IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 11, NO. 9, SEPTEMBER 1989

{81 R. O. Duda and P. E. Hart, ‘‘Use of the Hough transformation to
detect lines and curves in pictures,”” Commun. ACM, vol. 15, p. 11,
1972.

[9] T. M. van Veen and F. C. A. Groen, ‘‘Discretization errors in the
Hough transform,’’ Pattern Recogn., vol. 14, p. 137, 1981.

[10] A. Cornish-Bowden and R. Eisenthal, ‘‘Statistical considerations in
the estimation of enzyme kinetic parameters by the direct linear plot
and other methods,”” Biochem. J., vol. 139, p. 721, 1974.

[11] G. L. Atkins and I. A. Nimmo, ‘‘Current trends in the estimation of
Michaelis-Menten parameters,”’ Analytic. Biochem., vol. 104, p. 1,
1980.

[12] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. P. Vetterling,
Numerical Recipes. Cambridge, MA: Cambridge University Press,
1986, p. 459.

[13] C. A. R. Hoare, ‘‘Proof of a program: FIND,”’ Commun. ACM, vol.
13, p. 39, 1970.

[14] G. W. Brown and A. M. Mood, ‘‘On median tests for linear hy-

- potheses,”” in Proc. Second Berkeley Symp. Math. Stat. Prob., .
Neyman, Ed., Univ. California Press, Berkeley, 1951.

[15] N. S. Netanyahu, B. Kamgar-Parsi, and A. Rosenfeld, *‘Application
of direction-based pairwise line fitting estimators to noisy edge data,”’
Univ. Maryland Cen. Automation Res. Tech. Rep. (in preparation).

Computing Minimal Distances on Polyhedral
Surfaces

ESTAROSE WOLFSON anp ERIC L. SCHWARTZ

Abstract—We have implemented an algorithm that finds minimal
(geodesic) distances on a three-dimensional polyhedral surface. The al-
gorithm is intrinsically parallel, inasmuch as it deals with all nodes
simultaneously, and is simple to implement. Although exponential in
complexity, it may be used with a companion gradient-descent surface
flattening algorithm which produces an optimal flattening of a poly-
hedral surface [5]. Together, these two algorithms have allowed us to
obtain accurate flattening of biological (monkey visual cortex) surfaces
consisting of several thousand triangular faces, by providing a char-
acterization of the distance geometry of these surfaces.

We propose this appreach as a pragmatic solution to characterizing
the surface geometry of the complex polyhedral surfaces which are en-
countered in the cortex of vertebrates. Because of its simplicity, this
approach may be applicable where the complexity of implementation
of computational geometry approaches presents an obstacle.

Index Terms—Computational geometry, geodesic distance, polyhe-
dron, shortest path.

1. INTRODUCTION

Several algorithms have been described recently that find mini-
mal distances in polyhedral surfaces. An algorithm restricted to
convex polyhedra is described in [6], and algorithms to find the

Manuscript received February 23, 1987; revised March 28, 1988. Rec-
ommended for acceptance by J. O’Rourke. This work was supported by
the Air Force Office of Scientific Research under Contract 85-0341, System
Development Foundation, and the Nathan S. Kline Psychiatric Research
Institute.

E. Wolfson is with the Computational Neuroscience Laboratories, De-
partment of Psychiatry, New York University School of Medicine, 550
First Avenue, New York, NY 10016.

E. L. Schwartz is with Robotics Research, Department of Computer
Science, Courant Institute of Mathematical Sciences, 715 Broadway, New
York, NY 10003, and the Computational Neuroscience Laboratories, De-
partment of Psychiatry, New York University School of Medicine, 550
First Avenue, New York, NY 10016.

IEEE Log Number 8928496.

1001

shortest path between two points on an arbitrary polyhedral surface
have been proposed by [3], {2], and [1].

These algorithms seem difficult to implement. We do not know
of the implementation of any of them, including the simpler convex
case. Although the above cited solutions are both elegant and sub-
tle, there is a need for actual implementation. In this correspon-
dence, we describe an algorithm whose computational complexity
per se is not favorable, but which has yielded good results on highly
complex surfaces (monkey visual cortex) with a moderate number
of nodes (71000). Since the algorithm is relatively easy to imple-
ment, and has provided good performance in a real-world problem
domain of significant complexity, we propose that it may be useful
to a variety of other similar applications.

