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Abstract. We discuss some open problems and recent progress related to the
4th order Paneitz operator and Q curvature in dimensions other than 4.

1. Introduction

In conformal geometry, a major tool is a family of conformal covariant operators
and their associated curvature invariants. In dimension n > 2, the conformal
Laplacian operator

L = �4 (n� 1)
n� 2 � +R (1.1)

enjoys the following covariance property,

L
�

4
n�2 g

' = ��
n+2
n�2Lg(�') (1.2)

for any smooth positive function � (see [LP]). Here R denotes the scalar curvature.
The associated transformation law of scalar curvature follows,

R
�

4
n�2 g

= L
�

4
n�2 g

1 = ��
n+2
n�2Lg�: (1.3)

A fundamental result is the solution of the Yamabe problem [Au2, S, T, Y], which
is related to the sharp constant of the associated Sobolev inequality. Since then,
there is a large literature on the analysis and geometry of this equation. In order to
gain additional information on the Ricci tensor, the 4th order Q curvature equation
comes into play.
Let (M; g) be a smooth Riemannian manifold with dimension n � 3, the Q

curvature is given by ([B, P])

Q = � 1

2 (n� 1)�R�
2

(n� 2)2
jRcj2 + n

3 � 4n2 + 16n� 16
8 (n� 1)2 (n� 2)2

R2 (1.4)

= ��J � 2 jAj2 + n
2
J2:

Here Rc is the Ricci tensor and

J =
R

2 (n� 1) ; A =
1

n� 2 (Rc� Jg) : (1.5)

The Paneitz operator is de�ned as

P' (1.6)

= �2'+
4

n� 2 div (Rc (r'; ei) ei)�
n2 � 4n+ 8

2 (n� 1) (n� 2) div (Rr') +
n� 4
2

Q'

= �2'+ div (4A (r'; ei) ei � (n� 2) Jr') +
n� 4
2

Q':

1



2 FENGBO HANG AND PAUL C. YANG

Here e1; � � � ; en is a local orthonormal frame with respect to g. Note that the use
of J and A (Schouten tensor) simpli�es the formulas of Q curvature and Paneitz
operator.
In dimension n 6= 4, the operator satis�es

P
�

4
n�4 g

' = ��
n+4
n�4Pg (�') (1.7)

for any positive smooth function �. This is similar to (1.2). As a consequence we
have

Q
�

4
n�4 g

=
2

n� 4P�
4

n�4 g
1 =

2

n� 4�
� n+4
n�4Pg�: (1.8)

In dimension 4, the Paneitz operator satis�es

Pe2wg' = e
�4wPg' (1.9)

and the Q curvature transforms as

Qe2wg = e
�4w (Pgw +Qg) : (1.10)

This should be compared to the conformal invariance of �� on surface and the
transformation law of Gaussian curvature under a conformal change of metric.
The main theme of research is to �nd out the role of Paneitz operator and Q

curvature in understanding the geometry of a conformal class and the topology of
underlying manifold. For example we would like to know how the spectral property
of Paneitz operator a¤ects the topology. Below we will start with dimension 4, when
the Q curvature equation and its applications is relatively well understood. Then we
will discuss recent progress in dimension n � 5 about the Green�s function of Paneitz
operator and the solution to �nding constant Q curvature in a �xed conformal
class. At last we will turn to the dimension 3, where the Q curvature equation
is particularly intriguing and of very di¤erent nature from the scalar curvature
equation. Open problems will be pointed out along the way.

2. Dimension 4

A basic fact that makes the Q curvature interesting is its appearance in the
Chern-Gauss-Bonnet formula. For a closed 4-manifold (M; g) we haveZ

M

Qd�+
1

4

Z
M

jW j2 d� = 8�2� (M) : (2.1)

Here W is the Weyl tensor. It follows from the pointwise conformal invariance
of jW j2 d� and (2.1) that the Q curvature integral is a global conformal invariant
which we denote by �g i.e.

�g =

Z
M

Qgd�g (2.2)

and �eg = �g for any eg 2 [g], the conformal class of g. A basic result about this
invariant is the following sharp upper bound:

Theorem 2.1 ([Gu2]). Let (M; g) be a smooth compact four manifold. If Lg > 0,
then �g � 16�2 with equality holds if and only if (M; g) is conformal di¤eomorphic
to the standard four sphere.

Theorem 2.1 follows from an identity found in [HY4]. The identity will have a
crucial counterpart in other dimensions.
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Theorem 2.2 ([HY4]). Let (M; g) be a 4-dimensional smooth compact Riemannian
manifold with Lg > 0. For p 2M , let GL;p be the Green�s function for Lg with pole
at p, then we have

���RcG2
L;pg

���2
g
is bounded and

P (logGL;p) = 16�
2�p �

1

2

���RcG2
L;pg

���2
g
�Q (2.3)

in distribution sense.

Choosing 1 as test function in (2.3) we seeZ
M

Qd� = 16�2 � 1
2

Z
M

���RcG2
L;pg

���2
g
d� � 16�2:

If equality holds, then RcG2
L;pg

= 0 and by the relative volume comparison theorem

we conclude (M; g) must be conformal equivalent to the standard S4 (see [HY4,
section 5]).
To study the Q curvature equation, it is important that the Paneitz operator be

nonnegative with only constant functions in its kernel. A quite general condition
ensuring such kind of positivity is given by

Theorem 2.3 ([Gu2]). Let (M; g) be a smooth compact 4-dimensional Riemannian
manifold with Lg > 0 and �g � 0, then the Paneitz operator P � 0 and the kernel
of P consists of constant functions.

As an application of Theorem 2.1 and 2.3, we have a general existence result for
a conformal metric of constant Q curvature. This is analogous to the existence of
constant Gauss curvature metrics in dimension two. Let us consider the following
functionals

I (w) =

Z
M

jW j2 wd�� 1
4

�Z
M

jW j2 d�
�
log

�
1

� (M)

Z
M

e4wd�

�
; (2.4)

II (w) (2.5)

=

Z
M

Pw � wd�+ 2
Z
M

Qwd�� 1
2

�Z
M

Qd�

�
log

�
1

� (M)

Z
M

e4wd�

�
;

and

III (w) =

Z
M

J2e2wgd�e2wg �
Z
M

J2d�: (2.6)

The Euler-Lagrange equation of functional II is given by

Pw +Q�
R
M
Qd�R

M
e4wd�

e4w = 0: (2.7)

Or in another word,

Qe2wg = const: (2.8)

On the other hand, the Euler-Lagrange equation for functional III is

��e2wgJe2wg = 0: (2.9)

In [ChY] the general functional F = 
1I + 
2II + 
3III was studied.
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Theorem 2.4 ([ChY]). If the functional F satis�es


2 > 0; 
3 > 0 (2.10)

and

� =

1
2

Z
M

jW j2 d�+ 
2
Z
M

Qd� < 16�2
2; (2.11)

then there exists a minimizer for

inf
w2H2(M)

F (w) : (2.12)

Any minimizer must be smooth. If w is a minimizer and we write eg = e2wg, then

1
2

���fW ���2eg + 
2 eQ� 
3 e� eJ = �e� (M) : (2.13)

Moreover for any ' 2 H2 (M) withZ
M

'de� = 0; (2.14)

we have


2

Z
M

eP' � 'de�+ 
3 Z
M

"�e�'+ ��� er'���2eg
�2
� 2 eJ ��� er'���2eg

#
de� (2.15)

� �

2
log

�
1e� (M)

Z
M

e4'de�� :
Here

R
M
eP' � 'de� is understood in distribution sense.

