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I1.2

Composition of Binary Quadratic Forms
and the Foundations of Mathematics

HAROLD M. EDWARDS

Writing to Leopold Kronecker on June 14, 1846, Ernst Kummer said of his newly
created theory of ideal prime factors:

Dirichlet strongly urged me to work the theory out completely and submit it to Crelle
for publication as soon as possible. He also told me and showed me, from oral and
written indications of Gauss himself, that when Gauss was completing the section
of Disqu. arith. on composition of forms he had something similar to ideal factors
for his private use, but that he had not put it on firm ground. Specifically, Gauss
says in a note to his treatise on the factorization of integral rational functions into
linear factors something like: “Had I been willing to use imaginaries in the way that
earlier mathematicians did, I would have been able to simplify substantially one of
my researches which, as it is, is quite difficult.” Gauss later told Dirichlet that the
reference here was to the composition of forms.!

William Waterhouse has convincingly argued that Gauss was referring in the
footnote Kummer mentions not to the composition of forms in sec. 5 but to the
unfinished sec. 8 of Disquisitiones Arithmeticae.> One should not, however, allow

1. [Kummer 1846/1910]: Dirichlet hat mich sehr ermahnt die Theorie bald fertig auszuar-
beiten und Crelle zum Drucke zu iibergeben. Auch hat er mir erzdhlt und gezeigt, namlich
aus miindlichen und schriftlichen Aeuflerungen von Gauss, daf3 Gauss schon bei Anfer-
tigung des Abschnittes de compositione formarum aus den Disqu. arith. etwas dhnliches
wie ideale Factoren zu seinem Privatgebrauche gehabt hat, daf3 er dieselben aber nicht
auf sicheren Grund zuriickgefiihrt hat, er sagt ndmlich in einer Note seiner Abhandlung
iiber die Zerfiillung der ganzen rat. Functionen in linedre Factoren ohngefihr so: ,,Wenn
ich hdtte auf dieselbe Weise verfahren wollen wie die friiheren Mathematiker mit dem
imagindren, so wiirde eine andere meiner Untersuchungen die sehr schwierig ist sich auf
sehr leichte Weise haben machen lassen. Daf3 hier die compositio formarum gemeint
ist, hat Dirichlet spdter miindlich von Gauss erfahren.

2. See [Waterhouse 1984]. The eighth section is discussed by G. Frei in chap. 11.4 of the
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130 II. Key Mathematical Techniques of the D.A.

this important correction to cancel the remaining, more interesting part of Kummer’s
assertion. Although one of the three men, Gauss or Dirichlet or Kummer, appears to
have misremembered or misunderstood what had occasioned a footnote published
47 years earlier, they all seem to have thought in 1846 that Gauss used “something
similar to ideal prime factors” for his own calculations of compositions of forms
when he was composing the Disquisitiones, but that he had not put it on “firm
ground.” Consideration of such a possibility raises an interesting question about
the Disquisitiones: What was Gauss’s conception of “firm ground” in 1801, and —
regardless of what he might have left out — what firm ground underlay the theories
that he did include?

There are no statements about the foundations of mathematics in the Disquisi-
tiones. A glimpse of Gauss’s views appears in his statement in the preface that all of
mathematical analysis is the study of general properties and relations of numerical®
quantities, whereas number theory (arithmetic) studies just whole numbers. This
attitude implies that he thought of mathematics as being founded on the notion of
“number,” but he seems never to have discussed, in the Disquisitiones or elsewhere,
his conception of “numbers.”* In sec. 7 he certainly computes with irrational num-
bers — for example, the values of the trigonometric functions for arguments of the
form 27 p/q with integral p and g in art. 336 — but he gives no explanation of them.
He does not even justify his use of them in a book on arithmetic other than to say
that “the exposition will make abundantly clear that this subject is linked to higher
arithmetic in an intimate connection.” I infer from these few remarks that Gauss’s
view of mathematics was that it deals with computations with numbers, and that, like
many other mathematicians since, his interest lay in pursuing mathematics itself, not
in investigating its metaphysical underpinnings in the notion of number.

1. The Composition of Forms in the Disquisitiones

The difficult theory of composition of forms in sec. 5 is indeed closely related
to Kummer’s ideal prime factors, so it is not surprising that Kummer, Dirichlet
and Gauss would have discussed connections between the two. Kummer explicitly
mentioned binary quadratic forms in his first paper on ideal prime factors, [Kummer
1847], saying that the theory of numbers of the form x+y~/D leads to a theory of ideal
factors, and that the natural way of partitioning these ideal factors into equivalence
classes corresponds exactly to Gauss’s way of partitioning binary quadratic forms into
equivalence classes. He saw this as a powerful validation of his theory because the

present book [Editors’ note].

3. Gauss does not refer specifically to numerical quantities, but I am told that Maser’s use
of this term in his 1889 German translation correctly describes the way in which Gauss’s
contemporaries would have understood his phrase.

4. A small note by Gauss on his conception of magnitudes, “Zur Metaphysik der Mathe-
matik,” published in vol. XII of his Werke, is discussed by J. Boniface in chap. V.1 of the
present book [Editors’ note].

