The Use of Infinity in Mathematics

(Presented at St. John’s College, Annapolis, November 12, 2004)

The obvious place to start a talk about infinity in mathematics is with Zeno’s
famous paradoxes and with Aristotle’s response to them.

I’ll discuss just one of Zeno’s four paradoxes, the old favorite about Achilles
and the tortoise. The tortoise has a head start in a footrace with Achilles. Zeno
argues that the swift Achilles can never catch up, because before he can overtake
the tortoise he must reach the tortoise’s starting point, by which time the tortoise
will have moved on. So he must then cover the distance that the tortoise has
moved, by which time the tortoise will have moved even farther, and so forth.
Achilles has to make an infinite number of steps of this type which, when you look
at it this way, seems impossible. How can you do an infinite number of steps in
finite time?

The problem here is a ridiculously abstract one. One can’t doubt for a moment
that Achilles will overtake the tortoise. The problem consists of trying to think of
it as happening as a result of an infinite number of steps.

The sane answer, it seems to me, is the one Aristotle gave. Don’t. Don’t try
to think of it as occurring in an infinite number of steps. You can perhaps—with
a lot of effort—conceive of a million such steps, each requiring a finite time, but
the last ten thousand of the first million steps are almost inconceivably quick—all
ten thousand of them taken together are inconceivably quick, not to mention each
step individually. Is it not fruitless nonsense to try to imagine them as the mere

beginning of an infinite number of steps?



In short, avoid attempts to deal with nfinites, either things that are infinitely
small or infinitely large. Often it is useful to deal with potential infinites—for
example to deal with the sequence of numbers 1, 2, 3, ... not as an actually
infinite sequence but as a sequence that can be prolonged for as long as you like.
Its potential is infinite in the sense that it never reaches termination, but it is not
actually in itself infinite.

To give another example of potential as opposed to completed or actual
infinites, consider that modern technology routinely deals with nanoseconds—a
nanosecond is one billionth of a second, in case you have forgotten—which a cen-
tury ago would have been considered to be virtually “infinitesimal.” Small as a
nanosecond is, we can certainly think of partitioning it further. There is always
the potential of going farther. In some scientific fields I'm sure this is done. But
it is not within the realm of science to regard the process as ever being completed
so that the nanosecond is partitioned into an infinite number of infinitesimal time
intervals. (By the way, all but the first dozen or so steps Achilles must make to
overtake the tortoise are tiny fractions of a nanosecond.)

Aristotle said: “Nor does this account of infinity rob the mathematicians of
their study; for all that it denies is the actual existence of anything so great that
you can never get to the end of it. And as a matter of fact, mathematicians never
ask for or introduce an infinite magnitude; they only claim that the finite line shall
be of any length they please; and it is possible to divide any magnitude whatsoever

in the same proportion as the greatest magnitude.”



The last part refers to the fact that you can divide magnitudes as finely as
you please—but not, of course, infinitely finely.

One certainly can’t say that Aristotle put a stop to speculations about
infinity—that will never happen—but I think you can say that he made them
unrespectable in many important venues.

My topic is the use of infinity in mathematics, not philosophy, and I have
nothing to say about the view of infinity adopted by the scholastic philosophers of
the middle ages or by anyone else between Aristotle and Newton. Like everyone
else, I have heard about disputes as to how many angels can dance on the head
of a pin, but I have also heard that that presents a very inaccurate picture of the
medieval thinking. I do know that Georg Cantor, about whom I will speak later,
found ecclesiastical writers of the medieval period who had views of infinity that
he believed were sympathetic to his own; I don’t imagine they involved angels
dancing on pins, but in my opinion these speculations belong to philosophy, not
mathematics, and as such are not relevant to my talk.

The usual version of the history of mathematics has it that the invention of
the calculus by Newton and Leibniz in the late 17th century brought infinity into
mathematics where it has remained ever since. But—the standard version goes
on to say—infinity is very tricky to deal with, and for the first century and a half,
until the middle of the 19th century, mathematicians didn’t really know how to
deal with it in a satisfactory way. As mathematicians like to say, the calculus
wasn’t “rigorous.” Then a German mathematician named Karl Weierstrass (the

French mathematician Augustin Cauchy is another who is frequently credited)



presented a method—universally described in terms of the Greek letters epsilon
and delta—that made possible the rigorous presentation of the differential and
integral calculus that until that time had been insecure. Further work in the
second half of the 19th century, mainly on the part of the German mathematician
Georg Cantor, brought to mathematics a rigorous theory of infinite magnitudes—
pace Aristotle—that was almost universally accepted by the beginning of the 20th
century and overcame most of the problems associated with infinity.

