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Applications of Computer Graphics and
Image Processing to 2D and 3D Modeling
of the Functional Architecture of
Visual Cortex

Eric L. Schwartz, Bjorn Merker, Estarose Wolfson,

and Alan Shaw

New York University
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Basic facts: Architecture as maps and
columns

For the present discussion, we emphasize two basic
facts about the neurons of primary visual cortex:
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the goals of the present work is to be able to measure
and simulate these maps.

F igure 1a shows the back half of one hemisphere of 2. Multiple maps are combined in the form of stripes

the brain of a macaque monkey, including the primary or columns so that multiple stimulus parameters can
visual cortical area called V1. be represented in a single map layer. In humans and

The term cortex refers to the thin outer layer of the monkeys, the left and right eyes project to layer IV
brain, consisting of the cell bodies of neurons. In Figure of visual cortex, where they are interlaced in “ocu-
1c we see the thickness of the cortex (about 1 mm) rep- lar dominance columns.” This feature of visual cor-
resented as an outer sheet, while the white matter (axons tex will be extensively illustrated later. Similar
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interlacing is a common architectural feature of
neocortex in cats, monkeys, and humans. Examples
are orientation columns (cat and monkey V1) and
direction columns (monkey medial temporal cortex).
Thus, we are presented with the problem of images
composed of interlaced subimages, stacked up and
twisting through 3-space.

Statement of the problem vis-a-vis
computer graphics and image processing

There are three distinct levels of computational neu-
roscience applications in visual cortex:

1. At the lowest level there is the problem of recon-
structing and representing the layered structure of
the cortex, using computer graphics and image pro-
cessing.

2. At an intermediate level there is the problem of
modeling the map functions and columnar architec-
tures that are embedded in the cortex.

3. Atthe highestlevel there is the problem of inferring
the computational significance of these architec-
tures for brain function.

In the present article we focus on the first two levels
and briefly discuss the third.

Level 1: Computer-aided neuroanatomy
of visual cortex

We now discuss the bottom-most problem outlined
above: Given a brain, as represented by some hundreds
of serial sections, we want to reconstruct a computer
model of it in 3D; to “peel” apart this model, so we can
view the individual layers of the cortex; and to *“‘unroll”
or “flatten” these layers to view them better and to sim-
plify the numerical calculations to be performed on
them.

A simple analogy can help clarify this problem:
Imagine a stack of 10 photographs, each witha different
image in it. Imagine this stack folded into a complex 3D
shape, with deep convolutions and bends, and then pot-
ted in epoxy. If one’s goal were to retrieve the photo-
graphs, one could slice this 3D object into many thin
sections, say 400, and then begin a computer reconstruc-
tion of the sections back into the intact 3D folded stack.
Then, one would have to peel apart the layers of this 3D
object, to access the original photographs which were
embedded within it. Finally, one would need to flatten
out the crumpled photographs. We have constructed a
system to effect precisely these operations. (The opera-
tions were implemented in Sun Unix in about 30,000
lines of C code.)
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Experimental design

Two experimental techniques we have used in this
work are based on the ability to visualize metabolic
activity in the brain by two stains: cytochrome oxidase
(CO) and 2-deoxyglucose (DG). (A detailed discussion of
these techniques can be found in standard refer-
ences.??) The CO and DG methods can be thought of
as providing a photographic record of the average
activity of neurons as a result of a long-term or a short-
term stimulus condition respectively. Thus, if one eye of
a monkey is inactive for several weeks, a CO image of the
connections of the remaining active eye will be accessi-
ble in a number of different cortical layers (see Figures
2 and 5). Similarly, if an image is shown, unmoving, to
a monkey for perhaps 20 minutes, then the representa-
tion of that image can be visualized in many layers of the
brain via DG imaging.

There is the assumption that metabolic activity is
proportional to neuronal activity, which is what we
really want to visualize. In effect, we would like a kind
of “magic television” on which the spatial representa-
tion, or patterns of neural firing, could be visualized. The
CO and DG techniques are among the best approxima-
tions to this “magic television,” but they still leave us
with a massive problem of computer graphics. That is,
the patterns of interest are stacked and folded in the 3D
brain. Now we will illustrate the algorithms and proce-
dures required to section, process, reconstruct, peel, and
unfold them.

