Derivative Securities

Class 1 September 9, 2009 Lecture outline

latest correction: Sept 14

Jonathan Goodman

http://www.math.nyu.edu/faculty/goodman/teaching/DerivSec09/index.html

- Material:
 - Lecture: some material in lecture only
 - Text: Hull
 - Lecture notes: Bob Kohn and Steve Allen
 - Occasional supplementary notes
 - Suggested outside readings, check class web site

- Prerequisites:
 - Multivariate calculus
 - Partial derivatives
 - Multiple integrals
 - Lagrange multipliers
 - Calculus based probability
 - Multivariate normal, central limit theorem
 - Conditional and marginals for multivariate random variables
 - Linear algebra
 - Linear systems, solvability
 - Eigenvalues and eigenvectors for symmetric matrices
 - C++ beginner status
 - Excel sub-beginner status

- Assignments:
 - Weekly (approximately)
 - Due the following week
 - Deduct 5%/week for late homework
 - Mathematical/financial exercises
 - Computing in Excel and C++
 - Writing: coherent paragraphs

- Assessments:
 - Assignments, separate grades for
 - Technical (traditional) work
 - Computing -- correctness, code quality, output clarity, etc.
 - Writing -- correctness (grammar, neatness, spelling, paragraph structure), effectiveness.
 - Final exam, December 23, 7 9 pm!
 - Adaptive weighting, starting with 50% 50%

- Collaboration:
 - May consult other students and sources
 - Please post to and read from class message board
 - No text sharing. Every word or formula you hand in must be typed or written by you.
 - No code sharing. Every byte of code and piece of spreadsheet must be done by you.
 - Violating these policies will not benefit you in the long run.
 - Penalties for cheating begin with grade reduction and end with expulsion.
 - Protect your work and report violations

- Communication:
 - Open web site for assignments and most materials
 - Blackboard site for message board, grades, some materials, register or see me.
 - Office hours, Mondays 4-6.
 - Email for non-technical issues: goodman@cims.nyu.edu.
 - Technical questions, comments, etc. on the message board. I check it daily.

Financial markets / asset classes

Underliers

- Equities -- stocks
 - Dividends / dividend uncertainty
 - Asset price uncertainty
- Corporate bonds -- defaultable
- Treasury bonds -- pure interest rate
- Commodities -- energy (oil), metals, foods, real estate
- Currencies
- Bundles and tranches, securitization -- CMO, CDO

Derivatives

- Forward contracts -- over the counter (OTC)
- Futures contracts -- exchange traded, daily settlement
- Exchange traded options -- "plain vanilla", nonlinear payout
- OTC options -- exotics
- Swaps

Financial markets / participants / goals

- Companies and individuals seeking financial services
 - Loans, commodities (buy, sell)
- Companies and individuals with capital to invest
- Companies and individuals seeking to reduce risk
 - Forward and futures contracts
 - Options
 - Insurance
 - Bundling
 - Tranching and "financial engineering"
 - *Hedging*: buying anti-correlated assets to reduce risk
- Speculators & arbitrageurs -- hedge funds, etc.
- Agents for the above -- the financial services industry

Forward contract

- The holder agrees to pay K for a specified asset at time T
 - K = strike price
 - T = delivery date, expiration date, settlement date, expiry, ...
 - The holder is *long* the contract
 - The *counterparty* is *short* the contract
 - If you have N contracts, N > 0 is long, N < 0 is short
 - Contracts may be *settled* in cash or by actual *delivery*
 - Cash settlement: holder pays the counterparty K S_T at time T
 - $-S_T = spot price$
- Over the counter, not in exchanges

Futures contract

- Exchange traded
 - Standardized terms
 - Exchange assumes counterparty risk
 - Exchange mandated margin requirements
 - Published prices
 - Liquidity: ability to buy and sell at or near published prices
 - Daily settlement
- A mechanism for speculating on assets that are hard to buy directly
 - Commodities: oil, wheat, electricity, etc.
 - Market indices
- The *futures price* is
 - Quoted
 - Drives daily settlement
 - Becomes the settlement price on expiration

Forward price, Arbitrage argument

- $F_0 =$ forward price = K that gives the contract zero value at time t = 0
- $S_0 = spot price$ today of the underlier
- r = *risk free rate*, continuously compounded, LIBOR, Treasury, ...
- Idealizing assumptions:
 - No transaction costs
 - May transact in either direction at the same price: cash, underlier, contract
 - Interest rate known, constant
 - Interest rate for borrowing = interest rate for lending
 - No taxes
 - Possible to hold the asset without carrying costs (storage, dividends, ...)
- Arbitrage: way to make money with zero risk -- assumed not to exist.
- Arbitrage argument: if $K = F_0$, there is an arbitrage.

$$F_0 = S_0 e^{rT}$$

• Forward price = futures price (in the simple model)