For the functional II, we have a similar existence result.

Theorem 2.5 ([ChY]). If

�g =

Z
M

Qd� < 16�2; (2.16)

P � 0 and the kernel of P consists only of constant functions, then

inf
w2H2(M)

II (w) (2.17)

is achieved. Any minimizer must be smooth. If w is a minimizer and we writeeg = e2wg, then eQ = �ge� (M) : (2.18)

Moreover for any ' 2 H2 (M) withZ
M

'de� = 0; (2.19)

we have Z
M

eP' � 'de� � �g
2
log

�
1e� (M)

Z
M

e4'de�� : (2.20)

Here
R
M
eP' � 'de� is understood in distribution sense.

More results on the existence of conformal metrics with constant Q curvature
can be found in [DM]. The main ingredient for Theorem 2.4 and 2.5 is the following
version of Adams inequality ([A]):
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Theorem 2.6 ([BCY, F]). Let (M; g) be a smooth compact 4-dimensional Rie-
mannian manifold with P � 0 and kernel of P consists only of constant functions,
then for any w 2 H2 (M) with Z

M

wd� = 0; (2.21)

we have Z
M

exp

�
32�2

w2R
M
Pw � wd�

�
d� � c (M; g) <1: (2.22)

In particular

log

�
1

� (M)

Z
M

e4wd�

�
� 1

8�2

Z
M

Pw � wd�+ c (M; g) : (2.23)

Here
R
M
Pw � wd� is understood in distribution sense.

Adams inequality was discovered in [A] with the motivation of simplifying the
original proof in [M]. In particular a higher order sharp inequality was derived
through the O�Neil inequality for convolution operator (see [O]) and an one di-
mensional calculus lemma due to Adams-Garsia. Theorem 2.6 can be proven by
modifying O�Neil inequality and the calculus lemma.
For some geometrical and topological applications of these related equations we

refer the readers to [ChGY1, ChGY2, Gu1].

3. Dimension at least 5

The analysis of Q curvature and Paneitz operator in dimension greater than 4
has some similarity to the analysis of scalar curvature and conformal Laplacian
operator in dimension greater than 2. The research related to Yamabe problem
serves as a nice model for asking interesting questions in the study of Paneitz
operator. However due to the fact second order di¤erential equations are much
better understood than higher order di¤erential equations, sometime the analogous
problem for Q curvature can be more challenging.
Based on the fact the �rst eigenfunction of conformal Laplacian operator can

always be chosen as positive everywhere, it was observed in [KW] that in a �xed
conformal class, we can always �nd a metric whose scalar curvature is only of one
sign i.e. the scalar curvature is either strictly positive, or identically zero, or strictly
negative.

Problem 3.1. Let (M; g) be a smooth compact Riemannian manifold with dimen-
sion n � 5, can we always �nd a conformal metric eg such that eQ is either strictly
positive, or identically zero, or strictly negative?

This seems to be a di¢ cult question. One of the obstacle is fourth order symmet-
ric elliptic operators can have no positive �rst eigenfunction at all. Indeed letM be
any smooth compact Riemannian manifold, � be the smallest positive eigenvalue
of ��, then the �rst eigenfunction of (��)2+2�� must change sign. Though the
answer to Problem 3.1 remains mysterious, partial solution to a related problem
was found recently in [HY4]. Recall on a smooth compact Riemannian manifold
(M; g) with dimension greater than 2, we have

9eg 2 [g] with eR > 0() �1 (Lg) > 0:
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Here [g] denotes the conformal class of metrics associated with g. The same state-
ment remains true if we replace ">" by "<" or "=" (see [LP]). It is worth pointing
out the sign of �1 (Lg) is a conformal invariant. In particular the above state-
ment gives a conformal invariant condition which is equivalent to the existence of
a conformal metric with positive scalar curvature.

Problem 3.2. Let (M; g) be a smooth compact Riemannian manifold with dimen-
sion n � 5, can we �nd a conformal invariant condition which is equivalent to the
existence of a conformal metric with positive Q curvature? Same questions can be
asked when "positive" is replaced by "negative" or "zero".

[HY4] gives a partial answer to this problem under the assumption the Yamabe
invariant Y (g) > 0.

Theorem 3.1 ([HY4]). Let n � 5 and (Mn; g) be a smooth compact Riemann-
ian manifold with Yamabe invariant Y (g) > 0, then the following statements are
equivalent

(1) 9eg 2 [g] with eQ > 0.
(2) kerPg = 0 and the Green�s function of Paneitz operator GP (p; q) > 0 for

any p; q 2M;p 6= q.
(3) kerPg = 0 and there exists a p 2M such that GP (p; q) > 0 for q 2Mn fpg.

By transformation law (1.7) we know kerPg = 0 is a conformal invariant con-
dition, moreover under this assumption, the Green�s functions of Paneitz operator
GP satisfy

G
P;�

4
n�4 g

(p; q) = � (p)
�1
� (q)

�1
GP;g (p; q) : (3.1)

In particular, the fact GP > 0 is also a conformal invariant condition. Of course this
condition is clearly more complicated than the one given for the scalar curvature
case, however the main strength of Theorem 3.1 lies in that it gives an easy to
check necessary and su¢ cient condition for the positivity of the Green�s function of
Paneitz operator for metrics of positive Yamabe class. As we will see shortly, the
positivity of Green�s function is crucial in the study of Q curvature equation.
The main ingredients in proof of Theorem 3.1 is an identity similar to (2.3) in

higher dimension.

Theorem 3.2 ([HY4]). Assume n � 5, (Mn; g) is a smooth compact Riemannian

manifold with Y (g) > 0, p 2M , then we have G
n�4
n�2
L;p

�����RcG 4
n�2
L;p g

�����
2

g

2 L1 (M) and

P

�
G

n�4
n�2
L;p

�
= cn�p �

n� 4
(n� 2)2

G
n�4
n�2
L;p

�����RcG 4
n�2
L;p g

�����
2

g

(3.2)

in distribution sense. Here

cn = 2
�n�6
n�2n

2
n�2 (n� 1)�

n�4
n�2 (n� 2) (n� 4)!