Digitizing, alignment, and spackling

Data is digitized with a CCD camera using a photo-
graphic color enlarger as light source. The slide to be
digitized is placed in the optical path of the enlarger and
imaged with an appropriate lens to fit onto the surface
of a Fairchild CCD chip of resolution 488 x 380 pixels.
This image is then digitized and stored on disk (see Fig-
ure 1).

To accurately align large numbers of computer images
of serial sections of primate brain, a movie of the brain
is shot as the brain is being cut. The movie is then digi-
tized and used as a guide. The resulting alignment of the
computer images has been satisfactory, allowing recon-
struction of such detailed patterns as ocular dominance
columns across the entire surface of primate visual
cortex.

It might be thought that simple cross-correlation of
adjacent sections would be an adequate method of align-
ment. However, for 3D structures that are not axially
symmetric, cross-correlation is grossly unreliable. It
introduces large systematic errors into the 3D brain
model because one tends to “overalign” adjacent sec-
tions, that is, to ignore the fact that some small positional
or rotational difference between the sections is actually
correct. In our experience, shear of up to 100 percent of
the dimension of the brain and torsion of up to 90
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degrees are introduced by purely cross-correlational
alignment of monkey visual cortex. Careful superposi-
tion of the brain sections with actual fiducial landmarks
(photographs of the original frozen brain block) is neces-
sary to achieve a veridical alignment of the data.

Three-dimensional surface tracking depends on a pre-
cise definition of the “inside” and “outside” surfaces of
the cortex. They must not be connected by so much as
a single voxel or the surface tracking will fail. But serial
sections are often flawed. Blood-vessel holes are usually
visible, and small rips or tears and other local damage
are common. Thus, before performing surface tracking,
it is necessary to repair serial sections. We use a combi-
nation of image processing methods including
thresholding, histogram equalization, median filtering,
etc., to perform this repair, which we term “‘spackling.”*

It is important to emphasize that this operation merely
enhances existing image detail, and repairs small defects
(for example, holes due to blood vessels) by interpolating
neighboring image details. Figure 1b shows the result of
image processing. The white matter of the brain has been
thresholded, contrast has been enhanced, and small
areas of image defect have been interpolated. We esti-
mate that only a few percent of the image area is affected
by this latter operation.

Brain peeling: A digital tangential microtome
A microtome is a fixed knife that resembles the famil-
iar sandwich-shop meat slicer. Its purpose is to cut thin
sections of brain and other organs so that the sections
can be mounted on glass slides, stained, and studied.
Naturally, the microtome sections are parallel to the
plane of the knife. This causes major difficulties in
understanding cortical anatomy, because the interesting
structure of cortical systems lies in the ‘“tangential
plane” of the cortex. Because the brain surface contains
many folds, it is very difficult indeed to visualize the
architecture of the brain by viewing serial sections.

Tangential sections are usually produced by cutting .

conventional blocks of brain approximately parallel to
the cortical surface. One way to ensure this is to physi-
cally flatten brain tissue (for example, striate cortex oper-
culum) and then cut the flattened tissue tangentially. We
use computer image-processing techniques to get true
tangential sections from a digitized 3D reconstruction
of the brain. The actual physical sectioning is in an arbi-
trary plane.

Given suitably aligned and prepared serial sections of
brain, we apply a 3D surface-tracker® to find the inner
and outer boundaries of the cortex by creating an
adjacency graph of all the surface elements. We close the
brain by capping planes, and we use the outer detected
surface as a shield to avoid “leakage.” We then output the
inner surface as a set of voxel files, remove it from the 3D
model, and repeat the procedure until we obtain about
25 “peels.” Each peel is both an abstract surface and a
gray-scale coded (stained) map that can be displayed by
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Figure 1. In (a) we see a block of monkey brain. The
smooth roof (operculum) of visual cortex is the
bullet-shaped region at the right. In (b) the red back-
ground shows the final result of aligning,
thresholding, spackling, median filtering, histo-
gram equalization, and further median filtering. In
(c) the white background shows the original data.
The dramatic increase in contrast is due to the
histogram equalization. The ocular dominance
columns form the periodic dark and light pattern
that is most evident in the middle layers of the
cortex.