We developed this algorithm for the following specific applica-
tion: to characterize the metric structure of the cortical surface of
the brain in primates and humans, and to ‘‘unfold’’ and flatten these
brain surfaces. Apart from artificially created fractal surfaces, the
folded, highly convoluted surface of the brain is one of the most
complex surfaces encountered in computer graphics. Therefore, we
had to develop an algorithm that was simple and practical, and that
would not fail in the presence of highly complex data.

One of the reasons for computing the distances in such surfaces
is to be able to ‘‘flatten’’ them. It is a common procedure in neuro-
anatomy to press a cortical surface between glass slides, in order
to “‘flatten’’ it. The errors and distortions caused by this process
are not as bad, perhaps, as one might expect [7], [4]. Nevertheless,
there are quantitative studies in this area which require a *‘flatten-
ing”’ which has minimal errors, consistent with the existing
Gaussian curvature of the surface, and for which these errors are
well understood. Thus, we use the term *‘flattening’’ in this paper
to describe the construction of a best least-squares mapping of a
polyhedral surface into the plane. Elsewhere [5], we describe an
algorithm that does this flattening by using a steepest-descent ap-
proach to minimize the difference between the ‘‘distance matrix’’
of the original surface and a planar model of that surface. Ob-
viously, we cannot apply the flattening algorithm until we obtain
the original ‘‘distance matrix’’ since this provides the data which
implicitly characterizes the surface geometry. The algorithm we
describe in this correspondence performs this task.

A. Outline of the algorithm

We start with a polyhedron formed by convex planar polygons.
To simplify the problem we use triangular faces. Immediately, we
obtain first-neighbor distances: these are the given lengths of the
edges of the triangles that form the polyhedron. We then apply the
law of cosines' to obtain the second-neighbor distances and any
lengths and angles of the edges of the given triangles that we do
not already know. Any two neighboring triangles have a three-di-
mensional angle between their planes (the dihedral angle). To find
the distance between any two nodes, we could rotate the triangles
around the dihedral angle so that the two triangles lie in the same
plane, and then apply the law of cosines.

However, we need not actually perform this rotation of the tri-
angles about the dihedral angle. The given angles and edge lengths,
together with the law of cosines, suffice to let us calculate the de-
sired distances. Although it is helpful to think of the two triangles
as lying in the same plane, it is not necessary to actually perform
any computations to cause them to do so. This observation lets us
avoid much unnecessary computation.

At this point, we can specify an iterative use of the law of co-
sines, together with a growing list of angles and distances between
nodes in the polyhedron. Some of these angles and distances are
the angles and edge lengths of the original triangular faces. Others,

'Given the angles and edge lengths of two triangles joined along a com-
mon edge, the law of cosines provides the (diagonal) distance between the
two nodes not joined by an edge.

0162-8828/89/0900-1001$01.00 © 1989 IEEE

1002

which are the result of computations performed during iteration,
represent the angles and edges of new objects that we call *‘p-tri-
angles’’ and ‘‘p-quadrilaterals.”” The ‘‘p’’ stands for ‘‘pseudo,’”
because although all of the nodes of these figures do not really lie
in the same plane (that is, dihedral angles exist between the trian-
gles), for the purposes of this algorithm we can imagine that they
do.

The first two steps in the iterative application of the law of co-
sines, as described above, are simple. However, as the level of
iteration increases, it is necessary to consider special cases and
possible complications. The following sections of this report define
the new geometric objects that are essential to a discussion of the
algorithm, and offer a proof of the algorithm’s validity.

II. DEFINITIONS OF THE GEOMETRIC OBJECTS USED IN THE
ALGORITHM

A. Polyhedron

In R?, a polyhedron is a figure defined to be a finite set of plane
polygons such that every edge of a polygon is shared by at most
one other polygon (adjacent polygons) and no subset of polygons
has the same property [9]. The nodes and edges of the polygons
are the nodes and edges of the polyhedron. This definition allows
our polyhedra to be nonconvex, either open or closed, and to have
holes; all these cases can be handled by our algorithm.

