Courant Institute of Mathematical Sciences

New York University

Mathematics in Finance

Derivative Securities, Fall 2009

Class 3, final version

Jonathan Goodman

http://www.math.nyu.edu/faculty/goodman/teaching/DerivSec09/index.html

Hedging and pricing with a forward

1. Forward price for forward contract settled at time $T' \ge T$:

$$F_t = e^{r(T'-t)}S_t = e^{rT'}e^{-rt}S_t = C_{T'}e^{-rt}S_t$$

- 2. (Up to a constant) F_t =exponentially discounted version of S_t 3. $F_0 = E_{RN} [F_t] = E_P [F_t]$, if $0 \le t \le T'$
- 4. If the possible values of F_T are F_u and F_d , then 3 implies

$$p_u = \frac{F_0 - F_d}{F_u - F_d}$$

(日) (同) (三) (三) (三) (○) (○)

5. Replicating portfolio with a forward and case: same

Random process

- $S_t = S(t) =$ price at time t
- S is the whole path, S_t is the value at time t
- \mathcal{F}_t = all information available at time t, including $S_{t'}$ for $t' \leq t$ (see stochastic calculus)
- $u(s, t' | \mathcal{F}_t)$ (with $t' \ge t$) is the probability distribution of $S_{t'}$ given all information available at time t

- Discrete time: $0 = t_0 < t_1 < \cdots < t_n = T$
- Binomial tree model, homogeneous, $t_k = k\delta t$:
 - $S_{t_{k+1}} = uS_{t_k}$ with probability p_u
 - $S_{t_{k+1}} = dS_{t_k}$ with probability p_d
 - all steps independent

Martingale

- \mathcal{F}_t is the *information available* at time t
- Assume nothing is forgotten: $\mathcal{F}_t \subseteq \mathcal{F}_{t'}$ if t' > t
- X_t is a *stochastic process* with respect to \mathcal{F}_t if the value of X_t is determined by \mathcal{F}_t .
- Example: \mathcal{F}_t is the prices of all listed stocks up to time t, X_t is an index.
- Example: X_t is the average of a stochastic process up to time t.
- M_t is a martingale if $E[M_{t'} | \mathcal{F}_t] = M_t$, for $t' \ge t$.
- Example, simple random walk: a > 0 > b, $ap_u + bp_d = 0$
 - $M_{t_{k+1}} = M_{t_k} + a$ with probability p_u
 - $M_{t_{k+1}} = M_{t_k} + b$ with probability p_d
 - All steps independent, $p_u + p_d = 1$
 - \mathcal{F}_{t_k} = values of M_{t_j} , for all $j \leq k$, (including M_{t_k} , so \mathcal{F}_{t_k} determines M_{t_k})

Risk neutral model worlds

• In the risk neutral measure, $F_t = e^{-rt}S_t$ is a martingale.

•
$$F_t = E_{RN} [F_{t'} | \mathcal{F}_t] \iff E_{RN} [S_{t'} | \mathcal{F}_t] = e^{r(t'-t)} S_t$$

Lognormal model:

$$S_{t'} = S_t \exp\left\{(r - \sigma^2/2)(t' - t) + \sigma\sqrt{t' - t} Z\right\}$$

• Binomial tree model, $t_k = k \delta t$, all steps independent

-
$$S_{t_{k+1}} = uS_{t_k}$$
 with probability p_u
- $S_{t_{k+1}} = dS_{t_k}$ with probability p_d
- $up_u + dp_d = e^{r\delta t}$, $p_u + p_d = 1$

- $t' t = \Delta t$ small, calibrate the binomial model so that $\Delta S = S_{t+\Delta t} - S_t$ have the same mean and variance as the lognormal model, conditional on \mathcal{F}_t .
- Price today of $V(S_T)$ at time T is $e^{-rT}E_{RN}[V(S_T)]$
 - Discounted expected value, in the Risk neutral model

The log process and log tree

 If S_t is a lognormal process, then X_t = log(S_t) is a "normal" process

-
$$X_{t'} = X_t + \left(\mu - \frac{\sigma^2}{2}\right)(t' - t) + \sigma\sqrt{t' - t} Z$$