5. Gauss’s Disquisitiones Arithmeticae, art. 335: Tractatio ipsa abunde declarabit, quam
intimo nexu hoc argumentum cum arithmetica sublimiori coniunctum sit.
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Gaussian classification of forms, although it appeared artificial from the standpoint
of the theory of forms, had been demonstrated by Gauss to be more fruitful than the
obvious classification. Unfortunately, Kummer gave no detailed explanation, and he
never returned to the subject of ideal prime factors of numbers x + y~/D and binary
quadratic forms.

A great obstacle for modern students of Gauss’s theory of composition of forms
(arts. 234-251) is Gauss’s use of the word “composition” to denote an operation that is
not a binary operation. Modern treatments normally ignore the composition of forms
altogether and deal only with the composition of equivalence classes of forms, which
is abinary operation. Even André Weil, [Weil 1984], p. 334, says the Gaussian theory
was a “stumbling-block” until Dirichlet “restored its simplicity,” without noting that
Dirichlet only composed forms that satisfy certain additional conditions (conditions
of “concordance”). Dirichlet in fact made no attempt to compose forms, as Gauss
had done, but instead focussed on the question of determining which numbers were
represented by which forms; in this study, it is natural to replace a form by an
equivalent form whenever it is convenient to do so, and that is what Dirichlet did. In
other words, he did not compose the two given forms, but instead replaced them, when
necessary, with equivalent forms in order to find forms that were easy to compose. In
this way, he solved the problems that interested him and avoided the complications
of Gauss’s theory, but he left aside the challenging problem Gauss had successfully
solved, the problem of composing arbitrarily given forms. (See [Dirichlet 1851] or
§146 of [Dirichlet-Dedekind 1879].)

Composition of forms is an elaboration of the ancient formula

(x% = Dy*)(u? — Dv?) = (xu + Dvy)*> — D(xv + yu)?, (0)

where D is a specified integer. Given three binary quadratic forms f, ¢, and F (in
the ancient example, all three are the form X 2_Dy?),a transformation formula is
aformula f(x, y)¢(u,v) = F(X,Y) where X and Y are linear functions

xXu

X|_|an an a3 a4 || xv
Y ayy axp axy ax || yu
yv

of the four monomials xu, xv, yu and yv. (Gauss did not, of course, write the trans-
formation equations in the matrix form used here.) A transformation is a composition
(art. 235) if (1) the six 2 x 2 minors of the matrix [a;;] have greatest common divisor
1 and (2) the first two minors, that is, ajjapy — apjay2 and ayjaz3 — apia;3, are both
positive. In the example (0), the transformation is given by the matrix

1 0 0 D
01 1 0
S0 it is a composition because the six minors are 1, 1, 0, 0,—D and —D. Actually,

Gauss only imposes the technical condition (2) at a later stage in the development of
the theory (art. 239).
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- 341 —

Aop + 2Bpg + Cgg = aa’ . .......... [1]
Ap'pt + 2Bp'g' + Cqg'q¢' = ac'.........[2]
A;a“p“ + QBp”q“ + Cququ 3 - L, 2 {5]
-‘":D""Pm + QBP”'(]”' + Cq“‘q‘" = CC'. v s . [4‘]

App' + B (pq' + gp') + Cqq' = ab' ... .. [5]
@P“ + B (pg" + gr'') + qun = ba' ... [5]
Apnpm + B (paqm + qipm) + Cq:qm = be! [7]
ApHpr + B (pﬂqlﬂ + q“p”‘) + C'q”q”'-—-'-cb" {8]
A (ppm + p’p”) + B (pqm + qu + Pfqu

+ q.*ph‘) + C (qqm + qo‘qﬂ) = obb' .. [Q.l

Sint determinantes formarum F, f, f* resp. D,
d, d'; dinisores communes maximi numerorum
A, 2B, C; a, 2b, ¢; a', ab', ¢! resp. M, m, m’
(quos omnes positiue acceptos supponimus).
Porro determinentur sex numeri integri A, B, €,
A, B, € ita vt sit Az + 2Bb + € = m,
Wa' + 2B + €/ = m'. Denique designen-
tur numeri pg' — gp', pg“ — gp', pgit — qp',
p'gi — q‘P", plgit — gipt, plight — gp't resp.
per P, Q, R, §, T, U, sitque ipsorum diuisor
communis maximus positiue acceptus = k —
Jam ponendo

fit ex aequ. g

4p'p" + B (p'g" +9'p) + Cglg = bb! — & [11]

Ex his yndecim aequatiombus 1 ... 11, se-
quentes nouas euoluimus *):

*) Origo harum aequationum haec est: I2 ex 5. 5 — I. 23
I3 ex 5. Q— 1.7 2. 65 I4ex 10, IXI ~ 6. 75 15
x5 8+ 5 8-+ 10, ro+ 11. I1 — 1. 4§ — 2.3 —

Y3

Fig. I1.2A. Computations at the core of Gauss’s composition of forms:
an extract from art. 235 in the 1801 edition of the Disquisitiones arithmeticae.