In the following discussion, we will limit our consideration to
polyhedra that consist of triangular faces. The term ‘‘triangle’’ re-
fers to one of these faces.

B. n-Chain of Triangles

An n-chain of triangles is an ordered list of n different triangles
such that adjacent triangles in the list share a common edge, such
that triangles are adjacent to at most two others in the chain, and
such that the n-chain can be unrolled into a planar series of trian-
gles with no overlapping edges in the plane. One major element of
our algorithm is the construction of n-chains of triangles. In Fig.
1(a), the set of triangles form a 4-chain. Fig. 1(b) shows a 5-chain
and Fig. 1(c) shows a 9-chain. In the following discussion, we use
the expression ‘‘chains of length n’’ to mean n-chains.

C. n-Path of Distances

An n-path between two nodes is an ordered list of edges along
one or more n-chains, such that adjacent edges in the list share a
common node. An alternative term for n-path is edge sequence [1],

[6].
D. Diagonal

A diagonal is a straight line between the end points of a partic-
ular n-chain. This means that straight lines between the same two
points of the polyhedron over different n-chains are different di-
agonals. The terminology ‘‘a new diagonal’’ indicates the first in-
stance of a straight line path between two particular points over a
particular n-chain.

E. p-Triangle and p-Quadrilateral

p-triangles and p-quadrilaterals are convex figures on an n-chain
bounded by the diagonals (e.g., see Fig. 1). The following steps
provide an inductive definition and clarification of these terms.

Step 1: A I-chain—A 1-chain and a p-triangle is a triangle of
the original polyhedral surface.

Step 2: 2-chains—A 2-chain of triangles (equivalently 2 p-tri-
angles that share a common edge) form a p-quadrilateral [see Fig.
2(a)], provided the quadrilateral formed by the two triangles is con-
vex. (Fig. 2(b) shows a nonconvex example, which therefore is not
a p-quadrilateral.) We find the unknown diagonal of the p-quadri-
lateral by applying the law of cosines. (We already know the other
diagonal: it is the common edge of the p-triangles. We use the
terms ‘‘distance’’ and ‘‘diagonal’’ interchangeably in the follow-
ing discussion, because one of the sources of the distances in the
computation is the set of diagonals of p-quadrilaterals.)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 11, NO. 9. SEPTEMBER 1989

Fig. 1. p-quadrilateral ACBD over a 9-chain (c) is formed from p-triangle
ADC with sides AD over a 3-chain and AC over a 4-chain (a) and
p-triangle CDB with sides BC over a 4-chain and BD over a 5-chain.
This p-quadrilateral generates diagonal AB.

b b
(a) (b)

Fig. 2. p-quadrilateral ACBD formed from p-triangles ACD and BCD with
common edge CD. The p-triangles are opened along edge CD so that
they lie in the same plane. (a) The angles ACB and ADB are both <180
degrees. Therefore, diagonal AB lies within the p-quadrilateral, and a
new diagonal or distance is found between nodes 4 and B. (b) Angle
ADB is > 180 degrees. Therefore, diagonal AB lies outside the n-chain.
Thus, the quadrilateral is not a p-quadrilateral, and no distance is found
here.

Note that this diagonal lies within the 2-chain of its p-quadri-
lateral (because the p-quadrilateral is convex). We now define the
p-triangles over the 2-chain to be all the p-triangles that can be
formed by this new diagonal of the p-quadrilateral and the previ-
ously known edges of the p-triangles that lie within the 2-chain. In
Fig. 2(a), both ADB and ACB are p-triangles over a 2-chain.

