
If you have not already done so, you are strongly encouraged to read the
companion file on the non-divergent barotropic vorticity equation, before pro-
ceeding to this shallow water case. We do not repeat the discussion that can
be found there concerning spherical coordinates and the spherical harmonic
spectral transform method.

The Shallow Water Equations

The shallow water equations describe the evolution of a hydrostatic homoge-
neous (constant density), incompressible flow on the surface of the sphere.

The hydrostatic equation is accurate when the aspect ratio of the flow,
the ratio of the vertical scale to the horizontal scale, is small. The shallow
water equations are only relevant when the horizontal scale of the flow is
much smaller than the depth of the fluid.

Hydrostatic balance is the statement that gravity balances the pressure
gradient in the vertical equation of motion, implying that vertical accelera-
tions are negligible:

∂p

∂z
= −ρg (1)

If the density ρ is constant, then this equation implies that the horizontal
pressure gradient is independent of z. One can therefore look for solutions in
which the horizontal flow itself is independent of height. This is the key sim-
plification that underlies the shallow water system. Since the horizontal flow
is independent of height, incompressibility implies that the vertical velocity
is linear in z.

The shallow water equations are utilized in different contexts in mete-
orology, with different upper and lower boundary conditions. In the most
familiar case of a free upper surface, with imposed constant pressure ps at
the upper surface, integrating the hydrostatic equation down from the top
we find that the pressure at height z within the fluid is ps + ρg(h− z), where
h is the height of the interface. Therefore,

∇p = ρ∇Φ (2)

where Φ ≡ gh. If the lower boundary is flat, then h = H, where H is the
thickness of the fluid layer. More generally, H = h − hM , where hM is the
height of the lower boundary. In the default version of the code hM ≡ 0.
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In the one and one-half layer configuration, one assumes that there are
two layers of fluid, with densities ρ1 and ρ2, with ρ2 > ρ1. The top of
the upper layer is assumed to be at a fixed height, zT . One assumes that
the horizontal pressure gradient in the lower, denser, layer vanishes (as a
shorthand, one sometimes just states that the lower layer is ”at rest” – it’s
geostrophic flow is zero at least). Integrating up from a pressure p2 at some
fixed height z2 in the lower layer, with the interface at z = η, then at some
height z1 in the upper layer, p(z1) = p2 − (η − z2)ρ2g − (z1 − η)ρ1g. The
horizontal pressure gradient in the upper layer is then

1

ρ1

∇p1 = −gρ2 − ρ1

ρ1

∇η ≡ −g∗∇η (3)

where g∗ is referred to as the reduced gravity. We use the notation Φ =
g∗(zT − η)g∗H where H is the thickness once again.

In a rotating frame on the sphere, the horizontal equations of motion are

∂u

∂t
= fv − u

a cos(θ)

∂u

∂λ
− v

a

∂u

∂θ
+
uv tan(θ)

a
− 1

a cos(θ)

∂Φ

∂λ
(4)

and
∂v

∂t
= −fu− u

a cos(θ)

∂v

∂λ
− v

a

∂v

∂θ
− u2 tan(θ)

a
− 1

a

∂Φ

∂θ
(5)

A constant radius a appears where the radial coordinate r would appear in
full generality, consistent with the assumption of a thin layer of fluid. Vertical
advection does not appear because u and v are assumed to be independent
of height. The Coriolis and metric terms involving vertical motion are not
included so as to maintain energy and angular momentum conservation laws.
In a more convenient form,

∂u

∂t
= (f + ζ)v − 1

a cos(θ)

∂(E + Φ)

∂λ
(6)

and
∂v

∂t
= −(f + ζ)u− 1

a

∂(E + Φ)

∂θ
(7)

where

ζ ≡ 1

a cos(θ)

∂v

∂λ
− 1

a cos(θ)

∂

∂θ

(

u cos(θ)
)

(8)
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and

E ≡ u2 + v2

2
(9)

The vorticity equation is then

∂ζ

∂t
= −∇ · (v(f + ζ)) (10)

while the divergence equation is

∂D
∂t

= −∇ ·A−∇2(E + Φ) (11)

where

D ≡ 1

a cos(θ)

∂u

∂λ
+

1

a cos(θ)

∂

∂θ

(

v cos(θ)
)

(12)

and
A ≡ (f + ζ)k× v = (f + ζ)(v,−u) (13)

Throughout these notes, boldface is used for the component of a vector along
the surface of the sphere – the radial component, if relevant, is always written
separately.

The vorticity equation can be rewritten as

∂(f + ζ)

∂t
= −v · ∇(f + ζ)− (f + ζ)∇ · v (14)

or
D(f + ζ)

Dt
= −(f + ζ)D (15)

where D/Dt is the material derivative.
On the sphere, the vorticity and divergence completely define the flow.