conventional voxel rendering techniques.®

Figure 2 shows a single “brain peel” representing
much of the posterior pole of a monkey brain hemi-
sphere. This monkey had only one functional eye, so that
the pattern of ocular dominance columns could be made
visible by a cytochrome oxidase stain. This graphic
represents a voxel reconstruction (1 voxel=40u
40u x 40) of the pattern of cytochrome oxidase stain in
the 12th peel from the top of the brain. We have thus
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Figure 2. This image represents a single brain peel. It
is a 40p-thick shell, lying largely within layer IV of the
posterior hemisphere of a macaque brain. The
cytochrome oxidase data have been mapped onto the
3D surface. Clearly visible are the ocular dominance
columns of striate cortex (heavy ‘‘zebra stripes’).
Also visible are some wider V2 columns (seen best in
the ““flap’’ at the top of the brain). This image was pre-
pared with a “laminar” brain peeler algorithm,
which simply “‘shaved’’ successive thin shells from
the full 3D cortex, much in the fashion of a physical
microtome knife.

made visible in this display the laminar pattern from a
depth 580u below the cortical surface.

The next step is to “flatten” the brain to view the map
structures within it more easily, and, more importantly,
to be able to measure and characterize them in planar
representation.

To perform this brain flattening, we need an additional
data structure on the brain, in the form of a 3D triangu-
lation. We will now briefly describe methods we have
developed to achieve automatic 3D triangulation of such
complex surfaces as the brain.

Voxel-to-polyhedral and polyhedral-to-voxel
transformations

A voxel data structure is required for brain peeling and
detailed imaging, but it is far too detailed to allow con-
venient numerical manipulation, such as flattening. We
therefore need to construct a conventional polyhedral
model of the same surface.

There is a large body of literature on the problem of tri-
angulating 3D surfaces from serial sections, or con-
tours.”?? These methods work well on segments of
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“generalized cylinder’>—that is, runs of sections contain-
ing single loops—but they often fail when attempting to
process highly convoluted surfaces, because of changes
in 2D topology from section to section. Laborious and
error-prone human interaction is then needed.

Our method®® uses the full description of a surface
provided by a voxel model to classify all the topological
transformations and thereby guide the triangulation pro-
cess, automatically ensuring a correct representation of
the surface. The voxel surface is viewed as a discrete sam-
pling of an orientable differentiable manifold, whose
topological properties admit of only four kinds of trans-
formations: birth, death, merging, and splitting of con-
tours. We detect the “critical levels” where such changes
occur, and localize the transitions at “critical points.”
Where contours merge or split, the critical point is used
to link together the several contours in the critical level
that participate in the transition, and hence the gener-
alized cylinders that terminate at these contours. Figure
3a shows such an automatically produced polyhedral
model, which corresponds to the voxel model shown in
Figure 2.

The reverse operation, transformation from a poly-
hedral to a voxel model, is achieved easily by scan con-
version. Figure 3b shows a polyhedral model of the
surface of primary visual cortex which was scan-
converted into voxels and rendered by standard voxel dis-
play techniques (“‘back-to-front”). We are able to go freely
back and forth between the polyhedral and voxel data
structures.

Brain flattening

The mapmaker’s problem is to find a flat representa-
tion of a curved surface. Classical mapmaking has been
restricted to the relatively simple spherical surface of the
earth. In the case that the surface of interest is complex,
and possibly nonconvex, there are no known methods of
finding quasi-isometric planar representations.

In previous work we described an early version of our
brain flattening algorithm. Briefly, we compute the
“geodesic” distances along the surface between all nodes
of the polyhedral model of the brain. Finding minimal
distances on a polyhedral surface is difficult. Recently,
an algorithm with polynomial complexity has been
described to perform this function.” To our knowledge,
this rather difficult algorithm has not yet been imple-
mented. We have developed a simpler algorithm, with
exponential complexity, but which we have implemented
and used successfully for computing the metric struc-
ture of brain surfaces.™

Once we have the matrix (or some subset of it)
representing interpoint distances in the surface, we per-
form a gradient descent on the goodness of fit of the 3D
distances to a set of (initially random) 2D distances, as
described in the earlier CG&A article." The resultis a
planar model of the brain configuration such that the
metric properties of the original 3D model are optimally
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preserved. Figure 4 shows an example of primary visual
cortex (the polyhedral model of Figure 3), which has
been flattened by this procedure. The local “error” of the
flattening averages 5 percent, and it is color coded in Fig-
ure 4.