Gauss sets down in equations [1]-[9] the equations that describe a composition
formula and begins the long solution of the problem, “Given two forms, determine
whether there is a third form that composes them, and, if so, find all such forms.”
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Note that this definition rests on the firm ground of computation with whole
numbers. The forms f, ¢ and F are described by triples of integers, and a com-
position is described by equations of the form given above. Composition is not a
binary operation, but a ternary relation. Given f and ¢, there may not be any F at
all for which there is a composition formula, so it is meaningless to talk about “the
composite of two given forms.”® To make matters worse, if there is an F there are
certainly infinitely many of them, because X and Y can be subjected to an arbitrary
unimodular change of variables.

Gauss says (art. 234) “thus far no one has considered this topic.” Small wonder.
Ever since Gauss, mathematicians have struggled with it. The first theorem he proves
states: If f and ¢ can be composed, the ratio of their determinants must be a ratio of
squares. The proof is a display of algebraic virtuosity that occupies a few pages. Just
as demanding and lengthy is his proof of the converse: if the ratio of the determinants
of two forms is a ratio of squares, a third form can be written as a composite of them.
His proof of this theorem is of course a construction; given two forms, and given that
the ratio of their determinants is equal to a ratio of squares, his proof (art. 236) is an
algorithm for constructing a third form and a 2 x 4 matrix that fulfills the conditions
that define compositions. (In fact, in his masterly fashion, he shows how to construct
all possible compositions of them.)

This is lengthy and daunting, but Gauss has only begun to do what he needs to do.
Earlier (art. 158) he has defined what it means for two forms to be equivalent. In the
main this definition is the natural one — each form can be obtained from the other by
a change of variables with integer coefficients — but, as Gauss was the first to realize,
addition of the seemingly unnatural requirement for the determinant of the change
of variables to be positive improves the theory. He next proves that compositions of
equivalent forms are equivalent. More precisely, if a form F can be expressed as a
composite of two forms f and f’, and if f” is a form equivalent to f’, then there
is a form F’ that is a composite of f and f”, and any such F’ is equivalent to F.
Note that the second statement implies, when f’ = f”, that two compositions of the
same pair of forms are equivalent.

And more: He needs to prove that this binary operation on equivalence classes
is associative, a theorem that requires several more pages of work. Because he
deals with composition of forms rather than of classes of forms, his statement of this
associative law in art. 240 needs to be rather lengthy:

If from the forms f, f’ the form F is composed, from F, f” the form §, from f,
S the form F’ and from F’, f’ the form §’, then the forms § and §’ are equivalent.

Finally, after eight long and difficult articles (arts. 234—241) dealing with compo-
sition of forms in complete generality, Gauss turns in art. 242 to the specific problem
of computing composites of given forms. Again I would like to emphasize that he
composes forms, not equivalence classes. For example, in art. 243 he gives himself
the problem of finding a form that is a composite of the forms (3, 1, 47), (4, 0, 35),

6. Both the English and the German translations of the Disquisitiones wrongly translate the
theorem of art. 249 when they use definite articles rather than indefinite ones; the original
Latin of course has no articles.
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— £72 D

solus P ingreditur, qui est valor expr. b'::i’ 5
(mod. £* ). Si e. g quaeritur forma compasita
ex (16, 5, 19 et (8, 1,57), est B = 2, » =
4y » =5, v = 2. Hinc 4 = 8, P valor
expr. # mod. 8), qualis est 1, vnde B = 8k
— 7%, adeoque faciendo £ = 9, B = — 1
atque C = 37, siue (8, = 1, 357) forma quae-
sita.

Propositis itaque formis quotcunque, quarum
termini initiales ommnes sunt potestates numero-
rum primorum, circumspiciendum erit, num ali-
quarum termini antecedentes sint potestates efusdem
nwmerl primi, aique hae inter se respectiue per
regulam modo traditams componendae. Hac ra-
tione prodibunt formae, quarum termini primi
etiamnum erunt potestates numerorum primorum,
sed omninp diversorum; forma itaque ex his
composita per obseru. tertiam - definiri poterit
E. g. propositis formis (5, 1, 47)5 (49 0, 35),
(5, 0 28), (16, 2, 9), (9, 7, 21), (16, 6, 11),
ex prima et quinta counflatar forma (27,7, 7);
ex secunda et quarta counfit (16, — 6, 11 , ex
hac et sexta (1, 0, 140), quae negligi potest,
Supersunt itaque {§,0,98), (27, 7, 7), ex qui-
bus producitur (135, — 20, 4 j, cuius loco assu-
mi potest proprie aequivalens {4, 0, 55 . Haec
itague est resultans ex compositione sex proposi-
larunn

Ceternm ex hoc fonte plura alia artificia in
applicatione vtilia hauriri possunt; sed ne nimis

Fig. I1.2B. A composite of 6 forms:
an extract from art. 243 in the 1801 edition of the Disquisitiones arithmeticae.
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(5,0,28),(16,2,9),(9,7,21) and (16, 6, 11), all of which have determinant —140.
The form he finds is (135, —20, 4).