Step 3 (Induction): So far, we have built all the possible p-tri-
angles over chains of length 1 to n. It should be noted that one edge
of a p-triangle lies over its entire n-chain and the other two edges
lie over subchains of the n-chain. One can join all pairs of these
p-triangles which have a common edge and which lie on opposite
sides of this edge. When the sum of the angles at the edges of the
common edge are each less than 180 degrees we obtain p-quadri-
laterals. Those whose combined path is of length n + 1 are
p-quadrilaterals over (n + 1) chains. A p-quadrilateral over an (n
+ 1)-chain will necessarily be composed of two p-triangles each
over a chain less than length n + 1 [see Fig. 1(a)-(c)] and since
we have all these required p-triangles, we can find all possible
p-quadrilaterals over an (n + 1)-chain and subsequently their un-
known diagonals. These diagonals lie over (n + 1)-chains. Now,
using our previous set of diagonals over chains of length less than

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 11, NO. 9, SEPTEMBER 1989

Fig. 3. ‘‘Broken distances’’ between nodes. (a) A three-dimensional view
of a node P where the sum of the angles is > 360 degrees. Thus, certain
flattenings of the triangles around this node might produce angles that
are > 180 degrees in both directions. Therefore, no new diagonals can
be found at this level, and the distance is a ‘‘broken diagonal’’: APE in
(b) and (c). All the different possible *‘broken distances’’ must be ex-
amined in order to determine the shortest distance between nodes (for
example, ACB, ADB, AEB, AFB, AGHB for distances between nodes 4
and B, as shown in (d).

or equal to n, together with these new diagonals, we can form p-
triangles over (n + 1)-chains.

F. m-Broken-Diagonals on n-Chains

A path between two points of the polyhedron along the surface
of it which is not a straight line is called a ‘‘broken diagonal.’” An
m-broken-diagonal is a broken diagonal with m internal nodes. If
the quadrilateral formed by two p-triangles over a 2-chain is not
convex, then one of its diagonals must lie outside the 2-chain. The
distance between the nodes connected by this diagonal can be de-
termined in either of two ways. One possibility is that it will be
found later on another n-chain and p-quadrilateral. The other pos-
sibility is that the shortest distance between these two nodes is one
of the 2-paths on the 2-chain.” This is a 1-broken-diagonal. In either
case, we place this diagonal on a list of possible **1-broken-diag-
onals.”” A later section of this correspondence explains how the
algorithm handles this list.

Then, as we build larger n-chains, some of the quadrilaterals
formed by the p-triangles will be nonconvex. If two nodes of a
quadrilateral are connected by a diagonal that lies outside the
n-chain, then the shortest of the n-paths on the n-chain connecting
these two nodes are placed on a list of possible ‘‘1-broken-diago-
nals.”

Fig. 3(a) is an example of a three-dimensional view of a node P
where the sum of the angles is greater than 360 degrees. Both paths
from nodes 4 to E around P possibly yield 1-broken-diagonals [Fig.
3(b) and (c)]. Fig. 3(d) shows examples of broken diagonals on
longer paths.

III. THE ALGORITHM
A. Statement of Algorithm

The essential idea of this algorithm is exhaustive search of the
space of distances on the surface of the polyhedron. However, the
statement and implementation of this search are not entirely trivial,
as the preceding definitions suggest. Given these definitions, we
can state the algorithm as follows.

We iteratively build up the table of distances between nodes by
building p-triangles and p-quadrilaterals over increasingly larger
n-chains. The first iteration considers all 1-chains. The second it-
eration considers all of the p-quadrilaterals over 2-chains. The third
iteration considers all of the p-quadrilaterals over 3-chains, as well
as the p-quadrilaterals over 4-chains which, depending on the data,
can be built from pairs of 2-chains. It should be noted that if a

2Sharir and Schorr [6] show that for a convex polyhedron, only the first
of these two possibilities can occur.

1003

p-quadrilateral over a 4-chain can be built only from a p-triangle
over a 3-chain and a p-triangle over a 1-chain, then it will be ob-
tained only at the next iteration. At the nth iteration, all p-quadri-
laterals over n-chains are processed, as are some p-quadrilaterals
over chains of length n + 1 to 2"~', depending on the data.

The iteration consists of building up new diagonals and combin-
ing them with existing diagonals to form new p-triangles. Then,
combining these with other p-triangles we form new p-quadrilater-
als. Each of these lies over a new n-chain or path of triangular faces
and in turn generates a new diagonal along this n-chain. *‘1-broken
diagonals’’ are generated when quadrilaterals formed by two
p-triangles fail to be p-quadrilaterals (i.e., they are nonconvex).