2
n�2
n ; (3.3)

!n is the volume of unit ball in Rn, GL;p is the Green�s function of conformal
Laplacian operator with pole at p.

Here we will give another conformal invariant condition for the existence of
conformal metric with positive Q curvature. To achieve this we �rst introduce
some notations.
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Let (M; g) be a smooth compact Riemannian manifold. If K = K (p; q) is a
suitable function on M �M , we de�ne an operator TK as

TK (') (p) =

Z
M

K (p; q)' (q) d� (q) (3.4)

for any nice function ' on M . If K 0 = K 0 (p; q) is another function on M �M ,
then we write

(K �K 0) (p; q) =

Z
M

K (p; s)K 0 (s; q) d� (s) : (3.5)

If n � 5 and Y (g) > 0, we write
H (p; q) (3.6)

= 2
n�6
n�2n�

2
n�2 (n� 1)

n�4
n�2 (n� 2)�1 (n� 4)�1 !�

2
n�2

n GL (p; q)
n�4
n�2 ;

and

�1 (p; q) (3.7)

= 2
n�6
n�2n�

2
n�2 (n� 1)

n�4
n�2 (n� 2)�3 !�

2
n�2

n GL (p; q)
n�4
n�2

�����RcG 4
n�2
L;p g

�����
2

g

(q) :

Then (3.2) becomes
PqH (p; q) = �p (q)� �1 (p; q) : (3.8)

Note that by the calculation in [HY4, Section 2],

�1 (p; q) = O
�
pq4�n

�
; (3.9)

here pq denotes the distance between p and q. Assume for all p 2M ,

0 �
Z
M

�1 (p; q) d� (q) � � <1; (3.10)

then
kT�1'kL1(M) � � k'kL1(M) : (3.11)

Moreover if we let eg = �
4

n�4 g, here � is a positive smooth function, then for any
smooth function ' on M ,

Te�1 (') = ��1T�1 (�') : (3.12)

In another word, Te�1 is similar to T�1 . Hence they have the same spectrum and

spectral radius i.e. �
�
Te�1

�
= � (T�1) and r�

�
Te�1

�
= r� (T�1) (the spectral ra-

dius).

Theorem 3.3. Assume n � 5, (Mn; g) is a smooth compact Riemannian manifold
with Y (g) > 0, then

9eg 2 [g] with eQ > 0:() the spectral radius r� (T�1) < 1:

Moreover if r� (T�1) < 1, then kerP = 0 and

GP = H +
1X
k=1

�k �H; (3.13)

here
�k = �1 � � � � � �1 (k times), (3.14)
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H and �1 are given in (3.6) and (3.7). The convergence in (3.13) is uniform in
the sense that

GP �H �
lX

k=1

�k �H �! 0

uniformly on M �M as l ! 1. In particular, GP � H, moreover if GP (p; q) =
H (p; q) for some p 6= q, then (M; g) is conformal equivalent to the standard Sn.

Proof. Assume there exists a eg 2 [g] with eQ > 0, then we hope to show r� (T�1) < 1.
Because r� (T�1) = r�

�
Te�1

�
, replacing g with eg we can assume the background

metric satis�es Q > 0. By (3.8) we know for any smooth function ',

' = TH (P') + T�1 (') : (3.15)

Taking ' = 1 in (3.15) we getZ
M

�1 (p; q) d� (q) = 1�
n� 4
2

Z
M

H (p; q)Q (q) d� (q) : (3.16)

Using the fact Q > 0 we know there exists a constant � such thatZ
M

�1 (p; q) d� (q) � � < 1

for all p 2M . It follows that
kT�1kL(L1;L1) � �

and hence
r� (T�1) � � < 1:

On the other hand, assume r� (T�1) < � < 1, then we can �nd a constant k0
such that for k � k0,

kT�kkL(L1;L1) < �
k:

It follows that Z
M

�k (p; q) d� (q) < �
k:

Fix m > n
4 , using estimate (3.9) we see for all k � k0 +m,

k�kkL1 � �k�m k�mkL1 � c�k:
In particular k�kkL1 ! 0 and

k�k �HkL1 � c k�kkL1 � c�k:
Iterating (3.15) we see

' = TH+�1�H+���+�k�1�H (P') + T�k (') :

Let k !1, we see
' = TH+

P1
k=1 �k�H (P') :

In particular, P' = 0 implies ' = 0 i.e. kerP = 0. Moreover

GP = H +
1X
k=1

�k �H:

In particular GP � H > 0. If GP (p; q) = H (p; q) for some p 6= q, then �1 (p; �) = 0,
in another word

Rc
G

4
n�2
L;p g

= 0:
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Since
�
Mn fpg ; G

4
n�2
L;p g

�
is asymptotically �at, it follows from relative volume com-

parison theorem that
�
Mn fpg ; G

4
n�2
L;p g

�
is isometric to Rn, hence (M; g) is confor-

mal equivalent to standard Sn.
Since GP > 0, it follows from Theorem 3.1 that there exists eg 2 [g] with eQ >

0. �
We remark that the in�nite series expansion of GP in (3.13) is similar to those

for Green�s function of Laplacian in [Au1].

Remark 3.1. Indeed it follows from (3.16) that as long as Y (g) > 0 andZ
M

H (p; q)Q (q) d� (q) > 0

for all p 2M , then r� (T�1) < 1. In particular this is the case when Q � 0 and not
identically zero.

Problem 3.3. Let (M; g) be a smooth compact Riemannian manifold with dimen-
sion n � 5, can we �nd a metric eg 2 [g] such that eQ = const?
This turns out to be a di¢ cult problem with only partial solutions available. If

we write the unknown metric eg = � 4
n�4 g, then we need to solve

P� = const � �
n+4
n�4 ; � 2 C1 (M) ; � > 0: (3.17)

As in the case of Yamabe problem, (3.17) has a variational structure. Indeed, for
u 2 C1 (M), let

E (u) =

Z
M

Pu � ud� (3.18)

=

Z
M

�
(�u)

2 � 4A (ru;ru) + (n� 2) J jruj2 + n� 4
2

Qu2
�
d�:

Clearly we can extend E (u) continuously to u 2 H2 (M). Let

Y4 (g) = inf
u2H2(M)nf0g

E (u)

kuk2
L

2n
n�4

; (3.19)

then Y4 (g) is a conformal invariant in the same spirit as Y (g). If Y4 (g) is achieved
at a smooth positive function �, then it satis�es (3.17). On the other hand, even
if Y4 (g) is achieved at a function u 2 H2 (M), we can not conclude whether u
changes sign or not. An observation made in [R] says that if P > 0 and GP > 0,
then the minimizer must be smooth and either strictly positive or strictly negative.
We remark that it had been observed in [HeR1, HeR2, HuR] that the positivity
of Green�s function of Paneitz operator plays crucial roles in various issues related
to Q curvature. Without the classical maximum principle, it is hard to know the
sign of Green�s function of the fourth order operator. A breakthrough was made
in [GuM], which provides an easy to check su¢ cient condition for the positivity of
Green�s function.

