Derivative Securities

Class 2 September 16, 2009 Lecture outline

latest correction: none yet

Jonathan Goodman

http://www.math.nyu.edu/faculty/goodman/teaching/DerivSec09/index.html

Outline

Arbitrage, pricing, risk neutral probabilities

- General abstract discrete model
- Definition of arbitrage
- The geometry
- *"No arbitrage"* is equivalent to *"there exist risk neutral probabilities"*
- Complete market -- a new instrument can be replicated
- The one period binomial model, the Δ hedge
- The multi-period binomial model, the binomial tree
- Rebalancing and dynamic replication

General abstract discrete model

- N instruments, i = 1,...,N
- C_i = price today of instrument i
- Prices may be positive or negative
- M possible states of the world "tomorrow", j = 1,...,M
- V_{ij} = price tomorrow of instrument i in state j
- Π = portfolio purchased today
- W_i = weight of instrument i in Π
- Weights may be positive or negative

Cost/value of Π in state j tomorrow is

Cost/value of Π today is

$$\Pi_0 = \sum_{i=1}^{N} W_i C_i$$
$$\Pi_{T,j} = \sum_{i=1}^{N} W_i V_{ij}$$

 Π is an abstract arbitrage if:

• $\Pi_0 = 0$

•

- $\Pi_{T,j} \ge 0$ for all j
- $\Pi_{T,j} > 0$ for some j

Axiom: the model is *arbitrage free* -- no such Π exists

Geometry and linear algebra

- Cash flow vector: $\Pi_{T} = (\Pi_{T,1}, \Pi_{T,2}, \dots, \Pi_{T,M}) \in \mathbb{R}^{M}$
- $P \subseteq R^{M}$ = the set of all cash flow vectors achievable by portfolios
 - A linear subspace -- may add portfolios, and scalar multiply
- $L \subseteq P$ = the set of all portfolios with cost = Π_0 = 0
 - A linear subspace of *P* -- may add zero cost portfolios, and scalar multiply
- There may be more than one set of weights that gives the same Π_{T}
- Lemma: If there is no arbitrage, then the cost, Π_0 , is the same for any portfolio with the same output vector, Π_T .
 - Proof: otherwise, buy the cheap way (the cheaper set of weights) and sell the more expensive version (the other set of weights). That is an arbitrage.
- Thus, the cost is a linear function of Π_{T}
- Let n be a vector normal to L inside P
- $\Pi_0 = C (n \cdot \Pi_T)$
 - Two linear functions that vanish together

"No Arbitrage" and "Risk Neutral Pricing"

- **A** = the set of portfolios with $\Pi_{T,j} \ge 0$ for all outcomes j = 1, ..., M
- "No Arbitrage" means that **L** does not intersect **A**, except at 0.
- In that case -- see figure -- n is inside **A**.
- This means that the $n_i \ge 0$ for all outcomes j = 1, ..., M.
- Define risk neutral probabilities $P_i = Cn_i$
 - $P_i \ge 0$ for all j, $P_1 + P_2 + \dots + P_M = 1$ (through choice of C)

 Π_0 = Portfolio cost

$$= C (n \cdot \Pi_T)$$

= $C_1 (P_1 \Pi_{T,1} + P_2 \Pi_{T,2} + \dots + P_M \Pi_{T,m})$ = $C_2 E_P [\Pi_T]$

$$\Pi_0 = \mathsf{C}_2 \mathsf{E}_{\mathsf{RN}}[\Pi_{\mathsf{T}}]$$

Price = discounted (C2<1) expected value

Complete market and replication

- A market is *complete* if **P** = **R**^M
- An option is a contract that pays U_i in state j at time T
- In a complete market, there is a portfolio, Π , with $\Pi_T = U$
- *Replication*: $\Pi_{T,j} = U_j$ for all states of the world, j = 1,...,M
- In a complete market, any option can be replicated.
- In a complete market without arbitrage, the price of the replicating portfolio is uniquely determined by its payout structure, *U*
- If the option is traded at time 0, it is part of the market
- Theorem: assume that
 - The market with the option is arbitrage free
 - The market without the option is complete
- Then:
 - The option may be replicated
 - All replicating portfolios have the same price
 - That price must be the market price of the option
 - That price is the discounted expected payout in the risk neutral measure

Price(option) = $C E_P$ [option payout]

Complete market and replication, comments

- The risk neutral probabilities are determined by the complete market without the option -- they are the same for every extra option.
- If the market is complete, the risk neutral probabilities are uniquely determined by the market -- the direction of a normal to a hyperplane of dimension M-1 is unique.
- If the market is not complete, the normal direction within P is unique -there are unique risk neutral probabilities for any option that can be replicated.
- If the option cannot be replicated, then there is a range of prices that do not lead to arbitrage.
- Real markets have *market frictions* that prevent arbitrarily small arbitrage transactions.
 - Transaction costs: portfolios with equivalent values at time T may have different costs at time 0.
 - Limited liquidity: the cost to buy n "shares" of asset i may not be proportional to n -- move the market.
- This material often is described differently, using linear programming.
- *Keith Lewis* told me it was easier to do it geometrically, as it is here.