He goes on to mention that (135, —20, 4) is equivalent to (4, 0, 35) — a fact that
follows easily from the presence of 4 in both and the divisibility of the middle terms in
both by 4 — perhaps because (4, 0, 35) is a simpler representative of the equivalence
class of the result, and, as was noted above, if F is a composite of f and f’, then
any form equivalent to F is also a composite of f and f’. The result (4, 0, 35) can
also be found in the following way: as Gauss states, (27, 7, 7) is a composite of the
first and fifth forms, (3, 1,47) and (9, 7, 21); and, as is easily found (see below),
(4,0, 35) is a composite of the fourth and sixth forms, (16, 2, 9), and (16, 6, 11).
Since (20, 0, 7) is a composite of (4, 0, 35) and (5, 0, 28) — easily found because
4 and 5 are relatively prime — a composite of all six forms but the second is found
by using the fact that 27 and 20 are relatively prime to conclude that (540, —20, 1)
is a composite of (27,7,7) and (20, 0, 7) and therefore is a composite of the five
forms other than (4, 0, 35). This form (540, —20, 1) is equivalent to the principal
form (1, 0, 140), as the last coefficient 1 shows, so any composite of all six forms
must be equivalent to the composite of (1, 0, 140) and (4, 0, 35) and must therefore
be equivalent to (4, 0, 35).

My main point is that computations of this sort are the core of Gauss’s theory of
composition of forms. Gauss has gone to great lengths to describe in full generality
the ways in which they may be done and the properties they have. His immediate
purpose is, as the following sections of the Disquisitiones show, the proof of the law
of quadratic reciprocity, which he extracts from simple facts about composition of
primitive equivalence classes of forms for various determinants.” This marvellous
proof leaves the reader with an impression that the theory is a powerful tool that will
open the way to other realms of arithmetic, as indeed it has.

2. Revisiting the Composition of Forms

I would now like to describe a simple method of accomplishing the composition of
forms that I hope will give some insight into the operations involved and into the
way in which Gauss’s approach, cumbersome as it is, does place the theory on the
firm ground of computations with integers in an admirable and rather natural way.
Letan integer D, not a square, be fixed. I will take the addition and multiplication
of numbers x 4+ y~/D, where x and y are integers, for granted. By a module of
numbers of the form x + y+/D, where x and y are integers, I will mean a list of
(a finite number of) such numbers written between square brackets, [x1 + ylﬁ,
Xy + yzx/ﬁ, R \/5]. The term “module” is motivated by the following
definition: a module is congruent to zero modulo another module, written

[x1 + Y1VD, ..., Xp + yuv/'D] = 0 mod [x] + y{v/D, ..., x},, + yi,v/D]

7. A form is said to be primitive if the coefficients (a, b, ¢) have no common divisor; if there
is a primitive form in an equivalence class, all the forms of the class are primitive and the
class is said to be primitive.
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if each of its entries is a sum of multiples of entries of the other module in the sense
that for each i = 1, 2,..., n there are integers u1, u3,..., Um, V1, V2,..., Uy such that

xi +yiVD = (o + vV D)(x}, + y, VD).
o=1

Two modules are by definition equal if each is congruent to zero modulo the
other. As is easily seen, two modules are equal if and only if each can be transformed
into the other by a sequence of operations of three types: (1) Rearrange terms. (2)
Annex or delete zeros. (3) Add a multiple of one entry in the module to another entry
— the multiplier being a number of the form x + y+/D. We can then find a simple,
uniquely determined representation of a given module:

Theorem. Let an integer D, not a square, be fixed, and let a list x; + ylx/ﬁ,
x2 + v2+/D, ..., Xp + yu/D of numbers of the form x + y+/D be given. Provided
at least one of the listed numbers is not zero, there are nonnegative integers e, f and
g for which ef #0, g < f, g% = D mod f and

[x1 + yl«/ﬁ, X2 + yzx/B, U i yn«/B] = [ef, eg ~|—e\/5].

Two modules in this form [ef, eg+g~/D], where e, f and g are nonnegative integers,
ef #0,g < f,and g2 = D mod f, are equal only if they are identical.

Proof. Let a module be called full if v/D times any entry in the module can be
written as a sum of integer multiples of entries in the module. Every module is equal
to a full module, as one can prove as follows: Double the length of the module by
annexing to the end a number of zeros equal to the number of terms in the module.
To each of the zeros in the second half, add +/D times the corresponding term in
the first half. Then +/D times any term in the second half is equal to D times the
corresponding term in the first half, so the new module is both full and equal to the
original one.

Since every module is equal to a full module, it will suffice to prove that every full
module that is not equal to [0] is equal to one in the required form [ef, eg + g\/ﬁ].
This will be done in two stages.

