Derivative Securities

Class 2
 September 16, 2009 Lecture outline

latest correction: none yet

Jonathan Goodman
http://www.math.nyu.edu/faculty/goodman/teaching/DerivSec09/index.html

Outline

Arbitrage, pricing, risk neutral probabilities

- General abstract discrete model
- Definition of arbitrage
- The geometry
- "No arbitrage" is equivalent to "there exist risk neutral probabilities"
- Complete market -- a new instrument can be replicated
- The one period binomial model, the Δ hedge
- The multi-period binomial model, the binomial tree
- Rebalancing and dynamic replication

General abstract discrete model

- N instruments, $\mathrm{i}=1, \ldots, \mathrm{~N}$
- $\mathrm{C}_{\mathrm{i}}=$ price today of instrument i
- Prices may be positive or negative
- M possible states of the world "tomorrow", $j=1, \ldots, M$
- $\mathrm{V}_{\mathrm{ij}}=$ price tomorrow of instrument i in state j
- Π = portfolio purchased today
- $\mathrm{W}_{\mathrm{i}}=$ weight of instrument i in Π
- Weights may be positive or negative
- Cost/value of Π today is

$$
\Pi_{0}=\Sigma_{i=1}{ }^{N} W_{i} C_{i}
$$

- Cost/value of Π in state j tomorrow is $\Pi_{\mathrm{T}, \mathrm{j}}=\Sigma_{\mathrm{i}=1}{ }^{N} \mathrm{~W}_{\mathrm{i}} \mathrm{V}_{\mathrm{ij}}$
Π is an abstract arbitrage if:
- $\Pi_{0}=0$
- $\Pi_{T, j} \geq 0$ for all j
- $\Pi_{\mathrm{T}, \mathrm{j}}>0$ for some j

Axiom: the model is arbitrage free -no such Π exists

Geometry and linear algebra

- Cash flow vector: $\Pi_{\mathrm{T}}=\left(\Pi_{\mathrm{T}, 1}, \Pi_{\mathrm{T}, 2}, \ldots \Pi_{\mathrm{T}, \mathrm{M}}\right) \in \boldsymbol{R}^{\mathrm{M}}$
- $\boldsymbol{P} \subseteq \boldsymbol{R}^{\mathrm{M}}=$ the set of all cash flow vectors achievable by portfolios
- A linear subspace -- may add portfolios, and scalar multiply
- $\boldsymbol{L} \subseteq \boldsymbol{P}=$ the set of all portfolios with cost $=\Pi_{0}=0$
- A linear subspace of \boldsymbol{P}-- may add zero cost portfolios, and scalar multiply
- There may be more than one set of weights that gives the same Π_{T}
- Lemma: If there is no arbitrage, then the cost, Π_{0}, is the same for any portfolio with the same output vector, Π_{T}.
- Proof: otherwise, buy the cheap way (the cheaper set of weights) and sell the more expensive version (the other set of weights). That is an arbitrage.
- Thus, the cost is a linear function of Π_{T}
- Let n be a vector normal to \boldsymbol{L} inside \boldsymbol{P}
- $\Pi_{0}=C\left(n \cdot \Pi_{\mathrm{T}}\right)$
- Two linear functions that vanish together

"No Arbitrage" and "Risk Neutral Pricing"

- $\boldsymbol{A}=$ the set of portfolios with $\Pi_{\mathrm{T}, \mathrm{j}} \geq 0$ for all outcomes $\mathrm{j}=1, \ldots, \mathrm{M}$
- "No Arbitrage" means that \boldsymbol{L} does not intersect \boldsymbol{A}, except at 0 .
- In that case -- see figure -- n is inside \boldsymbol{A}.
- This means that the $n_{j} \geq 0$ for all outcomes $j=1, \ldots, M$.
- Define risk neutral probabilities $\mathrm{P}_{\mathrm{j}}=\mathrm{Cn}_{\mathrm{j}}$
- $P_{j} \geq 0$ for all $\mathrm{j}, \mathrm{P}_{1}+\mathrm{P}_{2}+\cdots+\mathrm{P}_{\mathrm{M}}=1$ (through choice of C)

$$
\Pi_{0}=\text { Portfolio cost }
$$

$=C\left(n \cdot \Pi_{T}\right)$
$=\mathrm{C}_{1}\left(\mathrm{P}_{1} \Pi_{\mathrm{T}, 1}+\mathrm{P}_{2} \Pi_{\mathrm{T}, 2}+\cdots+\mathrm{P}_{\mathrm{M}} \Pi_{\mathrm{T}, \mathrm{m}}\right)$
$=C_{2} E_{P}\left[\Pi_{T}\right]$

$$
\Pi_{0}=\mathrm{C}_{2} \mathrm{E}_{\mathrm{RN}}\left[\Pi_{\mathrm{T}}\right]
$$