Well, even in the standard version, a few doubters remained. Sometimes
the standard version acknowledges that the eminent French mathematician Henri
Poincare criticized set theory severely. In Germany, David Hilbert was the great
enthusiast for the Cantorian revolution, but his favorite student, Hermann Weyl,
flirted for many years with the theories of the Dutch opponent of Cantor, L. E.
J. Brouwer. By the time I was in graduate school in the 1950’s, Brouwer and his
followers had been thoroughly marginalized and Cantor and Hilbert had won out.

In the 1950’s there was, admittedly, a great deal of talk about problems on the
frontier of the theory of infinite sets—you may have heard of Russell’s paradox, the
axiom of choice, the continuum hypothesis and other questions which it is hard for
me to think of without remembering those dancing angels. But the establishment
view was certainly that these recondite problems were the result of having pushed
the frontiers of mathematics to the very farthest point. Everyone (except a few
kooks) believed that the correct handling of the infinitesimals involved in the

calculus was a fait accompli.



Since I propose this version of history only to attack it, you should be asking
whether I am setting up a straw man, whether this really is the usual version. For
verification I refer you to Morris Kline’s compendium Mathematical Thought from
Ancient to Modern Times, a very scholarly book, or Tobias Dantzig’s popular book
Number, the Language of Science. Another reference would be Judith Grabiner’s
valuable book The Origins of Cauchy’s Rigorous Calculus. Some of you may be
able to provide me with even more references.

My version of the story is quite different. I believe that if you read Newton’s
description of a limit, you will see the modern epsilon and delta definition, although
of course he doesn’t use that terminology. Bishop Berkeley’s witticism about the
numerator and denominator of the derivative being “ghosts of departed quantities”
is a good joke, and it scored the theological points he wanted to make, but it relates
not to the ideas of the great Newton but to the difficulties ordinary minds had in
following the great Newton.

A Newton scholar recently told me that Newton’s great work, the Principia,
repeatedly uses the phrase quam proxime, meaning very, very nearly to describe
the relation between theoretical results and computations or experimental data. To
think carefully about approximations and experimental error—and no one in the
history of the world has thought more deeply about such matters than Newton—is
to understand the meaning of limits.

I don’t know whether Newton would have felt that to heed Aristotle would
have “robbed the mathematicians of their study,” but I doubt it. In any case,

this is a subjective question that even a careful reading of Newton’s voluminous



writings could never answer. I would argue, however, that Newton’s understanding
of the limit concept could not possibly have been deepened by studying the works
of Weierstrass or Cauchy. His reaction would surely have been, “Well, yes, of
course.”

Newton’s rival Leibniz is more frequently accused of dallying with infinites-
imals, perhaps because his marvelously suggestive and effective notation for cal-
culus might seem to careless thinkers to deal in infinitesimals, but S. F. Lacroix
had this to say on the subject of Leibniz and differentials in the introduction to
his treatise on the calculus published in 1797. (The alternative year of publication
was the year 5):

“Leibniz seems to have believed that those who were able to use the differential
calculus would easily grasp its spirit, by comparing it with the method of the
Ancients, because he neglected to enter into any detail whatsoever in this regard,
and his silence was imitated by Bernoulli and L’Hopital; but when he was attacked
on this subject, he showed by his responses that he had reflected maturely on it.
On all occasions, he compares his method with that of Archimedes, and makes
clear that his is nothing but a sort of abbreviation of the other, more appropriate to
research, but in the end it amounts to the same thing; because instead of supposing
the differentials actually to be infinitely small, it suffices merely to conceive that
one can always make them so small that the error one commits by omitting them
in the calculation is less than any given magnitude.”