Brain painting from 3D to 2D and from
2D to 3D

Having constructed voxel and polyhedral models of
the same brain and flattened the polyhedral model, we
have one final task: to texture-map the gray-scale values
from 3D into the 2D flattened model. We perform this
texture-mapping by deriving a bilinear warp function
from the coordinates of the vertices of each triangle of
the 3D polyhedral model and those of its corresponding
flattened 2D shape. Then we scan-convert the destina-
tion triangle and use the derived bilinear warp function
to find the source point in 3D from which to transfer the
value to each pixel. The result of this operation is shown
in Figure 5, which indicates the ocular dominance
column pattern of macaque V1.

Level 2: Simulating high-resolution
monocular and stereo images mapped
through the ocular dominance
column system

Through the series of steps outlined above, we have
attained control over the fine detail of the entire cortical
surface, as represented by a set of stained serial tissue
sections. This software, together with appropriate exper-
imental techniques, allows us to measure cortical map
functions with precision.
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Figure 3. Figure 3a represents the
back half of a monkey brain hemi-
sphere, triangulated by an auto-
matic algorithm, which required no
human intervention. This algorithm
uses a full voxel surface tracking of
the cortex to effect a veridical trian-
gulation. In 3b we see a computer-
generated reconstruction of the
entire striate cortex, viewed from

the bottom The opercular surface is away from the viewer, while the
convoluted ‘“‘calcarine’’ cortex appears as a flower-petal shape closer
to the viewer. This rendering was constructed by scan-converting a
polyhedral model of the cortical surface consisting of about 2,500
nodes, followed by a ‘‘back-to-front’’ voxel rendering algorithm.

Figure 4. This shows the flattening of the 3D
polyhedral model of Figure 3a. A small section
of the most peripheral extent of V1 in this data
(about 1-2 mm) was lost, and is not shown. The
error is color coded in units of percent.

But what is the mathematical structure of these maps?
In this section we show some recent simulation work
from our lab, using image processing methods to simu-
late the map structure of primary visual cortex on high-
resolution images.

We know from previous work that the complex loga-
rithm function provides a good approximation to the vis-
ual map of primate cortex.”?° Figure 6 shows a
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Figure 5. The borders of V1 and V2 were determined
by inspection, and V1 was isolated from the ‘‘peel’’ of
Figure 2. This V1 model was then flattened. This fig-
ure shows the cytochrome oxidase data of a 3D peel
(as in Figure 2) “image-mapped”’ into the flattened V1
model. This peel was produced by an ‘‘anatomical
peeler’’; it corresponds to the bottom of layer IV of
striate cortex. The ocular dominance column pattern
is visible.

simulation of the cortical representation of a natural
scene. The original scene of our lab hallway, digitized at
an effective resolution of 16,000 x 16,000 pixels, is in Fig-

ure 6a, while Figure 6b shows an eye chart at the center

of the scene. The eye chart was located 20 feet from the
camera, so that the 20/20 line (line 8) would be readable
in this simulation (and it was in the original).

Figure 6d shows a complex-log simulation of this
60-degree field, with one minute of arc resolution at the
center. Note that the eye chart occupies almost a third
of the entire cortical surface, whereas in the visual field,
the eye chart occupies less than 1 percent of the solid
angle. This is a graphic demonstration of the strongly
space-variant structure of the human retina and cortex.
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Humans have a very small foveal region of very high reso-
lution (about one minute of arc) and resolution falls off
in approximately inverse proportion to angle away from
the fovea.