To obtain (u, v) from ζ and D, one can first solve the Poisson equations for
the streamfunction and velocity potential: ∇2ψ = ζ and ∇2φ = D. One then
has

u = −1

a

∂ψ

∂θ
+

1

a cos(θ)

∂φ

∂λ
(16)

v =
1

a cos(θ)

∂ψ

∂λ
+

1

a

∂φ

∂θ
(17)

3



To complete the set of shallow water equations the momentum (or vorticity-
divergence) equations must be supplemented with a statement of conserva-
tion of mass, or a thickness equation.

∂H

∂t
= −∇·(vH) (18)

or
DH

Dt
= −H∇ · v = −HD (19)

Combining this thickness equation with the vorticity equation, one obtains
the famous result that potential vorticity is conserved following the flow:

DQ

Dt
= 0 (20)

where

Q ≡ f + ζ

H
(21)

We have Φ ∝ H whether we are thinking of this shallow water model in
the conventional way, with a free surface at constant pressure and a rigid
lower boundary, or as the upper layer of a two-layer system in which there
is no pressure gradient in the lower layer and the top of the upper layer is
rigid. So we can also write

DΦ

Dt
= −Φ∇ · v = −ΦD (22)

and, if we like, we can redefine Q ≡ (f + ζ)/Φ. Working in terms of Φ,
the gravity or reduced gravity does not enter the (unforced) problem. In
the code, we use Φ as the prognostic variable, and the potential vorticity
is defined in the alternative way as well when it is output for diagnostic
purposes.

In summary, a complete set of equations for the unforced and inviscid
shallow water equations consists of the equation for u and v, or ζ and D, and
Φ.

1 Time differencing

The code uses a standard semi-implicit leapfrog scheme, followed by a Robert-
Asselin time filter.
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The semi-implicit aspect of the algorithm allows one to take time steps
that are determined by the strength of the advection, rather that the gravity
wave speed,

√
Φ. This technique is invariably employed in spectral models

and is, in fact, in large part responsible for the predominant use of the spectral
transform algorithm in global atmospheric modeling. Let T represent the
state of the system, and divide the operator N describing the evolution of
this system into two parts, N = NE +NI :

∂T

∂t
= NE(T ) +NI(T ) (23)

Use a centered leapfrog scheme for NE and an implicit scheme for NI :

T i+1 − T i−1

2∆t
= NE(T i) +NI(αT

i+1 + (1− α)T i−1) (24)

We assume that NI is a linear operator in T , otherwise an expensive iteration
would be required to solve this implicit system. The choice of α = 0.5,
centered implicit, is the one typically used, but one can also consider a fully
backward scheme (α = 1.0), for example, if one prefers to damp as well as
slow down the gravity waves.

Using the notation
ξ ≡ 2α∆t, (25)

and

δT ≡ T i+1 − T i−1

2∆t
(26)

we find
δT = NET

i +NI(T
i−1) + ξNI(δT ) (27)

or
δT = (1− ξNI)

−1G (28)

where
G = NET

i +NI(T
i−1) = N(T i) +NI(T

i−1 − T i) (29)

If we linearize the equations about a state of rest with uniform Φ = Φ0,
and ignore rotation (since we will be treating the Coriolis force explicitly),
then the only terms remaining are

∂D
∂t

= −∇2Φ (30)
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and
∂Φ

∂t
= −Φ0D (31)

These two equations can be combined into the standard wave equation for
the shallow water gravity wave. Treating only these terms implicitly, in the
full equations, we can write them in the form,

δD = GD − ξ∇2δΦ (32)

and
δΦ = GΦ − ξΦ0δD (33)

where
GD = ND − ξ∇2(Φi−1 − Φi) (34)

GΦ = NΦ − ξΦ0(Di−1 −Di) (35)

Here ND and NΦ refer to all of the terms of the right hand sides of these
equations evaluated at the centered time i. (See below for the algorithm
when other sources and sinks are present.)

In a spherical harmonic basis, the Laplacian can be replaced by the ap-
propriate eigenvalue −σ, (σ > 0), so that, for each harmonic we can solve
these two simultaneous equations for the divergence tendency and then eval-
uate the geopotential tendency. Suppressing the spherical modal indices, for
each harmonic of the divergence and geopotential tendency we have

δD =
GD + σξGΦ

1 + σξ2Φ0

(36)

followed by
δΦ = GΦ − ξΦ0δD (37)

2 Algorithm

Transforms mod provides several high-level routines for moving from vortic-
ity and divergence to (u, v) and back, as well as for computing the advection
operator −v · ∇ξ. subroutine uv grid from vor div takes as input vorticity
and divergence in the spectral domain and returns (u, v) on the grid. It first
computes (cos(θ)u, cos(θ)v in the spectral domain, then transforms these to
the grid and divides by cos(θ). subroutine vor div from uv grid reverses this
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procedure. subroutine horizontal advection computes −v ·∇ξ in the grid do-
main, given ξ in the spectral domain and (u, v) on the grid. It does this by
first computing cos(θ)∇ξ in the spectral domain, transforms the components
to grid space, and then divides by cos(θ) and multiplies by the components of
the velocity field in the grid domain. If one also has available the divergence,
D, on the grid, one can then compute −∇ · (vξ) = −v · ∇ξ− ξD. One could
also compute this quantity using vor div from uv grid. The answer would be
identical.