Forgive me for quoting Lacroix at such length, but in essence his statement

is almost exactly the same statement I want to make today, two hundred and



seven years later. The great mathematicians—at least until the late nineteenth
century—did not deal with completed infinites in the way that lesser minds have
often interpreted them as having done. They had reflected maturely on it and
understood that, in Lacroix’s words, “it suffices merely to conceive that one can
always make [the quantities] so small that the error one commits by omitting them
in the calculation is less than any given magnitude.” For those of you acquainted
with the epsilon-delta definition, let me point out that the “any given magnitude”
is epsilon and “making the quantities so small” is delta.

I have not made a close study of Leibniz’s writings, so I can’t say that Lacroix’s
description of them is justified. I believe it very likely is, but in any case Lacroix
himself clearly had reflected maturely on the foundations of calculus and had a
good grasp of the idea of a limit well before the time of Weierstrass and Cauchy.

I also have to share with you what Lacroix says next, because it is such a
wonderful commentary on the established opinion about just about anything.

“This method of reasoning, which would seem to be beyond reproach, was seen
by Fontenelle as a confession on Leibniz’s part of the inadequacy of his principles,
from which would follow the collapse of the entire edifice he had erected on infinites.
The complaints Fontenelle makes about it in the preface to his geometry, and which
have been repeated in many works, offer an example of the ease with which errors
pass from book to book, and shows how few people take the trouble to form an
opinion independent of that of others.”

That statement should be put on a plaque and posted in educational institu-

tions everywhere. And in 2004 one must add that, however easily errors passed



from book to book in 1797, they pass far more easily from website to website in
2004.

The great mathematician Carl Friedrich Gauss, who lived from 1777 to 1855—
a century and more after Newton and Leibniz—was conserving the Aristotelian
tradition when he said that completed ( Vollendeten) infinites are never allowed in
mathematics and that infinity should always be understood as a mere “facon de
parler.”

How did it happen that a century that began with the esteemed Gauss sub-
scribing to the Aristotelian view ended with the triumph of Cantor’s views, and
the esteemed David Hilbert exploring the outer fringes of the theory of the infinite?

That is of course a complex story involving many ideas and many mathemati-
cians, but let me oversimplify it by saying that it was all the doing of Fourier and
Riemann, in that order.

Joseph Fourier, whose dates are 1768-1830, was a French mathematician,
physicist, and politician, who in a certain sense was not a mathematician at all.
He is most famous for his theory of heat, and is thought of as a pioneer not
in mathematics but in mathematical physics. There is an old joke that applied
mathematics is to mathematics as military music is to music. I don’t agree with the
implication that applied mathematics has none of the beauty or elegance of pure
mathematics, but I do agree with the implication that it isn’t really mathematics.

Mathematics is in its essence deductive, but applied mathematics is in its
essence inductive. Fourier’s great discovery was a set of mathematical techniques,

known today as Fourier analysis, that made it possible to describe certain physical



phenomena in a way that was doubly breath-taking, breath-taking for its sweep
and elegance at the same time that it was breath-taking for its audacity in aban-
doning any pretense of solid mathematical underpinning.

A theory like Fourier’s is the best thing that can happen to mathematics. It is
to mathematics what the discovery of an unexpected phenomenon is to physics. It
forces a drastic re-thinking of basic principles in order to bring them into agreement
with the new point of view and the new data.

Much mathematical work in the 19th century was indeed devoted to taming
and absorbing Fourier analysis into the body of mathematics, and much beautiful
mathematics was created in that way. But the tension between the great generality
of the results of Fourier analysis and the demands of deductive mathematics were
not fully resolved.

Bernhard Riemann, a German whose amazing career was cut short by tuber-
culosis at the age of 40 in 1866, was like Fourier intensely interested in mathemati-
cal physics, but unlike Fourier no one would dare say of him that he was not really
a mathematician. He was one of the greatest mathematicians of all time, but in a
unique way. His ideas were astonishingly original, and, like Fourier’s, they often
left mathematical justifications far behind, but they were based on a mathematical
intuition and a mastery of mathematical technique that were unsurpassed.

Let me tell you a highly condensed version of the story of the famous Riemann
hypothesis. Riemann remarked in a paper on the subject of the distribution of
prime numbers that he thought it “very likely” that the zeros of a certain com-

plicated function which he described in terms of a very specific definite integral



are all on the real axis. That opinion is now called the “Riemann hypothesis.”
Today, 145 years after Riemann’s paper was published, the mathematicians of the
world agree that the Riemann hypothesis is very likely true, but to prove it is true
is universally acknowledged to be the greatest unsolved problem in mathematics
today.