Theorem 3.4 ([GuM]). Assume n � 5, (Mn; g) is a smooth compact Riemannian
manifold with R > 0, Q � 0 and not identically zero, then P > 0. Moreover if u is
a nonzero smooth function with Pu � 0, then u > 0 and R

u
4

n�4 g
> 0. In particular,

GP > 0.
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Note that the necessary and su¢ cient condition in Theorem 3.1 is motivated by
[GuM, HuR]. The �nal solution of Yamabe problem uses the positive mass theorem
(see [LP, S]). The corresponding statement for the Paneitz operator is established
in [GuM, HuR]. Indeed an elementary but ingenious calculation in [HuR] justi�es
the positivity of mass under the assumption of positivity of Green�s function of
Paneitz operator for locally conformally �at manifolds. As pointed out in [GuM],
the same calculation carries through to nonlocally conformally �at manifolds in
dimension 5; 6 and 7 as well. A close connection between the positive mass result
and formula (3.2) is found in [HY4, section 6]. Combine these with Theorem 3.1
and 3.3 we have

Theorem 3.5 ([GuM, HY4, HY5, HuR]). Assume n � 5, (Mn; g) is a smooth
compact Riemannian manifold with Y (g) > 0 and the spectral radius r� (T�1) < 1
(�1 is given by (3.7)). If n = 5; 6; 7 or (M; g) is locally conformally �at near p 2M ,
then kerP = 0 and under conformal normal coordinate at p, x1; � � � ; xn,

GP;p =
1

2n (n� 2) (n� 4)!n
�
r4�n +A+O (r)

�
;

with the constant A � 0, here r = jxj, !n is the volume of the unit ball in Rn.
Moreover A = 0 if and only if (M; g) is conformal equivalent to Sn.

Indeed following [HY4, Section 6] we note that under the assumption of Theorem
3.5 (see [LP])

GL;p =
1

4n (n� 1)!n
�
r2�n +O

�
r�1

��
:

Let Hp (q) = H (p; q), then

GP;p �Hp =
A

2n (n� 2) (n� 4)!n
+O (r) :

It follows from (3.8) that

P (GP;p �Hp) (q) = �1 (p; q) :
Hence

A

= 2n (n� 2) (n� 4)!n
Z
M

GP (p; q) �1 (p; q) d� (q)

= 2
2(n�4)
n�2 n

n�4
n�2 (n� 1)

n�4
n�2 (n� 2)�2 (n� 4)!

n�4
n�2
n

Z
M

GP;pG
n�4
n�2
L;p

�����RcG 4
n�2
L;p g

�����
2

g

d�:

This is exactly the formula proven in [HuR]. Theorem 3.5 follows from this calcu-
lation. With Theorem 3.1, 3.3 and 3.5 at hand, we are able to give the �rst partial
solution to Problem 3.3.

Theorem 3.6 ([GuM, HY5]). Let (M; g) be a smooth compact n dimensional Rie-
mannian manifold with n � 5, Y (g) > 0, Y4 (g) > 0, r� (T�1) < 1, then

(1) Y4 (g) � Y4 (S
n), and equality holds if and only if (M; g) is conformally

di¤eomorphic to the standard sphere.
(2) Y4 (g) is always achieved. Any minimizer must be smooth and cannot

change sign. In particular we can �nd a constant Q curvature metric in
the conformal class.
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(3) If (M; g) is not conformally di¤eomorphic to the standard sphere, then the
set of all minimizers u for Y4 (g), after normalizing with kuk

L
2n
n�4

= 1, is
compact in C1 topology.

It is worth pointing out that for a locally conformally �at manifold with positive
Yamabe invariant and Poincare exponent less than n�4

2 (see [SY]), Theorem 3.6 was
proved in [QR2] by apriori estimates (using method of moving planes for integral
equations developed in [CnLO]) and connecting the equation to Yamabe equation
through a path of integral equations.
Note that Y4 (g) > 0 is the same thing as P > 0. Either one of the following

conditions guarantee the positivity of Paneitz operator
� [GuM, XY1]: n � 5, R > 0, Q � 0 and not identically zero;
� [ChHY, Theorem 1.6]: n � 5, J � 0, �2 (A) � 0 and (M; g) is not Ricci
�at.

In applications we are usually interested in metrics not just with Q > 0, but
with both R > 0 and Q > 0. This leads us to a question similar to Problem 3.2.

Problem 3.4 ([GuHL, Problem 1.1]). For a smooth compact Riemannian mani-
fold with dimension at least 5, can we �nd a conformal invariant condition which
is equivalent to the existence of a conformal metric with positive scalar and Q cur-
vature?

Theorem 3.7 ([GuHL]). Let (M; g) be a smooth compact Riemannian manifold
with dimension n � 6. Denote

Y +4 (g) =
n� 4
2

infeg2[g]
R
M
eQde�

(e� (M))n�4n = inf
u2C1(M)

u>0

R
M
Pu � ud�

kuk2
L

2n
n�4

:

and

Y �4 (g) =
n� 4
2

infeg2[g]eR>0
R
M
eQde�

(e� (M))n�4n :

If Y (g) > 0 and Y �4 (g) > 0, then there exists a metric eg 2 [g] satisfying eR > 0 andeQ > 0. In particular, P > 0, the Green�s function GP > 0, and Y4 (g) is achieved
at a positive smooth function u with R

u
4

n�4 g
> 0 and Q

u
4

n�4 g
= const. Moreover,

Y4 (g) = Y
+
4 (g) = Y

�
4 (g) :

Corollary 3.1 ([GuHL]). Let (M; g) be a smooth compact Riemannian manifold
with dimension n � 6. Then the following statements are equivalent

(1) Y (g) > 0; P > 0.
(2) Y (g) > 0; Y �4 (g) > 0.
(3) there exists a metric eg 2 [g] satisfying eR > 0 and eQ > 0.
Corollary 3.1 answers Problem 3.4 for dimension at least 6. It also tells us in

Theorem 3.6, condition r� (T�1) < 1 is implied by the positivity of Y (g) and Y4 (g)
when n � 6. The case n = 5 still remains open for Problem 3.4.

Problem 3.5. Let (M; g) be a smooth compact Riemannian manifold with dimen-
sion n � 5, do we have

Y (g) > 0; Q > 0 =) P > 0?

The answer is probably negative.
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This seems to be a subtle question. Indeed from [GuM, XY1], we know when
both R and Q are positive, then P is positive de�nite. If we have Y (g) > 0
and Q > 0 instead, then some conformal metrics have positive scalar curvature.
However the set of metrics with positive scalar curvature may be disjoint with
those with positive Q curvature. Nevertheless Theorem 3.1 tells us kerP = 0 and
GP > 0. In [HY5], it is shown this is enough to �nd a constant Q curvature in
the conformal class. Together with Theorem 3.3, we have another partial answer
to Problem 3.3.