Interest rates

- Bond:
 - Pay X at time 0,
 - Receive coupon payments up to time T
 - Receive *face value* (*principal, par* value) = 1 (convention) at time T.
 - X < 1 is a *discount* bond
 - No coupon payments is a zero coupon bond
 - B(0,T) = X for a (default) risk free zero coupon discount bond
 - Risks:
 - Interest rate risk -- interest rates may change, reducing the value of the bond
 - Default risk -- the counterparty may default -- not pay. Ignore for now.
- B(t,T) = amount you pay at time t to get one unit (\$1) at time T, t<T.
- B(t,T) known at time t, not before
- If $t_1 < t_2 < T$, and you re-borrow at time t_2 , then you pay $B(t_1,t_2)B(t_2,T)$
- If $B(t_2,T)$ unknown at time t, then $B(t_1,t_2)B(t_2,T) = B(t_1,T)$
- Constant known interest rate: $B(t,T) = e^{-r(T-t)}$,
- r = risk free rate. Has units %/unit time (e.g. 3%/year).
- *Yield curve*: r not constant, B(t,T) not known at time 0.

Vanilla Put and Call Options

- The holder has the right to sell (put) or buy (call) at price K.
- Asset (spot) price at time t is S_t.
- European style:
 - Exercise only at time T, the expiration time.
 - Cash flow = payout = $V(S_T)$ at time T
 - $V(S_T) = (K S_T)_+ (put)$
 - $V(S_T) = (S_T K)_+ (call)$
- American style:
 - Exercise any time up to time T, the expiration time.
 - $-\tau$ = exercise time
 - Cash flow = payout = $V(S_{\tau})$ at time τ
 - $V(S_{\tau}) = (K S_{\tau})_{+}$ (put)
 - $V(S_{\tau}) = (S_{\tau} K)_{+}$ (call)
 - Early exercise strategy: choose τ
- Exchange traded:
 - The exchange assumes counterparty risk
 - Public published prices and market making
- Over the counter, OTC: private agreements.

Exotic Options

- Not exchange traded
- Lookback: trade at the best price in a given period
- Asian: trade at the average price in a given period
- Knockout (barrier): become worthless if the price leaves a given range
- Digital: V(S) = 1 or 0, depending on S
- Log contract: V(S) = log(S)
- Basket: trade a specified portfolio at a specified price

Payout diagram

- For the total payout of a portfolio of one or more European option
- All options have the same payout
- May include puts and calls with different strikes
- May or may not include the cost of buying the options

Lognormal model of future prices

- Normal (Gaussian): X ~ N(m,v)
- Z = *standard normal*: m = 0, v = 1.
- $X = m + v^{1/2} Z$
- *Lognormal* distribution: Y = Ce^X
- E[Y] = Ce^(m+v/2)
- Lognormal stock model: $S_T \sim lognormal$
 - μ = growth rate in %/unit time (e.g. 15%/year)
 - σ = volatility in %/unit time (e.g. 20%/year)

$$-$$
 m = ($\mu - \sigma^2/2$)T

$$- v = \sigma^2 T$$

-
$$S_T = S_0 \exp[(\mu - \sigma^2/2)T + \sigma Z T^{1/2}]$$

$$- E[S_T] = S_0 e^{\mu T}$$

- Small T, lognormal is approximately N(μ T, σ^2 T)
- Large T, lognormal is highly skewed toward the downside

 $Pr(S_T > E[S_T]) \sim C exp(-\sigma^4T/4) \longrightarrow 0 as T \longrightarrow infinity$

Lognormal model, good and bad

- *"All models are wrong, some models are useful."* (George Box)
 - A simple model depending on a small number of parameters
 - Many explicit or semi-explicit solution formulas available
 - Derived from a simple dynamic model, geometric Brownian motion
 - Geometric Brownian motion is the limit of the binomial tree model
 - The lognormal model is motivated by the central limit theorem for the binomial tree model
- *"All models are wrong, some models are dangerous."* (me)
 - The tail probabilities for stock prices and other assets are far larger than the lognormal predicts
 - Real asset price trajectories do not have constant volatility
 - Option pricing using the lognormal model fails to match actual market prices: volatility *skew* and *smile*.

Black Scholes European option pricing

- The Black Scholes theory is discussed in classes 3, 4, and 5
- It is an arbitrage argument like the forward price argument earlier, but requires a more complicated *dynamic hedging* strategy.
- The conclusion is that the market price of a European option should be its *discounted expected value* in the *risk neutral measure*.

Price =
$$e^{-rT} E_{RN}[V(S_T)]$$

- Risk neutral measure: replace the expected return rate, $\mu,$ with the risk free rate, r.
- We will calculate the integral explicitly in class 4 or 5
- Until then, we can estimate the integral by Monte Carlo
- The result is the *Black Scholes formula* for an option price
 - Put price = $P(S_0, K, T, r, \sigma)$
 - Call price = $C(S_0, K, T, r, \sigma)$
- All parameters known at time 0 except σ .
- Implied vol is the σ value that produces the market option price.