Price $=$ discounted $(C 2<1)$ expected value

Complete market and replication

- A market is complete if $\boldsymbol{P}=\boldsymbol{R}^{\mathrm{M}}$
- An option is a contract that pays U_{j} in state j at time T
- In a complete market, there is a portfolio, Π, with $\Pi_{\mathrm{T}}=U$
- Replication: $\Pi_{\mathrm{T}, \mathrm{j}}=\mathrm{U}_{\mathrm{j}}$ for all states of the world, $\mathrm{j}=1, \ldots, \mathrm{M}$
- In a complete market, any option can be replicated.
- In a complete market without arbitrage, the price of the replicating portfolio is uniquely determined by its payout structure, U
- If the option is traded at time 0 , it is part of the market
- Theorem: assume that
- The market with the option is arbitrage free
- The market without the option is complete
- Then:
- The option may be replicated
- All replicating portfolios have the same price
- That price must be the market price of the option
- That price is the discounted expected payout in the risk neutral measure

Price(option) = C E_{P} [option payout]

Complete market and replication, comments

- The risk neutral probabilities are determined by the complete market without the option -- they are the same for every extra option.
- If the market is complete, the risk neutral probabilities are uniquely determined by the market -- the direction of a normal to a hyperplane of dimension $\mathrm{M}-1$ is unique.
- If the market is not complete, the normal direction within P is unique -there are unique risk neutral probabilities for any option that can be replicated.
- If the option cannot be replicated, then there is a range of prices that do not lead to arbitrage.
- Real markets have market frictions that prevent arbitrarily small arbitrage transactions.
- Transaction costs: portfolios with equivalent values at time T may have different costs at time 0 .
- Limited liquidity: the cost to buy n "shares" of asset i may not be proportional to n -- move the market.
- This material often is described differently, using linear programming.
- Keith Lewis told me it was easier to do it geometrically, as it is here.

Utility, risk neutral pricing

- Let X be an investment whose value in state j is X_{j}.
- Let Q_{j} be the real world probability of state j , possibly subjective.
- The real world expected value is

$$
M=E_{Q}[X]=X_{1} Q_{1}+X_{2} Q_{2}+\cdots+X_{M} Q_{M}
$$

- Fundamental axiom of finance: Price $(X) \leq M$
- If variance $(X)>0$, a risk averse investor has value $(X)<M$
- A risk neutral investor has value $(X)=M$
- The difference M - value (X) is the risk premium of X for that investor
- The difference M - price (X) is the risk premium of the market
- Risk premia depend on personal psychology and needs
- The market risk premium is determined by interactions between investors. It should be positive but is hard to predict quantitatively
- In this setup, it is hard to predict price (X) from first principles
- Risk neutral pricing says that there are risk neutral probabilities $P \neq Q$ so that price $(X)=C E_{p}[X]$, if X is an option payout in a complete market
- Since X can be replicated, value (X) is the same for every investor, and is equal to $C E_{p}[X]$.
- Can find prices of options without psychology.

Binary "one period" model

- The market has two instruments, stock and cash (also called bond)
- There are $\mathrm{M}=2$ states of the world "tomorrow", called "up" and "down"
- The value of "cash" today is 1
- The value of "cash" tomorrow is $\mathrm{e}^{r \mathrm{r}}$, r being the risk free rate
- The value of "stock" today is S_{0}
- The value of stock tomorrow is
- $u \mathrm{~S}_{0}$ in state "up"
- $d S_{0}$ in state "down"
- Assume $u>d$
- This market is complete (check)

Risk neutral probabilities for the binary model

- With $\mathrm{M}=2$, the cost free portfolios form a one line
- $\mathrm{W}_{\mathrm{s}}=$ weight of stock $=\mathrm{a}$
- $\mathrm{W}_{\mathrm{c}}=$ weight of cash $=-\mathrm{aS}_{0}$ (to be cost free)
- Portfolio values at time T
$-\Pi_{T, u}=a S_{0}\left(u-e^{r T}\right)$
$-\Pi_{T, d}=a S_{0}\left(d-e^{r T}\right)$
- Opposite sign (no arbitrage) if $d<e^{r T}<u$
- Normal: $(x, y) \Rightarrow(-y, x)$
- Normal to L: $\left(u-e^{r T}, d-e^{r T}\right) \Rightarrow\left(e^{r T}-d, u-e^{r T}\right)$, both positive
- Normalize to get probabilities:
$-n_{u}+n_{d}=u-d$
$-n_{u} /(u-d)=p_{u}=\left(e^{r T}-d\right) /(u-d)$
$-n_{d} /(u-d)=p_{d}=\left(u-e^{r T}\right) /(u-d)$
- Discount factor $=\mathrm{e}^{-\mathrm{rT}}$, otherwise risk free cash is an arbitrage
- If V is an option that pays $\left(\mathrm{V}_{\mathrm{u}}, \mathrm{V}_{\mathrm{d}}\right)$, then the price of V today is

$$
\operatorname{price}(V)=e^{-r T} E_{P}\left[V_{T}\right]=e^{-r T}\left(V_{u}\left(e^{r T}-d\right)+V_{d}\left(u-e^{r T}\right)\right) /(u-d)
$$