After i iterations, we know all straight line diagonal lengths on
chains of length 1 to i. We also know most 1-broken-diagonals® on
chains of length 2 to i.

For each pair of nodes, we retain the minimum of these straight
line diagonal distances and 1-broken-diagonal distances. Note that
for some pairs of nodes, we may not yet have any distances. Also,
shorter minima may be found later, from construction of m-broken-
diagonals.

Now, we construct m-broken-diagonals for m greater than 1. For
example, we construct 3-broken-diagonals between a given pair of
nodes by joining the I-broken-diagonals which link these two
nodes; we construct the 2-broken-diagonals by linking straight-line-
diagonals with a 2-broken-diagonal. When we have constructed all
m-broken-diagonals up to some length m = k, then we can recom-
bine these to reach lengths up to m = 2 - k in the next step. Thus,
after log (i) iterations, we have exhaustively constructed all
m-broken-diagonals for m < i.

The algorithm terminates when i = N, the total number of tri-
angles of the polyhedron. In our application, we take i to be much
smaller than N, since we need only find ‘‘patchwise’’ shortest dis-
tance solutions. This is because our flattening algorithm [5] only
requires overlapping short-range patches of minimal distances in
order to successfully flatten the original polyhedron.* However, the
above procedure is exhaustive, and if run to completion, will find
the shortest distance between any two nodes on the polyhedron.

Finally, note that if distances between nonnodal points (i.e.,
which lie on the faces of triangles) are desired, they may be added
to the data structure used to describe the polyhedron. This is trivial,
since it amounts to triangulating a triangle with an added internal
point.

B. Complexity

Since we can build four different (n + 1)-chains from an n-chain
and each of these four (n + 1)-chains is generated from two dif-
ferent n-chains there are two times as many (n + 1)-chains as there
are n-chains. Thus the number of n-chains after i iterations starting
with N triangles is O(N - 2+ 1y Considering that we must main-
tain all these n-chains since we are building up distances from all
nodes simultaneously (thus any n-chain may be a subchain of a
larger chain which yields a minimal distance between two other
nodes) and the actions taken to generate these n-chains between
nodes (building up p-triangles and p-quadrilaterals etc.), the al-
gorithm is exponential in both space and time. Therefore, to find
all minimal distances between nodes, the algorithm terminates after
O(N) iterations for straight lines plus O(log N) iterations for
combinations of broken distances. This can require a large amount

3Some nodes may not be connected by broken diagonal paths which are
obtained from n-chains. For example, consider some pairs of nodes on
triangles which are connected at a single node. The distance between such
nodes is found at the same time that m-broken-diagonals of order greater
than 1 are determined.

“Around each node, we define a patch to consist of all the nodes next-
neighbors, second-neighbors, - - - nth neighbors. Note that for a surface
composed of ~ 1000 nodes, its ‘‘radius’” is ~20 nodes, so that a path to
10th neighbors is a considerable fraction of the entire surface. These patches
overlap extensively, so that distance relations calculated within a patch
allow an accurate flattening to take place.

1004 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 11, NO. 9, SEPTEMBER 1989

\
[l
VAl i
e
DA
1]
Ve
Y

il
I

v!EQEQN zZ
\?4‘}

AN

AVAC QIO
q?iA'{v‘ﬁ"‘

5SS

PR

) TR
VO AT
TN
AT 4% s
(DR

3

&

AR

(b)

Fig. 4. Given the diagonal AB within an n-chain, we can find a p-quadri-
lateral that meets our specifications and generates the diagonal. Drop-
ping perpendiculars to the diagonal AB from each of the other nodes C,
D, E F, G, H, I, J, we find node C is closest to AB on one side and

TN\ M
W
e W

g

node D is closest to AB on the other side. Thus, p-quadrilateral ACBD %

is formed from the p-triangles ADC and BCD having the common edge

DC in (a). In the proof, if edge AC did not lie on the n-chain of diagonal g

AB, there would be another node (say, E or F') that is nearer to AB and X b
on the same side as node C. (b)

2
a vy
8
N

of computation, due to the exponential complexity of the approach.
Below, we discuss practical limits, and describe some experiments
with complex surfaces (monkey visual cortex) consisting of ~10°
nodes.