- $\Delta t = t' - t, \ \Delta X = X_{t'} - X_t$
- $\Delta X \sim \mathcal{N}\left(\left(\mu - \frac{\sigma^2}{2}\right)\Delta t, \sigma^2\Delta t\right)$
- $\Delta X^2 = O(\Delta t) \Longrightarrow \Delta X \sim O\left(\sqrt{\Delta t}\right) \gg \Delta t$
The lto calculus: $E\left[e^{\Delta X}\right] \approx 1 + E\left[\Delta X\right] + \frac{1}{2}E\left[\Delta X^2\right]$

• If S_t is a binomial tree process, then $X_t = \log(S_t)$ is a simple random walk

- p_u and p_d do not change

-
$$a = \log(u)$$
, $b = \log(d)$.

Continuous time limit

- Find an approximate description of geometric random walk (the binomial tree process) or ordinary random walk when δt is small
- Calculus vs. algebra
 - Algebra: simple foundations, complicated formulas

$$S(n) = \sum_{k=0}^{n} k^2 = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n.$$

• Calculus: mathematically challenging foundations, simple formulas

$$\int_{a}^{b} f(x)dx = \lim_{\delta x \to 0} \sum_{x_{k}} f(x_{k})\delta x , \quad x_{k} = a + k\delta x .$$
$$I(n) = \int_{x=0}^{n} x^{2}dx = \frac{1}{3}n^{3}.$$
$$S(n) \approx I(n) \text{ for large } n.$$

Key 1: Central Limit Theorem

- $X_{k+1} = X_k + Y_k$, $\Pr(Y_k = a, b) = p_u, p_d, X_0 = 0$
- $X_n = \sum_{k=1}^n Y_k$, with the Y_k i.i.d. (independent, identically distributed)

•
$$\mu_Y = \overline{Y} = E[Y], \ \sigma_Y^2 = \operatorname{var}(Y) = E\left[\left(Y - \overline{Y}\right)^2\right].$$

- Central Limit Theorem: X_n is approximately Gaussian with mean nµ and variance nσ².
- Probability density of X_n is $f_n(x)$

$$f_n(x) \approx \frac{1}{\sqrt{2\pi n\sigma_Y^2}} e^{-(x-n\mu_Y)^2/(2n\sigma_Y^2)}$$

• If x = ja + (n - j)b, then (in binomial simple random walk)

$$\Pr(X_n = x) = \frac{n(n-1)\cdots(n-j+1)}{j(j-1)\cdots 1} p_d^j p_u^{(n-j)}.$$

Key 2: Scaling

- In simple random walk, have $\delta X = O(\sqrt{\delta t})$, could take
 - $a = -\sigma\sqrt{\delta t} + \mu\delta t$, $b = \sigma\sqrt{\delta t} + \mu\delta t$, $p_d = p_u = \frac{1}{2}$ • $a = -\sigma\sqrt{\delta t}$, $b = \sigma\sqrt{\delta t}$, $p_d = \frac{1}{2} - \frac{\mu}{2\sigma}\sqrt{\delta t}$, $p_u = \frac{1}{2} + \frac{\mu}{2\sigma}\sqrt{\delta t}$

Brownian motion

•
$$X_t = \sum_{t_k \leq t} Y_k \sim$$
 normal mean μt , variance $\sigma^2 t$.

•
$$X_{t'} - X_t =$$
 increment between t and t'
~ normal mean $(t' - t)\mu$, variance $(t' - t)\sigma^2$.

· Increments from disjoint intervals are independent

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $|X_{t'} X_t| = O(\sqrt{t' t})$ for small increments
- Rough paths, not differentiable

Geometric random walk/binomial tree model

- $S_t = S_0 e^{X_t}$ • $d = e^b \approx 1 - b + \frac{1}{2}b^2$ (need the b^2 , Ito) • $u = e^a \approx 1 - b + \frac{1}{2}b^2$ (need the b^2 , Ito)
- In the limit $\delta t \rightarrow 0$, S_t is Geometric Brownian motion
- $S_t = S_0 e^{X_t}$, where X_t is Brownian motion (gaussian).