Theorem 3.8 ([HY5]). Let (M; g) be a smooth compact n dimensional Riemannian
manifold with n � 5, Y (g) > 0, r� (T�1) < 1, then kerP = 0, the Green�s function
of P is positive and there exists a conformal metric eg with eQ = 1.
Note that if the answer to Problem 3.5 is positive, then Theorem 3.8 would follow

from Theorem 3.6. Without knowing the positivity of Paneitz operator, we can not
use the minimization problem (3.19) to �nd the constant Q curvature metrics. A
di¤erent approach was developed in [HY5]. Under the assumption of Theorem 3.8,
it follows from Theorem 3.3 that kerP = 0 and GP > 0. If we denote f = �

n+4
n�4 ,

then equation (3.17) becomes

TGP
f =

2

n� 4f
n�4
n+4 ; f 2 C1 (M) ; f > 0: (3.20)

Let

�4 (g) = sup

f2L
2n
n+4 (M)nf0g

R
M
TGP

f � fd�
kfk2

L
2n
n+4

: (3.21)

By (3.1), we know �4 (g) is a conformal invariant, moreover it has a nice geometrical
description, which is local, (see [HY5, Section 2.1])

�4 (g) =
2

n� 4 sup

8>><>>:
R
M
eQde�


 eQ


2

L
2n
n+4 (M;de�)

: eg 2 [g]
9>>=>>; (3.22)

= sup

u2W 4; 2n
n+4 (M)nf0g

R
M
Pu � ud�

kPuk2
L

2n
n+4

:

It follows from the classical Hardy-Littlewood-Sobolev inequality �4 (g) is always
�nite. The bene�t of this formulation is if �4 (g) is achieved by a maximizer f , we
deduce easily from the positivity of GP that f cannot change sign. With Theorem
3.1, 3.3 and 3.5 at hands, we have the following statement about extremal problem
for �4 (g):

Theorem 3.9 ([HY5]). Assume (M; g) is a smooth compact n dimensional Rie-
mannian manifold with n � 5, Y (g) > 0, r� (T�1) < 1, then

(1) �4 (g) � �4 (S
n), here Sn has the standard metric. �4 (g) = �4 (S

n) if
and only if (M; g) is conformally di¤eomorphic to the standard sphere.

(2) �4 (g) is always achieved. Any maximizer f must be smooth and cannot
change sign. If f > 0, then after scaling we have GP f = 2

n�4f
n�4
n+4 i.e.

Q
f

4
n+4 g

= 1.
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(3) If (M; g) is not conformally di¤eomorphic to the standard sphere, then the
set of all maximizers f for �4 (g), after normalizing with kfk

L
2n
n+4

= 1, is
compact in the C1 topology.

The approach in Theorem 3.9 is motivated from the integral equations considered
in [HWY1, HWY2]. Integral equation formulation of the Q curvature equation had
been used in [QR2].
At last we note that compactness problem for constant Q curvature metrics in

a �xed conformal class has been considered in [HeR1, Li, LyX, QR1, WZ].

4. Dimension 3

As we will see soon, the analysis of Q curvature equation in dimension 3 is very
di¤erent from those in dimension greater than 4. On the other hand, we expect the
scalar curvature and Q curvature plays more dominant role for the geometry of the
conformal class and the topology of the underlying manifold in dimension 3 than
in dimension greater than 4. Because of this, we will list problems in dimension 3
explicitly even though some of them are similar to those in Section 3.
In dimension 3, the Q curvature is given by

Q = �1
4
�R� 2 jRcj2 + 23

32
R2 (4.1)

= ��J � 2 jAj2 + 3
2
J2

= ��J + 4�2 (A)�
1

2
J2;

here

J =
R

4
; A = Rc� Jg: (4.2)

The Paneitz operator is given by

P' = �2'+ 4div [Rc (r'; ei) ei]�
5

4
div (Rr')� 1

2
Q' (4.3)

= �2'+ 4div (A (r'; ei) ei)� div (Jr')�
1

2
Q':

Here e1; e2; e3 is a local orthonormal frame with respect to g. For any smooth
positive function �,

P��4g' = �
7Pg (�') : (4.4)

Hence
Q��4g = �2�7Pg (�) : (4.5)

Problem 4.1. Let (M; g) be a 3 dimensional smooth compact Riemannian mani-
fold, can we always �nd a conformal metric eg such that eQ is either strictly positive,
or identically zero, or strictly negative? Can we �nd a conformal invariant con-
dition which is equivalent to the existence of a conformal metric with positive Q
curvature? Same questions can be asked when "positive" is replaced by "negative"
or "zero".

Unfortunately this simple looking question only has partial solution at this stage.

Theorem 4.1 ([HY4]). Let (M; g) be a smooth compact 3 dimensional Riemannian
manifold with Y (g) > 0, then the following statements are equivalent:
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(1) 9eg 2 [g] with eQ > 0.
(2) kerPg = 0 and the Green�s function GP (p; q) < 0 for any p; q 2M;p 6= q.
(3) kerPg = 0 and there exists a p 2M such that GP (p; q) < 0 for q 2Mn fpg.

By transformation law (4.4) we know kerPg = 0 is a conformal invariant condi-
tion. Under this assumption, the Green�s functions satisfy

GP;��4g (p; q) = � (p)
�1
� (q)

�1
GP;g (p; q) : (4.6)

Hence the fact GP (p; q) < 0 for p 6= q is a conformal invariant condition. Theorem
4.1 is based on the following identity:

Theorem 4.2 ([HY4]). Let (M; g) be a 3 dimensional smooth compact Riemannian

manifold with Y (g) > 0, p 2M , then we have G�1L;p
���RcG4

L;pg

���2
g
2 L1 (M) and

P
�
G�1L;p

�
= �256�2�p +G�1L;p

���RcG4
L;pg

���2
g

(4.7)

in distribution sense.

If Y (g) > 0, we write

H (p; q) = �GL (p; q)
�1

256�2
; (4.8)

and

�1 (p; q) =
GL (p; q)

�1

256�2

���RcG4
L;pg

���2
g
(q) : (4.9)

Then (4.7) becomes
PqH (p; q) = �p (q)� �1 (p; q) : (4.10)

Note that by the calculation in [HY4, Section 2],

�1 (p; q) = O
�
pq�1

�
; (4.11)

here pq denotes the distance between p and q.
If we let eg = ��4g, here � is a positive smooth function, then for any smooth

function ' on M ,
Te�1 (') = ��1T�1 (�') : (4.12)

Hence Te�1 and T�1 have the same spectrum and spectral radius.

