments are denoted by certain symbols, although they are nothing; and since these

symbols are used, there is no reason why certain names should not be given to them. [Bos’s translation.

See his footnote 110 for the original Latin.]

1It consists of six volumes published over 20 years. The first two volumes Introductio in Analysin

Infinitorum (Introduction to the Analysis of Infinites) were both published in 1748, the third Institutiones

Calculi Differentialis (Foundations of Differential Calculus) was published in 1755, and the last three
Institutiones Calculi Integralis (Foundations of Integral Calculus) were published in 1768, 1769, and 1770.

2As translated by J. Blanton. The original Latin is quoted in [Edwards 2007], footnote 4.
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True, Euler gives no definition of the derivative, and the title “Euler’s Understanding
of the Meaning of dy

dx” would have been more descriptive of my paper, but I think the title
I used conveys the idea pretty well to modern readers unless they expect Euler to have
written in a modern definition-theorem-proof style.

My recipe “rewrite ∆y
∆x in a way that still makes sense when ∆x = 0”, which failed to

convince the authors, is, I maintain, the essence of Euler’s method for evaluating limits. It
is based on the tacit assumption that any two such ways of rewriting ∆y

∆x will give the same
value when ∆x = 0. This is a far less adventuresome assumption than Euler’s analogous
assumption that any two methods (within reason) of summing a divergent series will result
in the same sum. (On this fascinating topic, see [Hardy 1949].)

I thank the authors for their mention of “Edwards curves,” especially since I see no
possible connection with the subject of their article. I would point out, though, that their
form x2 + y2 = 1 + dx2y2 is the one used in cryptography [Hisil et al. 2009], not the one
that I proposed (which was x2 + y2 = a2 + a2x2y2), and, in the context of their article
about higher order differentials, readers may well think that dx2y2 is some weird kind of
differential.

The authors misconstrue my meaning when I say in my footnote 5 that students today
are taught to shun differentials as they would an infectious disease. I am agreeing with
Euler that students should learn the calculus of differentials, not agreeing with Cantor that
infinitesimals are the cholera bacillus of mathematics or with the orthodox view in modern
times (before the advent of nonstandard analysis) that differentials are for physicists and
applied mathematicians who don’t care about correct mathematical reasoning.

One last note: I regret the authors’ inference that my failure to name Lagrange in one
of my informal lists of “masters” means that I do not hold him to be a master. Nothing
could be farther from the truth. In my opinion, the technique of Lagrange multipliers is
one of the great ideas in the history of mathematics—I emphasize it in my book Advanced
Calculus—and at the beginning of my book Galois Theory I hypothesize that Lagrange
in effect became the master of the pupil Galois when Galois, early in his studies, read
Lagrange’s great work on the algebraic solution of equations. And these are but two of
Lagrange’s many contributions.
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