But there is an additional complication in cortex,
caused by the existence of ocular dominance columns.
The left and right eyes are “interlaced,” as shown in
Figures 5 and 7. The question naturally arises, given a
simulation of the map of a single eye (via the complex log,
or any other map function), what graphics and image
processing problems are raised by the columnar inter-
lacing? We have developed a solution to this problem,
based on the properties of generalized Voronoi regions,
which we will briefly outline here.

Generalized Voronoi regions, ocular dominance
columns, and proto-columns

Historically, little attention has been paid to the details
of how an interlacing of data from the entire left and
right eyes might be produced in a single map. We now
describe a simple algorithm that can interlace an arbi-
trary number of complete maps into a single layer, via
columns. The columns can have an arbitrary polygonal
shape, and each pixel of each input map is assigned to
a specific column.

Full*““proto-maps’’ exist before birth

Rakic has shown that, before birth, monkey visual cor-
tex contains two full visual maps, one each for the left
and right eyes, at the level of striate cortex.”’ We call
these maps “proto-maps.” We can visualize the cortical
proto-columns as existing in each of the cortical proto-
maps (see Figure 7). Slightly before birth the cells in the
two visual maps migrate together into a single map,
forming the ocular dominance column system.

How does a given cell “know” which column to
migrate toward? The simplest rule is based on proximity:
The cell would simply migrate to the nearest column-to-
be. This assumption is the basis of our “‘proto-column”
algorithm.

Earlier attempts to simulate ocular dominance
column patterns

Two previous simulations of ocular dominance column
patterns have been published.?”** In both these simula-
tions the actual cortical ocular dominance column pat-
tern (not the proto-column pattern) was mapped back to
the retina. This resulted in the loss of half the visual field
from each eye. That is, wherever a left-eye column occurs
in the cortex, there was no right-eye input to map back
to the retina, and vice versa for the right-eye columns.

However, when we close one eye, we do not lose that
half of the visual field that corresponds to the cortical
pattern of the closed eye’s columns. To take account of
the true complexity of the situation, we must construc
the proto-column boundaries of the left and right eyes as
well as the actual column boundaries.
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Figure 6. Figure 6a shows a wide-angle fish-eye view
of a scene in the hall of our laboratory. A ladder is to
the right; an eye chart is in the very center of the frame
(almost invisible). The original version of this scene
was digitized to an effective resolution of
16,000x 16,000 pixels by a polar-coordinate mosaic
technique. In 6b we see a blowup of the central region
of this original frame. This is an eye chart, at a dis-
tance of twenty feet. In the original, line 8 of this chart
could be easily read, indicating an effective acuity of
20/20, or about one minute of arc. In 6¢ this scene is
blurred by a space-variant filter, which is modeled

The proto-column algorithm: Generalized
Voronoi regions and generalized Voronoi
diagrams

The concept of Voronoi regions is familiar from both
crystallography and computational geometry. “The
Voronoi diagram of a finite set S of points in the plane
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after human visual acuity. In 6d we see the image of
6a modeled in terms of a complex-logarithmic
model”” of human visual cortex. The eye chart
occupies almost half of the surface of visual cortex,
although it occupies a tiny fraction of the original
scene, The ladder and the windows of the original are
compressed to almost the same size as the centrally
fixated letters of the eye chart. This illustrates the
tremendous space-variant compression of human
vision. Variations in linear size of about 100:1 (10*

in solid angle) occur from the center to the periphery
of the human visual system.

is a partition of the plane so that each region of the par-
tition is the locus of points which are closer to one mem-
ber of S than to any other member.”** If we start with
polygons, such as ocular dominance columns, instead of
points, we can construct a generalization of the Voronoi
diagram. The locus of points that are nearest to a given
polygon is the generalized Voronoi region of the polygon.
In our terminology, it is also the proto-column.
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In the case of cortical systems, we perform the follow-
ing construction: We take a given cortical area, which by
assumption is a continuous 2D sheet. If n column sys-
tems are interlaced in that area we make n copies of the
cortical sheet. In the i*" sheet, we retain the i column
system and erase the others. The generalized Voronoi
diagram corresponding to the i column system cor-
responds to the proto-map of that column parameter.
" The union of all the generalized Voronoi regions in that
proto-map will smoothly cover the area of the proto-map,
with no overlap, and every pixel in the proto-map will be
assigned to one of the proto-columns. :

An Algorithm to find Voronoi regions

Let us start with a definition of a column system in
terms of labeled pixels. We assume the black regions rep-
resent left-eye afferents for cortical ocular dominance
columns®® (see Figure 7).