Binary model, Delta hedging

-A derivatives desk is asked to hold an option but does not want risk
-Short a replicating portfolio, Π, of stock and cash
-The total portfolio has zero value and zero risk.
-Make a profit from commissions.
-Replicating portfolio $=\Pi=\Delta$ Stock $+C$ Cash,

- $\Pi_{\mathrm{T}}=V_{\mathrm{T}}$, both up and down
- $\Pi_{0}=\Delta \mathrm{S}_{0}+\mathrm{C}$
- $\Pi_{\mathrm{T}, \mathrm{u}}=\Delta \mathrm{u} \mathrm{S}_{0}+\mathrm{e}^{\mathrm{rT}} \mathrm{C}=\mathrm{V}_{\mathrm{u}}$
- $\Pi_{T, d}=\Delta d S_{0}+e^{r T} C=V_{d}$
-Solve: $\Delta=\left(\mathrm{V}_{\mathrm{u}}-\mathrm{V}_{\mathrm{d}}\right) /\left(\mathrm{u} \mathrm{S}_{0}-\mathrm{d} \mathrm{S}_{0}\right)=($ change in V$) /($ change in S$)$
-(V- $\Delta \mathrm{S})_{u}=(\mathrm{V}-\Delta \mathrm{S})_{\mathrm{d}}$
- Δ hedged portfolio value at time T is not random, risk free
-Equivalent to cash, value known at time 0

Binomial multi-period model

-Times $0=t_{0}, t_{1}, \ldots, t_{N}=T, t_{k}=k \delta t$
-Cash increases by $e^{r d t}$ between t_{k} and t_{k+1}

- $\mathrm{S}_{0}=$ present spot price $=$ known
- $S_{k+1}=u S_{k}$ or $S_{k+1}=d S_{k}$
$\cdot \mathrm{S}_{1}=u \mathrm{~S}_{0}$, or $\mathrm{S}_{1}=\mathrm{dS} \mathrm{S}_{0}$, as before
- $S_{2}=u^{2} S_{0}$, or $S_{2}=u d S_{0}$, or $S_{2}=d^{2} S_{0}$
-ud = du -- the binomial tree is recombining (diagram)
$\cdot N+1$ possible values of $S_{N}=S_{T}, 2^{N}$ if not recombining
- State j has jup steps and k-j down steps: $S_{k j}=u^{j} d^{k-j} S_{0}$
-European style option pays V_{Nj} at time $\mathrm{t}_{\mathrm{N}}=\mathrm{T}$ in state j
- $\mathrm{V}_{\mathrm{kj}}=$ price/value of option at state j at time k
- V_{kj} is determined by $\mathrm{V}_{\mathrm{k}+1, \mathrm{j}}$ and $\mathrm{V}_{\mathrm{k}+1, \mathrm{j}+1}$ as before
-Work backwards:
-Given all V_{Nj} values, calculate all $\mathrm{V}_{\mathrm{N}-1, \mathrm{j}}$ values
-Given all $\mathrm{V}_{\mathrm{N}-1, \mathrm{j}}$ values, calculate all $\mathrm{V}_{\mathrm{N}-2, \mathrm{j}}$ values
-Eventually, reach V_{0}

Dynamic hedging, rebalancing in the binomial tree model

-At time t_{k} in state j , there is a hedge ratio $\Delta_{\mathrm{kj}}=\left(\mathrm{V}_{\mathrm{k}+1, \mathrm{j}+1}-\mathrm{V}_{\mathrm{k}+1, \mathrm{j}}\right) / \mathrm{S}_{\mathrm{kj}}(\mathrm{u}-\mathrm{d})$
-This is how many shares of stock you own before you leave time t_{k}
-At time t_{k-1}, you probably had a different number of shares:

- $\Delta_{\mathrm{k}-1, \mathrm{j}-1 \mathrm{j}}$ or $\Delta_{\mathrm{k}-1, \mathrm{j},}$ neither one equal to Δ_{kj}
-When you arrive at time t_{k}, you have to replace the old number of shares with the correct number, Δ_{kj}. This is rebalancing.
- You pay for the new shares by spending your cash, this requires more borrowing if the cash position is negative.
-This is dynamic hedging, or
-Dynamic replication: $\Pi_{T}=V_{T}$ for any state at time T
-The dynamic hedging strategy produces a portfolio of stock and cash worth exactly V_{Tj}, if S_{Tj} is the state at time T .
-It is self financing. You generate the cash you need to buy stock. You keep the proceeds from selling stock.