—44{4’ K
SRS
i Ahvﬂ%'ﬁr“ﬁ‘é%%
AVAN\VAV.Y 47478
“

TAIPAGIA
S
N

RS
VAVANS
W
a8

0\
W
S
!
A

\»
A

X

DG

S5
I
o

0
K

R
DY
S

YAY
NA
N
W/
8
X
)

&
N
W
AN
0
Y
Y
XN
7\
N
N
&
S

=

Ve

X
N
A
N
AV
AV
S
>s
2R
%v;;om,‘
sl
AN
%%
ia
NS
ﬂnvég
s

AP
W
NS

AN
<
<l
<\
S
vava,
TAVAVAYAS:
AT
R
v,
0
)
Y
oK

C. Verification of the Algorithm

25

V)
%

V)

KX
Y

o

X

£

x

N

4
(\/ AVAvav, >
NIRRT IS A NS
B A SR
NSRS APKINTRON

747
(V4
{7
Y,
%
4
A2

vt 7 Yl Vel Vo
/)
)y
K
X
S
X
-
S
5
a
v
AN
R

Given the preceding definitions and discussions, one can see that
we are combinatorially building up all possible paths in all possible
ways between two nodes of our polyhedra and finding both the
straight line and broken distances between them. It remains to dem-

Y

&
o3
AV
A\
:‘VA‘AV

(1
W
A
N
N
R
7

.
3¢
A
W,

<
<]
N
N
2
';;
X
Ny
.
'A)
N
4
U
oS
5
o
o

¥a
VAT A
AV.rar
2 £
WA
ATAVAVAVaTar. 2
S

5

VAV
725 oo

onstrate the following rather straightforward theorem. s VAYA "‘m‘%) "tyéé%i\\';i{?ﬁ%’
Theorem: Given a p-quadrilateral over an n-chain, there exists A
a diagonal that lies within the n-chain. ()
Conversely, given an n-chain, if there exists a straight line (i.e., Fig. 5. (a) A three-dimensional polyhedral model of the surface of monkey
a line drawn on the flat model of the n-chain), that lies within the visual cortex (viewed from top). (b) A three-dimensional polyhedral
n-chain and thus crosses all the triangles making up the n-chain, model of the surface of monkey visual cortex (viewed from bottom). (c)
then there exists a p-quadrilateral whose diagonal is this line. The matrix of interpoint geodesic distances was obtained from the
Proof: polyhedral surface represented in (a) and (b), and this surface was then

s . . ““flattened’” usi dient d t method d ibed in [5].
= By definition of p-quadrilateral convexity. attened” using a gradient descent method described in [3]

< Choose the closest node of the n-chain on either side of the
iven straight line. In Fig. 4(a), these are nodes C and D. Thus we . .

ﬁ;ve foung two tn'anglfs xEv}:ose common edge ?S line CDuSand onals’” are found, as described above, the shortest distance be-
whose third nodes are the end-points of the given straight line. The ~een any two nodes will ultimately be determined. .
union of these two triangles is a quadrilateral.) In practice, we run the.algomhm far short of all O(N) pos51blbe

The angles of the quadrilateral in Fig. 4(a) are less than 180 1teratlops (N t.yplcally being on the order of 1000). In our experi-
degrees, because the given diagonal lies within the quadrilateral as € With cortical surfaces of several thousand nodes, as shown in
constructed. Fig. 5, we only need to calculate distances on ‘‘patches’’ contain-

Both triangles lie within the n-chain. If they did not, then the ing about 10 nodes in order to obtain a successful flattening from
assumption that their vertices are the closest points to the given random starting configurations of our flattening algorithm [5]. This
straight line would be contradicted [see Fig. 4(b)]. Thus, we have indicates that we have correctly captured the metric structure of the

found the required p-triangles and p-quadrilateral. entire polyhedral surface with this order of iteration. Naturally, the
q P & P details of this procedure are application dependent. Note that the
D. Discussion of the Algorithm “‘diameter’’ of a surface of ~10° nodes is about 30. Thus, our