Theorem 4.3. Let (M; g) be a 3 dimensional smooth compact Riemannian mani-
fold with Y (g) > 0, then

9eg 2 [g] with eQ > 0:() the spectral radius r� (T�1) < 1:

Moreover if r� (T�1) < 1, then kerP = 0 and

GP = H +
1X
k=1

�k �H; (4.13)

here
�k = �1 � � � � � �1 (k times), (4.14)

H and �1 are given in (4.8) and (4.9). The convergence in (4.13) is uniform. In
particular, GP � H, moreover if GP (p; q) = H (p; q) for some p; q, then (M; g) is
conformal equivalent to the standard S3.
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Proof. The argument is basically same as the proof of Theorem 3.3. If there exists
a eg 2 [g] with eQ > 0, by conformal invariance we can assume the background metric
has positive Q curvature. By (4.10) for any smooth function ',

' = TH (P') + T�1 (') : (4.15)

Taking ' = 1 in (4.15) we getZ
M

�1 (p; q) d� (q) = 1 +
1

2

Z
M

H (p; q)Q (q) d� (q) : (4.16)

Hence for some � Z
M

�1 (p; q) d� (q) � � < 1

for all p 2M . It follows that
kT�1kL(L1;L1) � �

and
r� (T�1) � � < 1:

On the other hand, assume r� (T�1) < � < 1, then we can �nd a constant k0
such that for k � k0,

kT�kkL(L1;L1) < �
k:

It follows that Z
M

�k (p; q) d� (q) < �
k:

Using (4.11) we see for all k � k0 + 2,

k�kkL1 � �k�2 k�2kL1 � c�k:
In particular k�kkL1 ! 0 and

k�k �HkL1 � c k�kkL1 � c�k:
The remaining argument goes exactly the same as in the proof of Theorem 3.3. �

Remark 4.1. Indeed it follows from (4.16) that as long as Y (g) > 0 andZ
M

H (p; q)Q (q) d� (q) < 0

for all p 2M , then r� (T�1) < 1. In particular this is the case when Q � 0 and not
identically zero.

It is worth pointing out that if kerP = 0, then because �p 2 H�2 (M), we
see GP;p 2 H2 (M) � C

1
2 (M), in particular the Green�s function has a value at

the pole, GP;p (p). This pole�s value plays exactly the same role as the mass for
classical Yamabe problem. If Y (g) > 0, r� (T�1) < 1 and (M; g) is not conformal
di¤eomorphic to the standard S3, it follows from Theorem 4.3 that GP (p; q) < 0
for all p; q 2 M . On the other hand, on the standard S3, the Green�s function of
Paneitz operator touches zero exactly at the pole and is negative away from the
pole.

Problem 4.2. Let (M; g) be a 3 dimensional smooth compact Riemannian mani-
fold, can we �nd a metric eg 2 [g] such that eQ = const?
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Theorem 4.4 ([HY3, HY4]). Let (M; g) be a 3 dimensional smooth compact Rie-
mannian manifold with Y (g) > 0 and r� (T�1) < 1, then there exists eg 2 [g] such
that eQ = 1. Moreover as long as (M; g) is not conformal di¤eomorphic to the

standard S3, the set
neg 2 [g] : eQ = 1o is compact in C1 topology.

Indeed let eg = u�4g, then eQ = 1 becomes
Pu = �1

2
u�7; u 2 C1 (M) ; u > 0: (4.17)

We can assume (M; g) is not conformal di¤eomorphic to the standard S3, then it
follows from Theorem 4.3 that kerP = 0 and GP (p; q) < 0 for all p; q 2 M . Let
K (p; q) = �GP (p; q) > 0, then (4.17) becomes

u =
1

2
TK

�
u�7

�
: (4.18)

For 0 � t � 1, we consider a family of integral equations

u =
1

2
T(1�t)+tK

�
u�7

�
: (4.19)

Elementary apriori estimate for (4.19) based on the fact K is bounded and strictly
positive together with a degree theory argument gives us Theorem 4.4 (see [HY3]).
Note the proof of Theorem 4.4 is technically simpler than the proof of Theorem
3.8. This gives a partial solution to Problem 4.2.
To �nd more solutions to Problem 4.2, we turn our attention to variational

methods. If we write eg = ��4g, then the problem becomes

P� = const � ��7; � 2 C1 (M) ; � > 0: (4.20)

For u 2 C1 (M), we denote

E (u; v) =

Z
M

Pu � ud� (4.21)

=

Z
M

�
(�u)

2 � 4Rc (ru;ru) + 5
4
R jruj2 � 1

2
Qu2

�
d�

=

Z
M

�
(�u)

2 � 4A (ru;ru) + J jruj2 � 1
2
Qu2

�
d�:

It is clear that E (u) extends continuously to u 2 H2 (M). Sobolev embedding
theorem tells us H2 (M) � C 1

2 (M), hence we can set

Y4 (g) = inf
u2H2(M);u>0

E (u)


u�1

2

L6
= �1

2
supeg2[g] e� (M) 13

Z
M

eQde�: (4.22)

Y4 (g) is a conformal invariant similar to Y (g). But unlike Y (g), it is not clear
anymore whether Y4 (g) is �nite or not.

Problem 4.3. Let (M; g) be a 3 dimensional smooth compact Riemannian mani-
fold, do we have Y4 (g) > �1? Is Y4 (g) always achieved?

To better understand the problem, following [HY1], we start with some basic
analysis. Let ui be a minimizing sequence for (4.22). By scaling we can assume
kuikL2 = 1. By Holder inequality we have

c = k1k
L
3
2
� kuikL2



u�1i 


L6
;
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hence 

u�1i 


L6
� c > 0:

It follows that E (ui) � c and hence kuikH2 � c. After passing to a subsequence we
can �nd u 2 H2 (M) such that ui * u weakly in H2 (M). It follows that kukL2 = 1
and u � 0.
If u > 0, then by lower semicontinuity we know u is a minimizer. On the other

hand if u touches zero somewhere, then

1 =


u�1



L6
� lim inf

i!1



u�1i 


L6
;

hence
E (u) � lim inf

i!1
E (ui) � 0:

If we can rule out the second case, then Y4 (g) is achieved.

De�nition 4.1 ([HY1]). Let (M; g) be a 3 dimensional smooth compact Riemann-
ian manifold. If u 2 H2 (M) with u � 0 and u = 0 somewhere would imply
E (u) � 0, then we say the metric g (or the associated Paneitz operator) satis-
�es condition NN+. If u 2 H2 (M) is a nonzero function with u � 0 and u = 0
somewhere would imply E (u) > 0, then we say the metric g satis�es condition P+.

Theorem 4.5 ([HY1]). Let (M; g) be a 3 dimensional smooth compact Riemannian
manifold. Then we have

Y4 (g) is �nite) g satis�es NN+

and
g satis�es P+ ) Y4 (g) is achieved and hence �nite.

Note condition P+ is clearly satis�ed when P > 0. In this case, Theorem 4.5
was proved in [XY2]. Here is an example when we have positivity of the Paneitz
operator.