It is marvelous enough that Riemann made this fundamental discovery, but
the really marvelous part of the story is yet to come. By 1930, the importance
and the difficulty of the Riemann hypothesis was well understood, but I think the
general impression was that it had been a kind of a lucky guess on Riemann’s part.
However, when the mathematician and scholar Carl Ludwig Siegel undertook to
analyze Riemann’s unpublished papers in the Gottingen archives, he found that
Riemann had done numerical calculations of the first few zeros of the function
in question using techniques more powerful than any that had been found by
other mathematicians in the intervening 70 years. When Siegel published these
techniques of Riemann in a paper that was part history and part mathematics,
the notion that Riemann’s hypothesis was a lucky guess was laid to rest and the
range of his explorations began to seem almost super-human.

Siegel expressed his estimate of Riemann in the following way: “It is not as
widely believed today |as it had been a few decades before| that Riemann reached
his conclusions by means of grand general ideas, but few have realized how strong
Riemann’s technique truly was.”

What does this have to do with Aristotle and the infinite? Everything. As

with Newton and Leibniz, those who came after Riemann were unable to pursue his



ideas without his masterful insights, and their attempts to base Riemann’s work
on a solid foundation and to apply his modes of thinking in other circumstances
were seriously flawed.

Which brings me back to Weierstrass and Cantor and another German math-
ematician of the period named Richard Dedekind, who lived from 1831 to 1916
(and who, by the way, was a personal friend of Riemann). It is generally agreed,
and for once I agree as well, that these men wrought a revolution in thinking about
the foundations of mathematics, principally in attitudes toward the infinite. You
may well have heard of the notion of a “Dedekind cut,” which is Dedekind’s version
of the definition of a “real number.” On the one hand, the idea of a Dedekind cut
brushes aside Aristotle’s (and Gauss’s) objection to completed infinites. On the
other hand it is widely accepted today as the correct and rigorous way to define
real numbers.

The sources I referred to above, and countless others, tell the story of this
revolution and describe it as a triumph of the human spirit. Though I admire
much in Dedekind’s work, I believe his interpretation of Riemann’s work and his
notion of the Dedekind cut were not positive contributions.

And, finally, we come now to the last of the mathematicians I will discuss,
Leopold Kronecker. Kronecker, who lived from 1823 to 1891, was one of the few
nay-sayers during the Weierstrass-Cantor-Dedekind revolution. His message was:
Hold on! This drastic revision of the principles of our subject is not necessary!

He had few allies—though he was one of the most highly regarded mathe-

maticians of his generation—and it must be conceded that he lost the fight.



The successes of Fourier and Riemann and others seem to have convinced
mathematicians of the time that a new era had dawned, that the conservative at-
titudes of Aristotle and Gauss could be disregarded because more daring attitudes
toward reasoning with infinites produced reliable results.

In Kronecker’s day the main issue related to real numbers. Kronecker, true
to the classical tradition, realized that there was no way to conceive of a general
real number except as a completed infinite.

In simple terms, a real number is an infinite decimal expansion, such as the
familiar expansion 3.14159... of m. Now 7 can be described in other ways—for
example, it is 4 times 1 - (1/3) 4+ (1/5) - (1/7) + (1/9) - .... At first glance, this
second description may seem to have little to recommend it over the first. It, too,
is an infinite process. Worse, you would have to compute a staggering number of
terms of the alternating sum to achieve the five place accuracy given in the decimal
expansion. But the difference is that the alternating sum tells you exactly how
to get 10 place accuracy in the decimal expansion (even though the computation
it specifies is utterly unworkable) whereas the three dots after 3.14159... give you
no idea whatever. Do you recognize the difference? The second description is a
potential infinite—it tells you how to compute 7 as accurately as you like but not
how to compute it infinitely accurately—whereas the the first implies the notion
of m as an actual and exact value—a thing that is, not one that becomes.

Kronecker maintained that the rush to accept completed infinites was unnec-

essary and undertook in his own work to show that it was as true in his own day



as it had been in Aristotle’s that the exclusion of completed infinites did not rob
the mathematicians of their study.