Stage one: Because reversing the sign of an entry in a module obviously gives an
equal module, one can assume without loss of generality that the coefficient of ~/D
in each term listed in the module is nonnegative. Because the module is assumed
to be full and not equal to [0], at least one entry must contain /D with a positive
coefficient. (Use is made here of the assumption that /D is not an integer.) If only
one entry does, pass to stage two. Otherwise, choose an entry in which the coefficient
of +/D is positive but otherwise as small as possible and subtract this entry from each
other entry in which the coefficient of /D is positive. The new module obtained in
this way is equal to the old one, and the coefficients of ~/D are all nonnegative. The
new module is also full. (A number x + y~/D is a sum of integer multiples of the
entries in the old module if and only if it is a sum of integer multiples of entries in
the new module, and /D times an entry in the new module is either /D times an
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entry in the old module or it is a difference of two such, so it is certainly a sum of
integer multiples of entries in either the old or the new module.) Such a step reduces
the total of the coefficients of ~/D (by (k — 1) times the smallest of the nonzero
coefficients, where k is the number of nonzero coefficients), so repetition of the step
eventually reaches a full module in which all entries but one are integers, and the one
entry that is not an integer contains ~/D with a positive coefficient, at which point
one passes to stage two.

Stage two: Given a full module in which all terms but one are integers, one can
again reverse signs, if necessary, to find an equal full module in which all terms but
one are nonnegative integers. Delete all zeros from the module. At least one positive
integer remains, because the module is assumed to be full and not equal to [0] (and
D is not a square, so (x + yvD)VD = u(x + yv/D) is impossible for integer w).
If only one remains, a module of the form [a, b + \/5] that is full and equal to the
original module has been reached. Otherwise, among the integers in the module
(now all positive) choose one that is as small as possible, subtract it from each of the
other integers in the module, and delete all zeros that result. Since each step of this
type reduces the total of the integers in the module, repetition of it eventually results
in a full module of the form [a, b + ¢+/D] equal to the original module.

Thus, given any module that is not equal to [0], one can construct a full module
of the form [a, b + c«/ﬁ] that is equal to it. Moreover, one can assume without loss
of generality that a and ¢ are positive. Because av/D = j1-a+v - (b+cv/D) where
w and v are integers, a = v - c. Moreover, bvD+cD =0 -a+1- b+ c«/ﬁ), SO
b=t -candcD = ga + th = ovc + t2c. Thus, withe = ¢, f =vand g =,
the module is [ef, eg + ev/D], where g2 +of = D, so g2 = D mod f. Since eg
can be changed by any multiple of ef, g can be replaced by any integer congruent to
it mod f, and one can assume without loss of generality that 0 < g < f, in which
case the module has the required form.

Suppose now that both [ef, eg+e~/D]and [¢' f', €' g’ +¢’~/D] have the required
form, and suppose they are equal. Since [ef, eg + e+/D] is full, the statement that
[ f',¢'g’+¢'v/D] = 0 mod [ef, eg+e/D]implies ¢’ [ = ju-ef +v-(eg+e~/D)
and ¢'g’ 4+ ¢'/D = o - ef + 7 - (eg + e~/D). Since v must be zero, ¢/ f' must be
a multiple of ef. By symmetry, ef must also be a multiple of ¢’ f’. Since they are
both positive integers, ef = ¢’ /. Similarly, since ¢/ = T - e and, by symmetry, e is
also a multiple of ¢’ and both are positive, e = ¢’. Thus, f = f’. Since T must then
bel,eg’ =e'g’ =0 -ef +eg,so g mustbe congruent to g mod f. Since both are
nonnegative and less than f, g = g/, and the proof is complete.

A module of this form [ef, eg + /D] will be said to be in canonical form.
(The integers e, f and g are nonnegative, ef # 0, g < f, and g2 = D mod f.)
The Theorem solves the problem: “Given two modules, determine whether they are
equal.” Each is equal to one in canonical form, and two in canonical form are equal
only if they are identical.

Modules can be multiplied in a natural way: the entries of the product module
are the products of two factors in which the first factor is from the first module and
the second factor is from the second. This definition depends, of course, on the fact



138 II. Key Mathematical Techniques of the D.A.

that it is consistent with the definition of equality of modules, which is to say that
if one of the two modules is replaced by an equal module, the product module is
replaced by an equal module. This is easy to prove.

Thus, every module can be written as a product [e][ f, g+ x/ﬁ] in which the first
factor is [e] for a positive integer e and the second factoris [ f, g+ /D), where fisa
positive integer and g is a square root of D mod f. Multiplication of any module by
[e] is easy, so the multiplication of two modules in canonical form, say [e][ f, g—i—«/ﬁ]
and [¢'][ f/, g’ ++/D] comes down to the computation of [ f, g +~/D1[f’, & +~/D]
which is to say the reduction of [ff’, f(g’ + /D), f'(g + ~/D),gg' + D +
(g + g)v/D] to canonical form. This operation contains the essence of the idea
of the composition of forms.

For example, Gauss’s statement, mentioned above, that (27, 7, 7) is a composite
of (3,1,47) and (9, 7, 21) follows from

[3, 1 + +/—140][9, 7 + +/—140]
= [27,3(7 + ~/—140), 9(1 4+ +/—140), —133 + 8/—140]
= [27,21 4 34/—140, 9 + 9v/—140, 2 + 8+/—140]
= [27,21 4+ 37/=140, 7 + ~/—140, 2 + 8+/—140]
=[27,0,7 + ~/—140, —54] = [27, 7 4+ ~/—140].