Utility, risk neutral pricing

- Let X be an investment whose value in state j is X_i.
- Let Q_i be the *real world* probability of state j, possibly subjective.
- The real world expected value is

 $M = E_{Q}[X] = X_{1}Q_{1} + X_{2}Q_{2} + \cdots + X_{M}Q_{M}$

- Fundamental axiom of finance: Price(X) \leq M
- If variance(X) > 0, a *risk averse* investor has value(X) < M
- A risk neutral investor has value(X) = M
- The difference M value(X) is the *risk premium* of X for that investor
- The difference M price(X) is the *risk premium* of the market
- Risk premia depend on personal psychology and needs
- The market risk premium is determined by interactions between investors. It should be positive but is hard to predict quantitatively
- In this setup, it is hard to predict price(X) from first principles
- Risk neutral pricing says that there are risk neutral probabilities P ≠ Q so that price(X) = C E_P[X], if X is an option payout in a complete market
- Since X can be replicated, value(X) is the same for every investor, and is equal to C E_P[X].
- Can find prices of options without psychology.

Binary "one period" model

- The market has two instruments, *stock* and *cash* (also called *bond*)
- There are M = 2 states of the world "tomorrow", called "up" and "down"
- The value of "cash" today is 1
- The value of "cash" tomorrow is e^{rT}, r being the risk free rate
- The value of "stock" today is S₀
- The value of stock tomorrow is
 - u S₀ in state "up"
 - d S₀ in state "down"
 - Assume u > d
- This market is complete (check)

Risk neutral probabilities for the binary model

- With M = 2, the cost free portfolios form a one line
- W_s = weight of stock = a
- W_c = weight of cash = $-aS_0$ (to be cost free)
- Portfolio values at time T

$$- \Pi_{T,u} = aS_0(u - e^{rT})$$

- $\Pi_{T,d} = aS_0(d e^{rT})$
- Opposite sign (no arbitrage) if $d < e^{rT} < u$
- Normal: $(x,y) \Rightarrow (-y,x)$
- Normal to L: $(u e^{rT}, d e^{rT}) \Rightarrow (e^{rT} d, u e^{rT})$, both positive
- Normalize to get probabilities:

$$- n_u + n_d = u - d$$

- $n_u/(u d) = p_u = (e^{rT} d)/(u d)$
- $n_d/(u d) = p_d = (u e^{rT})/(u d)$
- Discount factor = e^{-rT} , otherwise risk free cash is an arbitrage
- If V is an option that pays (V_u , V_d), then the price of V today is

price(V) =
$$e^{-rT}E_{P}[V_{T}] = e^{-rT}(V_{u}(e^{rT} - d) + V_{d}(u - e^{rT}))/(u - d)$$

Binary model, Delta hedging

•A derivatives desk is asked to hold an option but does not want risk

- •Short a *replicating portfolio*, Π , of stock and cash
- •The total portfolio has zero value and zero risk.
- •Make a profit from commissions.
- •Replicating portfolio = $\Pi = \Delta$ Stock + C Cash,
- $\Pi_{\rm T}$ = $V_{\rm T}$, both up and down
- $\Pi_0 = \Delta S_0 + C$
- $\Pi_{T,u} = \Delta u S_0 + e^{rT}C = V_u$
- $\Pi_{T,d} = \Delta d S_0 + e^{rT}C = V_d$
- •Solve: Δ = (V_u V_d) / (u S₀ d S₀) = (change in V) / (change in S)
- •(V Δ S)_u = (V Δ S)_d

- Δ hedged portfolio value at time T is not random, risk free

•Equivalent to cash, value known at time 0

Binomial multi-period model

•Times 0 = $t_0, t_1, ..., t_N = T, t_k = k\delta t$ •Cash increases by $e^{r\delta t}$ between t_k and t_{k+1} \cdot S₀ = present spot price = known $S_{k+1} = uS_k$ or $S_{k+1} = dS_k$ $\bullet S_1 = uS_0$, or $S_1 = dS_0$, as before $S_2 = u^2 S_0$, or $S_2 = u d S_0$, or $S_2 = d^2 S_0$ •ud = du -- the binomial tree is *recombining* (diagram) •N+1 possible values of $S_N = S_T$, 2^N if not recombining •State j has j up steps and k - j down steps: $S_{ki} = u^j d^{k-j} S_0$ •European style option pays V_{Ni} at time t_N =T in state j • V_{ki} = price/value of option at state j at time k V_{ki} is determined by $V_{k+1,i}$ and $V_{k+1,i+1}$ as before •Work backwards:

–Given all V_{Nj} values, calculate all $V_{N-1,j}$ values

- –Given all $V_{N-1,i}$ values, calculate all $V_{N-2,i}$ values
- -Eventually, reach V_0

Dynamic hedging, rebalancing in the binomial tree model

•At time t_k in state j, there is a hedge ratio $\Delta_{kj} = (V_{k+1,j+1} - V_{k+1,j})/S_{kj}$ (u-d)

-This is how many shares of stock you own before you leave time \boldsymbol{t}_k

•At time t_{k-1} , you probably had a different number of shares:

 $-\Delta_{k-1,j-1j}$ or $\Delta_{k-1,jj}$ neither one equal to Δ_{kj}

•When you arrive at time t_k , you have to replace the old number of shares with the correct number, Δ_{ki} . This is *rebalancing*.

•You pay for the new shares by spending your cash, this requires more borrowing if the cash position is negative.

•This is dynamic hedging, or

•Dynamic replication: $\Pi_T = V_T$ for any state at time T

•The dynamic hedging strategy produces a portfolio of stock and cash worth exactly V_{Ti} , if S_{Ti} is the state at time T.

•It is *self financing*. You generate the cash you need to buy stock. You keep the proceeds from selling stock.