Fall 2004 Calculus I, sections 4, 5, 6, Courant Institute of Mathematical Sciences, NYU.

Homework 2, due September 20

Self check (not to hand in, answers are in the back of the book):

Section 3.1: 1, 9, 17, 23.

Section 3.2: 3, 9, 13, 25, 29, 31, 37, 39, 43, 65, 67.

Section 3.3: 3, 7, 11, 19, 27, 39.

To hand in:

Section 3.1: 2, 6, 14, 18, 26, 32, 60.

Section 3.2: 4, 8, 14, 20, 28, 34, 36, 42, 44, 66.

Section 3.3: 4, 8, 16, 28, 40.

More problems (to hand in)

- **1.** Make a careful graph¹ of the function $f(x) = -x^2 + 4x 1$. Call this parabola Q (for "quadratic").
 - a. Use a ruler to draw the line, L through the origin tangent to Q at some positive x. You can see from that graph that there is only one such line. Let P be the point where L touches Q.
 - **b.** Use algebra and calculus to the coordinates of P = (x, y). The slope of the line is y/x, which is supposed to equal f'(x).
 - **c.** How well did you draw the graph? How close is the calculated *P* from part b. to the point you drew on part a?
- 2. Find the formula $q(x) = ax^2 + bx + c$ for the quadratic that has q(1) = f(1), q'(1) = f'(1), and q''(1) = f''(1), for f(x) = 1/x. This means that you should find appropriate values for a, b, and c. Also find values for d and e so that l(x) = dx + e has the same value and derivative as f(x) when x = 1. Use a calculator to make a table of f(x) l(x) and f(x) q(x) for several x values getting closer to x = 1. Which of x = 1 when x = 1 is near one?

 $^{^{1}}$ Use x values separated by no more than 1/2. Use at least half a page. Choose the x and y axis scales so that the curve fills the space allowed. Carefully draw a smooth curve through the points respecting the symmetry of the curve – or have your roommate in Tisch draw it.