(These two forms (3, 1, 47) and (9, 7, 21) are concordant in Dedekind’s sense, which
is to say that the greatest common divisorof a =3, ¢ =9andb+ =147 is 1.
Therefore the composite (27, 7, 7) is determined, as Dedekind showed, by the fact
that B = 7mustbe 1 mod 3 and 7 mod 9 and must be a square root of —140 mod 27.)

Similarly, the above statement that (4, 0, 35) is a composite of (16, 2,9) and
(16, 6, 11) follows from

[16, 2 4+ ~/—140][16, 6 + +/—140]
= [256, 16(6 4 +/—140), 16(2 4 +/—140), —128 + 8+/—140]
= [8][64, 12 + 24/—140, 4 + 2/=140, —16 + +/—140]
= [8][64, 8, 4 + 2+/—140, —16 + ~/—140]
= [8[8, 4 + 2+/—140, v/—140] = [8][4, +/—140].

(This is a composition of forms that are not concordant in Dedekind’s sense, which
is to say that the greatest common divisor of a = 16, « = 16, and b + 8 = 8 is not
equal to 1. Therefore, Dedekind’s method does not produce a composite.)

If f and f are relatively prime, the product [f, g + ~/DI[f’, ¢’ + v/ D] of
two modules in canonical form with e = 1 is simply [ ff’, G + /D), where G is
determined mod ff/ by G = g mod f and G = g’ mod f’. This is a consequence
of the fact that there are integers o and t for which of + tf’ = 1; since both
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0 f(G + /D) and tf'(G + /D) are zero mod [ f, G + ~/DI[f’, G + VD], so is
their sum G + \/5, and

[f. g +~DIlf'. ¢ + VDI =1f.G+DILf', G+ D]
=[ff'. f(G+ D). f(G++D).(G+~D)]
=[ff', f(G+~D), f(G+~D),(G+~D)? G+ D]
=[ff',G++/Dl.

Explicitly, multiplication of modules can be used to construct composites of
given forms® in the following way (assuming, of course, that the ratio of their deter-
minants is a ratio of squares):

Theorem. Let ax2+2bxy+cy? and au? +2Buv+yv? be given forms, and suppose
that the ratio of their determinants is a ratio of squares, but that the determinants
themselves are not squares. An explicit composition formula

(ax® + 2bxy + cy?)(au® + 2Buv + yv?) = AX> +2BXY + CY> (1)

can be constructed as follows. Choose positive integers s and o for which s2(b% —
ac) and 02(8% — ay) are equal. Let D denote their common value, which is by
assumption not a square. Put the module [sa, sb+ «/5] [ca, o8+ «/5] in canonical
form, say [sa, sb + VDlloa, B + /D] = [E][F, G + +/D]. Then formula (D)
holds for

AX? +2BXY +CY? = irL—M(FXZ 12GXY + HY?) )

when the sign is the sign of aw, when H = (G2 — D)/F, when m, u and M
are the positive integers defined by [m] = [a, 2b, c], [1] = [«, 28, y] and [M] =
[F,2G, H] (in short, they are the “contents” of the forms ax? + 2bxy + cy?, au? +
2Buv + yv2 and FX?+2GXY + HY2) and when X and Y are the linear functions
of xu, xv, yu and yv determined implicitly by

(sax + (sb + vV D)y)(oau + (6B + D)) = E(FX + (G +~D)Y). (3)

Proof. Reversing the sign of either of the given forms merely reverses the signs of
both sides of (1) (the sign of the right side is reversed because the sign of (2) is
reversed), so there is no loss of generality in assuming that @ and « are both positive.
Neither a nor @ can be zero because the determinants are by assumption not squares.
The definition (3) of X and Y obviously implies saxv+ocayu+(sb+oB)yv = EY,
after which it implies EF X = sacaxu + sacBxv + casbyu + (sboff + D)yv —

8. The degenerate case in which the given forms factor over the rationals — which is to say
that their determinants are squares — will be ignored.
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G(saxv + oayu + (sb + of)yv) so the explicit expression of X and Y in terms of
xu, xv, yu and yv is

saca sa(@f—G) oa(sh—G)  sbof+D—G(sh+op) 7 | M
X|_ | EF EF EF EF xv )
Y - 0 sa oa sb+op yu
E E —F
yv

Multiplication of the defining equation (3) by its conjugate (sax + (sb —+/D)y)
(cau+(op— VD)v) = E(FX+ (G —+/D)Y) — which is the same statement as (3)
— gives ((sax + sby)2 — (szb2 — szac)yz)((aozu + O'ﬂv)z — (02,32 — azay)vz) =
EX((FX + GY)? — (G? — FH)Y?), that is,

s2o?aa(ax® + 2bxy + cy?) (au® 4+ 2Buv + yv?) = E>F(FX*+2GXY + HY?).

Vi 2,2 : : ; _ _E*F? _ 2E%*FG
D1v1510n2 by s“o“acx gives equation (1) with A = sZgzaa’ 2B = 570 and
C = E f H " Thus, the theorem will be proved’ if 2E 2F is shown to be equal

scocaa scocaa

to %, if the entries of the matrix in (4) are shown to be integers and if the greatest
common divisor of the 2 x 2 minors of this matrix is shown to be 1. (The first two

2 2
(‘Y?z 7 and ‘még;) are positive because s, o, a, « and F are all positive.)