“‘patch size’’ is roughly 1/3 the (linear) size of the object. For

The foregoing theorem proves that if a straight-line path exists limited runs such as these (which, given the complexity of the al-
between two nodes, exhaustive construction of p-triangles and gorithm, are in fact the only feasible runs), the best we can expect
p-quadrilaterals will reveal it. Any distance that is not found this is a good approximation to the set of minimal distances in the
way must be a ‘‘broken diagonal.’’ As all possible ‘‘broken diag- neighborhood. It is possible that a pathological surface (e.g., one

[EEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. i1, NO. 9, SEPTEMBER 1989

with many bumps and valleys of just the right size) could have
yield a minimal path on a neighborhood size of 10 which was
slightly longer than the (true) minimum path on a larger neighbor-
hood. In practice, however, this limitation has not been a problem.
Our experience with distance measurements in monkey visual cor-
tex, which is a highly complicated, folded surface, suggest that any
errors associated with this algorithm and order of iteration are no
more than a few percent.

We use this algorithm as an heuristic approximation to a minimal
geodesic-distance algorithm. In our application, running this al-
gorithm to relatively low orders of iteration (i.e., 10) does seem
to yield very good approximations to the geodesic distances that
we need in order to obtain flattening of the cortical surfaces of the
brain.

It is worth pointing out that we have implemented two versions
of this algorithm. The first version is the one described above,
where at the ith iteration, n-chains up to length 2/~ ! can possibly
be obtained. The other version, at the ith iteration, is limited to
n-chains of length i. We have used both runs and merged them for
later flattening, thus obtaining a sampling of very long-range dis-
tances and also spanning a large neighborhood around each node.
Limitations of machine time and storage space make this procedure
worthwhile.

IV. PERFORMANCE

For a polyhedron consisting of about 2500 triangles (about 1200
nodes) representing the surface of monkey visual cortex, we cal-
culated all of the distances over 10-chains on each node. On a Sun-
3 workstation, this run took about 2 h and used 12 pbytes of mem-
ory; it provided sufficient data for successful flattening of the sur-
face of monkey visual cortex [5].

V. OTHER APPLICATIONS

This algorithm finds local shortest-distance patches. Used to-
gether with our flattening algorithm, it lets us measure overall
shortest distances. This may in fact be the most efficient way to
compute long-range shortest distances on the class of polyhedra
whosse global curvature allows flattening with a relatively small er-
ror.

REFERENCES

[1] J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou, ‘‘The dis-
crete geodesic problem,”” SIAM J. Comput., vol. 16, pp. 647-668,
Aug. 1987.

[2] D. M. Mount, ‘‘Voronoi diagrams on the surface of a polyhedron,”’
Camegie Mellon Univ., Pittsburgh, PA, Center for Automation Res.
Tech. Rep. CAR-TR-121, vol. CS-TR-1496, Dep. Comput. Sci., May
1985.

[3] J. O’Rourke, S. Suri, and H. Booth, ‘‘Shortest paths on polyhedral
surfaces,”” in Proc. Second Symp. Theoretical Aspects of Computer
Science, Aug. 1984.

[4] E. L. Schwartz and B. Merker, ‘‘Flattening cortex: An optimal com-
puter algorithm and comparisons with physical flattening of the oper-
cular surface of striate cortex,’”” Soc. Neurosci. Abstracts, vol. 15,
1985.

[5] E. L. Schwartz, A. Shaw, and E. Wolfson, ‘‘A numerical solution to
the generalized mapmaker’s problem: Flattening nonconvex polyhe-
dral surfaces,’” IEEE Trans. Pattern Anal. Machine Intell., this issue,
pp. 1005-1008.

[6] M. Sharir and A. Schorr, *‘On shortest paths in polyhedral surfaces,”
SIAM J. Comput., vol. 15, no. 1, pp. 193-215, 1986.

{71 R. B. Tootell, M. Silverman, E. Switkes, and R. deValois, ‘‘Deoxy-
glucose analysis of retinotopic organization in primate striate cortex,”’
Science, vol. 218, pp. 902-904, 1982.