But the trend of the times was against him. The other mathematical leaders
of the time were ready to accept not only the completed infinite that is 7, but
the immeasurably greater completed infinite that is the set of all real numbers, of
which 7 is a humble element among uncountably many (in a technical Cantorian
sense) others.

In accounting for the success of this revolution in attitudes toward infinity
one must surely acknowledge not only the works of Fourier and Riemann but also
those of Cantor.

For those of you who have been initiated into the mystery of the Cantorian
theory, let me mention Cantor’s fascinating two part proof of the existence of
transcendental numbers; he established first that the set of all real numbers was
uncountable and then that the set of all algebraic numbers was countable, leading
to the conclusion that the set of transcendental numbers—those that are real but
not algebraic—is not only nonempty but is in fact uncountable.

There is an irony here. Cantor’s proof can be made to conform perfectly well
to Kronecker’s principles and to construct a specific transcendental number, a real
number that is not a root of any algebraic equation. But the very statement of the
theorem—that transcendental numbers exist—is so incompatible with Kronecker’s
idea of mathematics that there seems to be little point in going through such a

construction.



Kronecker said we can do without “the set of all real numbers” and he pre-
ferred to do without it because he felt that letting in completed infinites risked
letting in ambiguities, doubts, and complexities that would discredit mathematics
and reduce its appeal and its authority.

And, most importantly, he maintained that the admission of completed in-
finites in no way benefitted mathematics.

But, Kronecker to the contrary notwithstanding, the years following his death
were filled with discussions of completed infinites—issues I mentioned before in-
volving Russell’s paradox, the continuum hypothesis, the axiom of choice, the
Zermelo-Frankel axioms for set theory, and so forth. Studies of this sort came to
be accepted as being about “the foundations of mathematics” even though Kro-
necker would not have regarded them as being about mathematics at all, much
less about the foundations of mathematics.

Infinity proved addictive. Once the habit of using completed infinites in math-
ematical arguments has become established, it is hard to root out. It is part
and parcel of mathematics today, and Kronecker is regarded as ridiculously old-
fashioned and reactionary by all but a small minority of us today.

But he is on the upswing. And he is on the upswing for a clear and persuasive
reason. Computers.

Computers have changed the way that mathematicians think, and they have
done so in a way that opposes the acceptance of completed infinites. Computers
compute. They demand algorithms, schemes of computation, and that means

schemes that arrive at results not only at the end of finitely many steps but even



at the end of a number of steps that can be accomplished in a reasonable amount
of time. When you are thinking in terms of algorithms, you must look askance at
a procedure that promises to produce an answer eventually but makes no promise
to do so in less than a hundred million years. So the alternating series for m I
mentioned before is laughable as a method of computing 7w, but when you are
thinking algorithmically it seems much less laughable than those silly three dots
following 3.14159 that appear to say something but in fact say nothing.

Riemann’s successors, lacking Riemann’s technical power, focussed on the
aspect of Riemann’s work that was most accessible and most admirable to them,
which was his ability to pose problems in extreme generality and abstractness, free
to the largest degree possible of specific formulas and computations. But modern
mathematicians with computers at their disposal can follow up on other aspects of
Riemann’s work. The techniques that Siegel found Riemann had used to compute
the first few zeros of his mysterious function by hand have been used by modern
mathematicians to compute the first few billion—yes, I did say billion—zeros of
Riemann’s function.

In this connection, it is interesting to note that another important technique
used in computing zeros of Riemann’s function was developed in the mid 20th
century by a mathematician who was one of the principal fomenters of the com-
puter revolution, Alan Turing. Although Turing is a thinker of great importance
in the field of mathematical logic and thereby in the theory of infinite sets, he
also thought very concretely in terms of actual computations and in this way

participated in yet another revolution in mathematical thought.



The new era of unimaginably powerful computers will inevitably give birth
to a new era of mathematics. It is impossible to guess what the shape of that
new mathematics might be, but there is good reason to believe—in my case, to
hope—that the 20th century addiction to completed infinites may be overcome,
that the ability to execute calculations of tremendous length will make inevitable
the distinction between tremendously long calculations and calculations that are
never intended to terminate. It would please me very much to see Aristotle and
Kronecker vindicated and to see the refusal to allow completed infinites have the
result not only of not robbing the mathematicians of their study but of wvastly

enriching that study.