By definition, [sa, sb + v/ D][oa, o + /D] = [E][F, G 4+ /D). Thus, E, F
and G are found by putting [sao«, sacB+sa VD, ocasb+oa/D, sbo B+ D+ (sb+
oB)~/D] in canonical form. Let ', P, and B’ (Gauss’s notation) be such that
Bsa+P oca+PB" (sb+aop) is the greatest common divisor of sa, o, and sb+0 8,
call it d. Then d clearly divides both coefficients of all four numbers in the product
module [saoa, sacf + sav/D,casb +oa/D, sbof + D + (sb + O’ﬂ)\/ﬁ] with
the possible exception of sbo + D, and it divides this coefficient as well because
D = (sb)? mod sa, so sbof + D = sbop + (sb)? = sb(oB + sb) = O0mod d.
Let G be defined by the equation d(Go 4+ /D) = P'sa(0p + /D) + P oa(sb +
VD) + P (sbop + D + (sb 4+ o)v/D). In other words,

minors

1
Go = g@ysaoﬂ + P oasb +P" (sbap + D)).

Then

[sa,sb + Dlloa, o + /D]

= [saow, sacP —I—sa\/B, oasb+aa\/5, sboﬂ+D+(sb+0,3)\/B, d(Go—l—\/B)]
= [sacwa, sacB —saGqy,ocasb —oaGo, sbaf+ D — (sb+aB)Gg, d(Go+ \/5)].

This module is full because it can be found by starting with the full module [sa, sb +
VDlloa, oB + VD] (full because each factor is full), annexing a zero, and adding

9. By the definition of M, the coefficients A, 2B, C of the composite form are integers.
For (1) to be a composition in the Gaussian sense, 2B must be proved to be even, but,
for reasons explained below, this point will be ignored and (1) will be accepted as a
“composition” without a proof that 2B is even.
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integer multiples of other entries to this zero — namely, adding 3’, 8" and 3" times
the appropriate entries. Let Fy be defined by

[dFy] = [saca, sacB — saGg, casb — oaGg, sbaB + D — (sb + cB)Go].

Then the module [d Fy, dGo + d~/D] can be reached by successively subtracting
integer multiples of entries of [sac«, sacB — saGy, casb — ocaGg, sbap + D —
(sb+0B)Go,d(Go + \/5)] to reduce the integers in this module to their greatest
common divisor d Fy while leaving d(Gq + +/D) unchanged, so it is full, as well as
equal to the product module.

Because [d Fy, dGo + d+/D] is full and d and Fy are positive, it is in canonical
form, except that Gy may not be in the range 0 < Gy < Fy. Because [d Fy, dGq +
d</'D] = [E][F, G + /D], it follows that E = d, F = Fy, and G = Gy mod F.

In particular, E is the greatest common divisor of sa, o« and sb + o, which
shows that the entries in the second row of the matrix in (4) are integers. Moreover,
EF = dF is the greatest common divisor of saca, sacf — saGg, casb — oaGg
and sbo + D — (sb + o8)Gy, from which it follows, because Gg = G mod F,
that the entries in the first row of the matrix in (4) are integers.

The product of [sa, sb + /D] with its conjugate [sa, sb — VD] is [sa, sb +
V/Dl[sa, sb — /D] = [(sa)?, sa(sb — /D), sa(sb+ /D), s2b* — s2(b* — ac)] =
[sal[sa, sb + /D, sb — /D, sc] = [sallsa, 2sb, sc, sb + ~/D] = [sal[sm, sb +
/D], where m is as in the statement of the theorem. Similar calculations apply to the
other two modules in the equation [sa, sb—i—«/ﬁ][aa, op +\/5] = [E][F, G+\/5],
so multiplication of this equation by its conjugate gives

[sallsm, sb + v/Dlloallopu, o + D] = [EZ[FIIM, G + /D].

Since sb = —sb mod sm, 6 = —of modopu and G = —G mod M, the mod-
ules in this equation are self-conjugate and multiplication of the equation with its
conjugate amounts to squaring and results in

[saca]*[sm][sm, sb + v Dlloullow, 6B + D] = [E2F*[M][M, G + v/ D]
which combines with the previous equation to give
[sacallsmopul[EXF1IM, G + D] = [E>F*[M][M, G + /D).

When G is reduced mod M (the result must be O or %M ) the modules on either

side are in canonical form, and sao«a - smou = E 2F . M follows. In other words,

2
% = 5, as was to be shown.

Finally, let A;; for 0 < i < j < 4 be the minor of the matrix in (4) that uses
columns 7 and j. It remains to show that the greatest common divisor of the A;; is
equal to 1. By direct computation,

[E*FllA12, A1, A, Az, Mgy, Azg]

= [sacu][sa,own, sb+oB, 0B — sb,sc,oy].
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(The calculation is simplified when one observes that adding G times the second
row to the first does not change the minors.) What is to be proved, then, is that
[E2F] = [sacu][sa, o, sb 4+ aB, oy, sc], which is to say

[Ellsacwa, sa(cB — Gg), oa(sb — Gg), sbaB + D — (sb + o8)Go]

= [sacu][sa,own,sb+cB,aB —sb,oy, sc].