We label each column with a unique integer or color.
We then apply a standard contour-follower to isolate the
boundaries of the columns. Each white pixel is then
assigned the color of the nearest boundary pixel. After
we have examined all such intercolumn pixels, every
pixel in the image has been assigned to one or another
of the original columns and has been marked with the
color of its column. Each set of marked pixels forms the
proto-column of the correspondingly colored column.

Figure 7a, reprinted from LeVay et al.,”® shows the
ocular dominance column system of a part of monkey
visual cortex, similar to the larger example shown in Fig-
ure 5. The proto-column system generated from this data
is shown in Figure 7b. Each of the proto-columns cor-
responds to one of the actual (left-eye) ocular dominance
columns of Figure 7a.

In Figure 8 we show the application of this proto-
column map, together with the earlier demonstration of
the cortical topographic map, to simulate a natural scene,
at the level of striate cortex, contingent on the pattern of
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Figure 7. In (a) the image of the ocular
dominance column pattern of
macaque striate cortex is reprinted
from LeVay et al.?® The black-and-
white areas correspond to cortical cells
that receive input from the left eye and
the right eye respectively. In (b) we see
the construction of *‘proto-columns.”
Each colored area represents the terri-
tory associated with a left-eye column
in Figure 7a.

ocular dominance columns. We are thus able to simulate
realistically the stereo image projected onto one of the
map surfaces of the brain when an animal scans a 3D
scene with its two eyes.

Discussion

The proto-column algorithm performs a necessary
extension of the concept of a “‘cortical map.” Because
most cortical layers consist of two or more “copies” inter-
laced together in complex fashion, the simple concept
of a “regular” or “‘continuous” map of R*—~R? is not
sufficient.

A simple nearest-neighbor rule for multicolumn sys-
termns defines the proto-column regions associated with
the observable columnar boundaries. We have developed
an algorithm that can find these regions. Without knowl-
edge of these proto-column regions, accurate simulations
of multicolumn systems are impossible. Conversely, how-
ever, with good knowledge of a global, regular topo-
graphic map, such as the complex logarithm, and
knowledge of proto-column boundaries, accurate simu-
lations can be performed.

Level 3: The brain as map machine

We have reviewed, in a bottom-up fashion, a series of
computer graphics applications which were developed
to aid research into the nature of cortical computation.
There are a number of challenging algorithmic,
implementational, and experimental issues related to
reconstructing cortical systems from serial sections.
There are also challenging problems related to modeling
cortical architectures, which are indicated by the kinds
of data that emerge from the cortical reconstruction. But
finally, the algorithmic implications of these map struc-
tures must be addressed. And this is the motivation for
the entire process.

The very fact that intricate maps of the visual field exist

IEEE Computer Graphics & Applications



Figure 8. In (a) the entire figure from (b) is mapped through the proto-column construc-
tion into the left eye columns alone. Each proto-column was painted onto its associated
column as in the brain painter described in the text, using the proto-column construc-
tion to determine the warp function. In (b) the simple cortical simulation of the eye chart
from Figure 6 is shown. In (c) and (d), performing a similar analysis for the right eye and
then ‘‘oring”’ together the two frames provides a true ‘‘binocular’’ simulation of the eye-
chart scene as it is mapped to the surface of layer IV of cortex for each of the two eyes.
We show this simulation for zero minutes of arc disparity, and for five minutes of arc
disparity—(c) and (d) respectively.

in great profusion in the brain raises a computational
question: What is the function, if any, of this phenome-
non? Broadly speaking, there are two possible answers.
First, the existence of maps and columns may be a
developmental or anatomical epiphenomenon. It may
simply be easier or more efficient for neurons to arrange
themselves in interesting spatial patterns, but these pat-
terns themselves may have little significance. This might
be termed the “topological” or “rubber-sheet connec-
tionist” approach. One could argue that as long as the
actual connections between neurons remain the same,
their location is irrelevant, as is the case for the conven-
tional von Neumann architecture.