Lemma 4.1 ([HY1]). If Y (g) > 0; �2 (A) > 0; Q � 0 and not identically zero,
then P > 0.

Examples satisfying assumptions in Lemma 4.1 can be found in Berger spheres
(see [HY1]). Here we give another criterion for positivity in the same spirit as
[ChHY, Theorem 1.6].

Lemma 4.2. If �2 (A) < 0 and 2Jg � A (note this implies J � 0), then P > 0.

Proof. Let

� = D2u� �u
3
g

be the traceless Hessian and
�A = A� J

3
g

be the traceless Schouten tensor. For convenience we use A � B to mean
R
M
Ad� =R

M
Bd�. First we derive the Bochner identity,

(�u)
2
= uiiujj � �uiijuj = � (uiji �Rijikuk)uj � uijuij +Rcjkujuk
=

��D2u
��2 +Rc (ru;ru) = ��D2u

��2 +A (ru;ru) + J jruj2 :
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Hence

(�u)
2 � j�j2 + (�u)

2

3
+A (ru;ru) + J jruj2 :

In another way

(�u)
2 � 3

2
j�j2 + 3

2
A (ru;ru) + 3

2
J jruj2 :

The next step is to remove the �J term in Q curvature. Note that

��J � u2 = �Jiiu2 � 2Jiu � ui = 2Aijju � ui � �2Aijuiuj � 2Aijuiju

= �2Aijuiuj � 2Aij�iju�
2

3
Ju�u

= �2Aijuiuj � 2Aij�iju�
1

3
J
�
�u2 � 2 jruj2

�
� �2Aijuiuj � 2Aij�iju�

1

3
�J � u2 + 2

3
J jruj2 :

Hence

��J � u2 � �3A (ru;ru)� 3Aij�iju+ J jruj2

= �3A (ru;ru)� 3�Aij�iju+ J jruj2 :

It follows that

(�u)
2
+ J jruj2 � 4A (ru;ru)� 1

2
Qu2

� 3

2
j�j2 + 3

2
�Aij�iju+ 2J jruj2 �A (ru;ru)�

3

4
J2u2 + jAj2 u2

=
3

2

�����+ 12u�A
����2 + 2J jruj2 �A (ru;ru)� 58 �J2 � jAj2�u2:

In another word

E (u) =
3

2

Z
M

�����+ 12u�A
����2 d�+ Z

M

h
2J jruj2 �A (ru;ru)

i
d�

�5
8

Z
M

�
J2 � jAj2

�
u2d�:

The positivity follows. �

The assumption in Lemma 4.2 is satis�ed by S2 � S1 with the product metric
and some Berger�s spheres (see [HY1]).
Conditions P+ and NN+ are hard to check in general, on the other hand, they

are hard to use too. The closely related conditions P and NN can be introduced.

De�nition 4.2 ([HY1]). Let (M; g) be a 3 dimensional smooth compact Riemann-
ian manifold. If u 2 H2 (M) with u = 0 somewhere would imply E (u) � 0, then
we say the metric g (or the associated Paneitz operator) satis�es condition NN. If
u 2 H2 (M) is a nonzero function with u = 0 somewhere would imply E (u) > 0,
then we say the metric g satis�es condition P.

Condition NN can be used to identify the limit function u, when u touches zero
in the brief discussion after Problem 4.3 (see [HY1]).
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The standard sphere S3 does not satisfy condition P+. Indeed, let x be the
coordinate given by the stereographic projection with respect to north pole N ,
then the Green�s function of P at N can be written as

GN = �
1

4�

1q
jxj2 + 1

: (4.23)

In particular, E (GN ) = GN (N) = 0.

Theorem 4.6 ([YgZ]). Y4
�
S3; gS3

�
is achieved at the standard metric.

Indeed [YgZ] shows Y4
�
S3
�
is achieved by the method of symmetrization. All

the critical points are classi�ed by [X]. In [H, HY1], several di¤erent approaches
are given. The main ingredient is the following observation:

Lemma 4.3 ([HY1]). Let N 2 S3 be the north pole, u 2 H2
�
S3
�
such that u (N) =

0. Denote x as the coordinate given by the stereographic projection with respect to
N and

� =

s
jxj2 + 1
2

:

Then we know �(�u) 2 L2
�
R3
�
and

E (u) =

Z
R3
j�(�u)j2 dx; (4.24)

here � is the Euclidean Laplacian.

In particular S3 satis�es NN. The only functions touching 0 and having nonpos-
itive energy are constant multiples of Green�s functions.
To help understanding the condition NN, in [HY2], new quantities � (M; g; p) and

� (M; g) are introduced. Let (M; g) be a 3 dimensional smooth compact Riemannian
manifold, for any p 2M , de�ne

� (M; g; p) = inf

�
E (u)R
M
u2d�

: u 2 H2 (M) n f0g ; u (p) = 0
�
: (4.25)

When no confusion could arise we denote it as � (g; p) or �p. We also de�ne

� (M; g) (4.26)

= inf
p2M

� (M; g; p)

= inf

�
E (u)R
M
u2d�

: u 2 H2 (M) n f0g ; u (p) = 0 for some p
�
:

The importance of � (M; g) lies in that g satis�es condition P if and only if � (g) > 0
and it satis�es condition NN if and only if � (g) � 0. It follows from Lemma
4.3 that �

�
S3; gS3

�
= 0. A closely related fact is that the Green�s function of

Paneitz operator on S3 vanishes at the pole. In [HY2], �rst and second variation
of GP (N;N) and �

�
S3; g;N

�
are calculated.

Theorem 4.7 ([HY2]). Let g be the standard metric on S3and h be a smooth
symmetric (0; 2) tensor. Denote x = �N , the stereographic projection with respect
to N and

� =

s
jxj2 + 1
2

:



20 FENGBO HANG AND PAUL C. YANG

Let Gg+th be the Green�s function of the Paneitz operator Pg+th, then

@tjt=0Gg+th (N;N) = 0 (4.27)

and

@2t
��
t=0

Gg+th (N;N) (4.28)

= � 1

64�2

Z
R3

0@X
ij

�
�ikjk + �jkik � (tr�)ij ���ij

�2
� 3
2
(�ijij ��tr�)2

1A dx:
Here � = �4h and the derivatives �ikjk etc are partial derivatives in R3.
In particular,

@2t
��
t=0

Gg+th (N;N) � 0 (4.29)

Moreover, @2t
��
t=0

Gg+th (N;N) = 0 if and only if h = LXg+ f � g for some smooth
vector �elds X and smooth function f on S3.
For � (g + th;N) we have

@tjt=0 � (g + th;N) = 0 (4.30)

and
@2t
��
t=0

� (g + th;N) = �16 @2t
��
t=0

Gg+th (N;N) : (4.31)

In [HY2], a close relation between condition NN and the second eigenvalue of
Paneitz operator is given.