The first three terms on the right — that is, sac« times sa, oo and sb + o — are
all divisible by Esao« and are therefore zero modulo the module on the left. The
remaining three are zero modulo the module on the left by virtue of

N

ou a
saca(of — sb) = 7 Esa(oB — Gg) — -Eoa(sb — Go)

E
b
sacooy = # -Esa(oB — Gg) — % -E(sboB + D — (sb+ 0B)Gyp)
b
saocasc = ﬂ -Eoa(sb — Gg) — % -E(sbaB + D — (sb+0B)Gy).

Finally, the four terms in the module on the left are zero modulo the module on the
right by virtue of

Esaca = P's’a’>oca + P sac’e® + P (sb + of)saca
Esa(oB — Gg) = P'saca(of — sb) + P sacacy
Eoa(sb — Gg) = Psaoca(sb — op) + P sacasc
E(sboB + D — (sb + oB)op) = P'sacacy + P sacasc,

(the last three equations are obtained by eliminating one of the 3s from E = 'sa +
Boa+ P (sb+oB) and EGy = R'sacB + P'oasb + B (sboB + D)) and
the proof is complete.

Allowing forms to have odd middle coefficients permits the theorem to take the
more natural form

ax? +2bxy +cy?  au? 4 2Buv + yv? _ FX%24+2GXY + HY?

- " i ®)

of a composition of two primitive forms (forms in which the greatest common divisor
of the coefficients is 1) in which the composite is also primitive. One can obviously
compose arbitrary forms if one can compose primitive forms, so it is natural to
restate the theorem in the form: Given two primitive forms ax® + bxy + cy? and
au® + Buv + yv2, if the ratio of b — 4ac to B2 — 4ay is a ratio of squares, the
obvious modification of the construction of the theorem gives a composition formula
for them in which the composite form is primitive.

For example, to compose x2 + xy — y? with itself, the theorem replaces it with
2x% +2xy — 2y? and computes [2, 1 ++/5][2, 1 ++/5] = [2][2, 1 + /5] to find the
composition (2x% 4 2xy — 2y%) (2u? + 2uv — 2v%) = 2(2X% +2XY —2Y?), where
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X and Y are defined by (2x + (1 ++/5)y)Qu + (1 +/5)v) = 22X + (1 +/5)Y),
whichistosay X = xu +vy and Y = xv + yu + yv. The more natural way to state
this composition formula is of course

(x2+xy —yz)(uz—i—uv — v2) = X2+ XY - Y2

Formula (5) can be used to construct a composition of any two forms, when the
ratio of their determinants is a ratio of squares, whether or not they are primitive
and whether or not their middle coefficients are even. Once a single composition
is known, all others are obtained by taking unimodular changes of variables X' =
pX +qY,Y' =rX +sY, where p, q, r and s are integers with ps — gr = 1.

From Gauss’s point of view the theorem does not provide a composition of
two given forms until B is proved to be an integer, or, in the terms of the modified
theorem, until it is proved that if the middle coefficients of the given primitive forms
are both even, the middle coefficient of the composite form given by the theorem is
even. This statement is true, as follows from Gauss’s construction of art. 236, but
it is a matter of little importance unless there is a reason to restrict consideration to
forms with even middle coefficients, a point on which I and many other of Gauss’s
readers remain unconvinced.

3. Conclusion

I hope that the use of module multiplication in some measure simplifies Gauss’s
theory of composition of forms. For example, it clarifies the difficult associativity
property described and proved by Gauss in art. 240. Multiplication of modules is
obviously an associative binary operation, and this property easily translates into the
property Gauss uses.'°

But, more importantly, [ hope that by focussing attention on Gauss’s composition
of actual forms — as opposed to equivalence classes of forms as in the modern theory —
I have highlighted Gauss’s great achievement in giving a rigorous treatment of the
composition of binary quadratic forms in the greatest possible generality.

His theory is “rigorous,” not only in the usual sense that it is mathematically
convincing, but also in the literal sense that it makes great demands on the reader.
The second kind of rigor has caused succeeding generation of mathematicians to
devote some of their best efforts to avoiding it. But it is the first kind of rigor
that makes Gauss the great master. It is based on his mastery of the computational
structure of his subject and his ability to explain that structure in the most general
circumstances. While they may seek to avoid the difficulties of Gauss’s theory,
succeeding generations should never cease to admire it.

10. Since multiplication of modules can be used to establish the theory of composition of
forms, Gauss’s proof of quadratic reciprocity using composition of forms can be deduced
in this way. However, quadratic reciprocity can be proved working directly with mul-
tiplication of modules. Therefore, if the goal is quadratic reciprocity, one can dispense
with quadratic forms altogether. Other aspects of Gauss’s theory can be revisited in a
similar way. See [Edwards 2005].
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