At the other extreme is an optical computer. Consider
one performing Fourier transforms via a lens. In this
case, the computation and the physical structure of the
machine are identical: The form is the function.

Which of these limiting cases represents the brain? A
prudent choice, given the current state of almost com-
plete ignorance about the bases of neural computation,
would be to take the middle road, and assume “a little of
both.” Curiously, however, the dominant contemporary
paradigm of neural computation is almost purely con-
nectionist: “Neural networks,” which are essentially
independent of the space-time structure of the nervous
system, represent the vast majority of attempts at under-
standing neural computation.

But there is very little data available about nontrivial
neural networks. One can observe networks in the sim-
plest invertebrates, but the behavioral repertoire of these
creatures is limited. Large-scale network observations
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(more than 2 neurons at one time) in cats or monkeys are
essentially nonexistent. But, as we have indicated, there
is a vast amount of data (and technology) available to
observe and characterize architecture at the map and
column level. In fact, if one considers that such basic
phenomena as lateral inhibition, spatial filtering, and
receptive field structure are intrinsically map-level (spa-
tial) phenomena, then it would be fair to claim that the
majority of neural data about the visual system is in the
domain of spatial mapping.

What is a map, and how many might there be in the vis-
ual cortex of monkeys? We take as a general definition
for map any spatial representation of stimulus variables.
Classical receptotopic maps, column systems, and more
general ‘‘cognitive” maps, if they exist, fall into this cat-
egory. Often, a map is restrictively defined as the repre-
sentation of a sensory surface (retina, basilar membrane,
skin receptors) onto a central neural surface. But we
generalize this to include the spatial representation of
any neural surface onto another. The algorithmic con-
struction of proto-columns in this article gives us a well-
defined means of discussing multiple columnar maps
interlaced into single maps. This provides a notion of
“map” that is more general than the conventional one,
but is still precisely defined.

The number of maps in the visual system is thus
related to the number of physiologically distinct layers
in the visual cortex. There are more than twenty distinct
visual cortical areas currently known, and the number
has been growing steadily over the past few years. There
are five classical neural layers in neocortex, but V1 has
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at least 10 distinct sublayers. Thus, there are perhaps 100
to 200 neural layers in the visual system, and there may
be comparable numbers in other areas of primate
neocortex. We have not counted any of the thalamic or
midbrain (or cerebellar or brain stem) structures that
have a maplike architecture. A number of maps in the
range of 1,000 is easy to imagine.

How can we view maps as computational entities? One
direct way is to consider the familiar computational met-
aphor of data structures and algorithms. Good data
structures allow simpler algorithms to be invoked: As the
task becomes more complex, we have often observed that
the quality of the data structure becomes increasingly
important. If one interprets the maplike architecture of
the brain as a form of data structure or representation,
then one could view the “network” component as algo-
rithm. This forms the basis for a “map machine” point
of view.

As an example of this approach, the ocular dominance
column system of V1 provides a very simple algorithm
for stereo vision: If one passes a stereo image (as shown
in Figure 8) through a simple space-domain filter (a cep-
stral filter?®*’), then a very fast stereo segmentation may
be performed.”® In other work we have investigated the
size-, rotation-, and projective-invariant aspects of the
complex-logarithmic cortical map,"” and we have devel-
oped algorithms to choose a “scan path” automatically
for a space-variant system (such as the human), and to
blend multiple space-variant scans into a single “‘stable”
visual percept.”® We have also begun to develop a more
general “calculus of maps” which allows cognitive clas-
sifications on networks of maps, so that we may combine
some of the combinatorial aspects of network
approaches with a space-domain or map approach to
cognition.*

In summary, computer graphics has at least three
areas of major contribution to understanding the nature
of vision. Simply analyzing the data of animal visual sys-
tems makes sophisticated demands on our ability to use
computer graphics and computational geometry. But the
more exciting possibility is that the brain itself is a kind
of elaborate parallel frame buffer which warps, trans-
forms, and interlaces multiple map systems in large
number, to effect the real-time performance of the only
working visual machine that currently exists. |
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