[8] W. K. Kaplow and E. L. Schwartz, ‘‘Measuring mean and Gaussian
curvature on triangulated brain surfaces: The differential geometry of
macaque striate cortex,”’ Computat. Neurosci. Lab., NYU Med. Cen-
ter, Tech. Rep. CNS-TR-1-86, 1986.

[9] F. P. Preparata and M. I. Shamos, Computational Geometry: An In-
troduction. New York: Springer-Verlag, 1985.

*In other work we describe ways to measure the mean and Gaussian
curvature of polyhedra [8].

1005

A Numerical Solution to the Generalized
Mapmaker’s Problem: Flattening
Nonconvex Polyhedral Surfaces

ERIC L. SCHWARTZ, ALAN SHAW, anp ESTAROSE WOLFSON

Abstract—We describe methods to ‘‘unfold’’ and flatten the curved,
convoluted surfaces of the brain in order to study the functional ar-
chitectures and neural maps embedded in them. In order to do this, it
is necessary to solve the general mapmaker’s problem for representing
curved surfaces by planar models. This algorithm has applications in
areas other than computer-aided neuroanatomy, such as robotics mo-
tion planning and geophysics.

Our algorithm maximizes the goodness of fit of distances in these
surfaces to distances in a planar configuration of points. We illustrate
this algorithm with a flattening of monkey visual cortex, which is an
extremely complex folded surface. We find distance errors in the range
of several percent, with isolated regions of larger error, for the class
of cortical surfaces which we have so far studied.

Index Terms—Cortex, flattened surface, geodesic distance, map.

INTRODUCTION

The mapmaker’s problem is to find a flat representation of a
curved surface, for example, the surface of the earth. Classical
mapmaking has been restricted to the relatively simple spherical
surface of the earth. In the case that the surface of interest is com-
plex, and possibly nonconvex, there are no known methods of find-
ing quasi-isometric planar representations, that is, those that distort
distance relationships as little as possible.' (An isometric map
would be one in which the distance between any two points was
identical to the corresponding distance in the original surface.)

The solution to this problem is of importance to computer-aided
neuroanatomy, since it is often desired to view the surface of var-
ious cortical areas in a planar model. Primate cortex is highly con-
voluted, and provides one of the more complex surfaces encoun-
tered in practical applications.

Motion planning in robotics is another area of application for
which the finding of shortest distances on polyhedral surfaces is of
importance [10], [11]. Other areas of biophysics and geophysics
would seem to provide possible areas of application of a general-
ized mapmaker’s algorithm.

Our interest is in obtaining a flat representation of the cortical
surfaces of the brain, because the detailed maps of sensory and
other neural data embedded in these surfaces are easiest to study,
measure, and model when they are presented in planar form.

This correspondence describes the method we use to find an op-
timal quasi-isometry that maps an arbitrary curved surface into a
plane. This mapping is optimal in the sense that it is derived from
a variational principle that optimizes the overall fit between the
curved and planar surfaces. The mapping is a quasi-isometry be-
cause it optimizes the fit of distances over multiple scales, rather
than, for example, local angles (in which case it would be quasi-
conformal).

Manuscript received February 23, 1987; revised December 9, 1988.
Recommended for acceptance by J. O’Rourke. This work was supported
by the Air Force Office of Scientific Research under Contract 85-0341,
System Development Foundation, and the Nathan S. Kline Psychiatric Re-
search Center.

E. L. Schwartz is with the Computational Neuroscience Laboratories,
Department of Psychiatry, New York University School of Medicine, 550
First Avenue, New York, NY 10016, and Robotics Research, Department
of Computer Science, Courant Institute of Mathematical Sciences, New
York University, New York, NY 10003.

A. Shaw and E. Wolfson are with the Computational Neuroscience Lab-
oratories, Department of Psychiatry, New York University School of Med-
icine, 550 First Avenue, New York, NY 10016.

IEEE Log Number 8928499.

'An early version of this work was described by [4]. An alternative ap-
proach has been described by [1].

0162-8828/89/0900-1005$01.00 © 1989 IEEE