An outline of the steps involved in integrating the shallow water spectral
model is as follows:

Assume that we know the spectral and grid vorticity, divergence, and
geopotential, and the grid values of u and v, at t−∆t and t. Then

1: On the grid, compute tendencies of u, v, and Φ, (δu, δv, δΦ), due to
sources and sinks (computed in the module shallow physics mod).

2: Compute (f + ζ)v and −(f + ζ)u on the grid at time t, and add to δu
and δv respectively.

3: compute the divergence and curl of (δu, δv) to obtain δζ and δD in the
spectral domain, using subroutine vor div from uv grid.

4: add to the grid tendency δΦ the term −∇ · (vξ) as described above,
using subroutine horizontal advection, and then convert to spectral do-
main

5: compute the kinetic energy, E, and add to Φ at t on the grid, transform
to spectral domain, take the Laplacian, and add −∇2(E + Φ) to the
spectral divergence tendency δD;

6: correct the spectral divergence and geopotential tendencies to take into
account the semi-implicit algorithm, as described above

7: add the (nth-)harmonic damping to this advective tendency in the
spectral domain, treating the damping implicitly once again, as in the
barotropic model

δξ → δξ − ν(2∆t)σnζ̃

1 + ν(2∆t)σn
(38)

for ξ = ζ,D,Φ, where σ is once again the (absolute value of the)
eigenvalue of the Laplacian for each spherical harmonic.
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8: generate the new spectral vorticity, divergence, and geopotential ξ(t+
∆t) and apply the Robert filter to modify the spectral values at time
t.

9: compute grid relative vorticity, divergence, and geopotential – and grid
u and v at t + ∆t from the spectral vorticity and divergence using
subroutine uv grid from vor div

Note that we do not bother to compute the new grid u, v,Φ at time
t resulting from the Robert filter. The extra transforms do not seem to
be needed to maintain smooth temporal evolution in these shallow water
simulations, since the memory resides in the spectral domain.

There is an option of carrying a passive scalar tracer, using explicit spec-
tral advection and harmonic dissipation. For development purposes, there is
also an option of carrying along another passive tracer which is a grid-point
variable advected using a piecewise linear finite volume technique.

The finite volume advection scheme follows closely that described in

Lin, S.-J. and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian
transport schemes. Monthly Weather Review, 124, pp. 2046-2069.

and is discussed further in the documentation for the module fv advection mod.
This scheme is not particularly suited for use in a leapfrog context. The pro-
cedure used here carries two time levels of information for the tracer ξ, just
as for vorticity. Using the velocities at time t, we call the finite volume ad-
vection algorithm to advect the scalar ξ from t−∆t to t+∆t; then we Robert
filter ξ. There is no explicit diffusion in this scheme.

The integrations are started with a simple forward step of length ∆t.

3 Default example

By default the programs starts from a state of rest, in the rotating frame,
with uniform Φ, and a flow is generated by relaxing Φ to Φeq(λ, θ). The
velocities are also relaxed linearly to zero. We set

Φeq = Φ0 +QMonsoone
−(x2+y2) +QITCZe

−d2

(39)

where

x =
λ− λM
2WM

; y =
θ − θM
WM

; d =
θ

WI

(40)
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Isolating the ITCZ mass source results in a zonally symmetric Hadley cell
response. Isolating the monsoonal source results in a subtropical anticyclone
that can be unstable if forced strongly enough. If both the ITCZ and mon-
soonal sources are present, as in the default settings, one also generates a
quasi-stationary Rossby wave emanating from the monsoonal source.

See the barotropic model description for a discussion of appropriate choices
for spectral and grid resolution. The default is a standard T85 model.

4 Structure of the code

There is a generic main program, in main.f90, that is used in a number of
idealized atmospheric models. Besides doing some bookkeeping, it includes
the main time loop and has a namelist in which the time step ∆t and the
length of the integration are provided.

The main program runs the model by calling the routines in atmosphere mod,
which, in turn, use routines in shallow dynamics mod, shallow physics mod,
shallows diagnostics mod, and fv advection mod. shallow physics contains a
namelist with which one controls the forcing in the default example. Model
resolution, the spectral damping, and the strength of the time filter are con-
trolled by a namelist read by shallow dynamics mod.

The dynamics module uses transforms mod, which contains a variety of
routines for transforming data from spherical harmonics to a grid and back,
computing derivatives in the spectral domain, etc.

Diagnostics are controlled by the diagnostics manager. Those immedi-
ately available are u, v,Φ, ζ,D, f + ζ, ψ,Q, ξs, ξg where the latter two are the
gridded tracer fields generated, respectively, using spectral advection and
finite-volume advection. All fields are output into netcdf files, one per pro-
cessor, that can automatically be combined into full spatial fields using FMS’s
mppnccombine utility. The time interval at which output is generated, file
names, etc are controlled from the diag table file read by the diagnostics
manager. To add additional diagnostic fields, follow the template in shal-
low diagnostics mod.
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