Theorem 4.8 ([HY2]). Let (M; g) be a 3 dimensional smooth compact Riemann-
ian manifold with Y (g) > 0 and r� (T�1) < 1, then the following statements are
equivalent:

(1) Y4 (g) > �1.
(2) �2 (P ) > 0.
(3) � (g) � 0 i.e. (M; g) satis�es condition NN.

For condition P, there is a similar statement.

Corollary 4.1 ([HY2]). Let (M; g) be a 3 dimensional smooth compact Riemannian
manifold with Y (g) > 0 and r� (T�1) < 1. If (M; g) is not conformal di¤eomorphic
to the standard S3, then the following statements are equivalent:

(1) Y4 (g) > �1.
(2) �2 (P ) > 0.
(3) � (g) > 0 i.e. (M; g) satis�es condition P.

These statements make the �niteness of Y4 (g) and condition NN more meaning-
ful.

Problem 4.4. Let (M; g) be a 3 dimensional smooth compact Riemannian mani-
fold, does g always satisfy condition NN? Does metric with positive Yamabe invari-
ant always satisfy condition NN?

This seems to be a di¢ cult question. We only have a partial answer.

Theorem 4.9 ([HY3, HY4]). Assume M is a smooth compact 3 dimensional man-
ifold, denote

M = fg : Y (g) > 0, r� (T�1) < 1g ; (4.32)
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endowed with C1 topology. Let N be a path connected component ofM. If there is
a metric in N satisfying condition NN, then every metric in N satis�es condition
NN. Hence as long as the metric is not conformal equivalent to the standard S3, it
satis�es condition P.

Here we describe an application of above discussions. Let M be a 3 dimensional
smooth compact manifold, � 2 R, we de�ne a functional

F� (g) =

Z
M

Qd�+ �

Z
M

J2d�: (4.33)

Calculation shows that the critical metric of F� restricted to a �xed conformal class
with unit volume constraint is given by

Q+ 2��J + �J2 = const: (4.34)

Proposition 4.1. Assume (M; g) is a 3 dimensional smooth compact Riemannian
manifold satisfying condition P+, � � 0, then

supeg2[g] e� (M) 13 F� (eg) (4.35)

is achieved.

Proof. For any positive smooth function u,

F�
�
u�4g

�
= �2

Z
M

Pu � ud�+ �
Z
M

u4
�
�2�

�
u�1

�
+ Ju�1

�2
d�: (4.36)

De�ne

�� (u) =

Z
M

Pu � ud�� �
2

Z
M

u4
�
�2�

�
u�1

�
+ Ju�1

�2
d�; (4.37)

then
supeg2[g] e� (M) 13 F� (eg) = �2 inf

u2C1(M)
u>0



u�1

2
L6
�� (u) : (4.38)

Let
m = inf

u2H2(M)
u>0



u�1

2
L6
�� (u) : (4.39)

We claim m is achieved. Indeed

�� (u) =

Z
M

�
(�u)

2 � 4A (ru;ru) + J jruj2 � 1
2
Qu2

�
d� (4.40)

�2�
Z
M

�
�u� 2u�1 jruj2 + J

2
u

�2
d�:

Assume ui 2 H2 (M), ui > 0 is a minimizing sequence, by scaling we can assume
maxM ui = 1. Then 

u�1i 

2

L6
�� (ui)! m:

It follows from � � 0 that 

u�1i 

2
L6
E (ui) � c:

Hence E (ui) � c. Together with the fact 0 < ui � 1 we get kuikH2(M) � c. After
passing to a subsequence we can assume ui * u weakly in H2 (M). Then ui ! u
uniformly. It follows that maxM u = 1 and u � 0. We claim u can not touch 0.
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Indeed if u touches zero somewhere, then since u 2 H2 (M) we see
R
M
u�6d� =1.

It follows from Fatou�s lemma that

lim inf
i!1

Z
M

u�6i d� �
Z
M

u�6d� =1:

Hence
lim sup

i!1
E (ui) � 0:

It follows that E (u) � 0, this contradicts with condition P+. The fact u > 0
follows. To continue, we observe that ui ! u in W 1;p (M) for p < 6. Hence

�� (u) � lim inf
i!1

�� (ui) :

It follows that 

u�1

2
L6
�� (u) � lim inf

i!1



u�1i 

2
L6
�� (ui) = m:

u is a minimizer. Calculation shows for any ' 2 C1 (M),Z
M

uP'd�� 2�
Z
M

�
�u� 2u�1 jruj2 + J

2
u

�
�
�
�'� 4u�1 hru;r'i+ 2u�2 jruj2 '+ J

2
'

�
d�

= const

Z
M

u�7'd�:

Standard bootstrap method shows u 2 C1 (M). Proposition 4.1 follows. �

Corollary 4.2. Let (M; g) be a 3 dimensional smooth compact Riemannian man-
ifold satisfying condition P+, Y (g) > 0 andZ

M

Qd�� 1
6

Z
M

J2d� � 0; (4.41)

then the universal cover of M is di¤eomorphic to S3.

Remark 4.2. (4.41) is the same asZ
M

jEj2 d� � 1

48

Z
M

R2d�; (4.42)

here E = Rc� R
3 g is the traceless Ricci tensor.

Proof. It follows from Proposition 4.1 that

� = supeg2[g] e� (M) 13
�Z

M

eQde�� 1
6

Z
M

eJ2de�� (4.43)

is achieved. By (4.41) we know � � 0. Without losing of generality we can assume
the background metric g is a maximizer and it has volume 1. Then

Q� 1
3
�J � 1

6
J2 = const: (4.44)

Integrating both sides we get

Q� 1
3
�J � 1

6
J2 = � � 0: (4.45)
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In another way it is

�4
3
�J � 2

����A���2 + 2
3
J2 = �: (4.46)

Here �A = A � J
3 g is the traceless Schouten tensor. Since the conformal Laplacian

is given by L = �8� + 4J ,

LJ = 6�+ 12
����A���2 � 0: (4.47)

Since Y (g) > 0, we see the Green�s function of L must be positive, hence either
J > 0 or J � 0. The latter case contradicts with the fact Y (g) > 0. So the scalar
curvature must be strictly positive. FinallyZ

M

�2 (A) d� =
1

4

Z
M

�
Q+

1

2
J2
�
d� =

�

4
+
1

6

Z
M

J2d� > 0: (4.48)

It follows from a result in [CD, GLW] that the universal cover ofM is di¤eomorphic
to S3. �

The above example also shows the interest in the following question:

Problem 4.5. Let (M; g) be a 3 dimensional smooth compact Riemannian mani-
fold, can we �nd a conformal invariant condition which is equivalent to the existence
of a conformal metric with positive scalar and Q curvature?

We remark that by modifying the technique in [GuM], it is shown in [HY3] that
on 3 dimensional smooth compact Riemannian manifolds (M; g) with R > 0 and
Q > 0, if eg 2 [g] satis�es eQ > 0, then eR > 0 too.
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