Courant Institute of Mathematical Sciences

New York University
Mathematics in Finance

Derivative Securities, Fall 2009

Class 4
last corrected October 13 to fix page 12

Jonathan Goodman

http://www.math.nyu.edu/faculty/goodman/teaching/DerivSec09/index.html

Ito calculus: keep small, neglect tiny

- Keep $\delta t: \sum_{t_{k}<T} a\left(t_{k}\right) \delta t \rightarrow \int_{0}^{T} a(t) d t \neq 0, \quad$ as $\delta t \rightarrow 0$
- Neglect higher powers:

$$
\sum_{t_{k}<T} a\left(t_{k}\right) \delta t^{3 / 2} \approx\left[\int_{0}^{T} a(t) d t\right] \delta t^{1 / 2} \rightarrow 0 \text { as } \delta t \rightarrow 0
$$

- Application: suppose $F_{k+1}=\left(1+b\left(t_{k}\right) \delta t\right) F_{k}$
- Taylor series: $1+\epsilon=e^{\epsilon-\frac{1}{2} \epsilon^{2}}\left(\epsilon=\right.$ small, $\epsilon^{2}=$ tiny $)$
- $F_{n} \approx F_{0} \exp \left(\sum_{t_{k}<T} b\left(t_{k}\right) \delta t\right) \exp \left(\sum_{t_{k}<T} \frac{1}{2} b\left(t_{k}\right)^{2} \delta t^{2}\right)$
- $F_{n} \rightarrow F_{0} \exp \left(\int_{0}^{T} b(t) d t\right)$ as $\delta t \rightarrow 0$

Geometric random walk/Brownian motion

- $S_{k+1}=X_{k} S_{k}, E\left[X_{k}\right]=1+\mu \delta t, \operatorname{var}\left(X_{k}^{2}\right)=\sigma^{2} \delta t$
- Write $X_{k}=1+Y_{k}$, with $E\left[Y_{k}\right]=\mu \delta t$
- $E\left[Y_{k}^{2}\right]=\sigma^{2} \delta t($ small $)+\mu^{2} \delta t^{2}$ (tiny) $\approx \sigma^{2} \delta t$.
- $S_{n} \approx S_{0} \exp \left(\sum_{t_{k}<T} Y_{k}-\frac{1}{2} \sum_{t_{k}<T} Y_{k}^{2}\right)$
- Central limit theorem: $\sum_{t_{k}<T} Y_{k} \approx \mu T+\sigma W_{T}$
- Law of large numbers: $\sum_{t_{k}<T} Y_{k}^{2} \approx \sigma^{2} T$
- Altogether: $S_{n} \approx S_{0} \exp \left(\left(\mu-\frac{1}{2} \sigma^{2}\right) T+\sigma W_{T}\right)$
- The limit $\delta t \rightarrow 0$ depends only on $E\left[Y_{k}\right]$ and $\operatorname{var}\left(Y_{k}\right)$

Brownian motion

- $W(t)$ is a random function of $t . W$ is a random path.
- Let $s_{1} \leq t_{1} \leq s_{2} \leq t_{2} \leq \cdots \leq s_{n} \leq t_{n}$ be start and end times for disjoint intervals: $I_{k}=\left[s_{k}, t_{k}\right]$
- Increments of Brownian motion are $Y_{k}=W\left(t_{k}\right)-W\left(s_{k}\right)$
- It's standard $(\mu=0, \sigma=1)$ Brownian motion if the following properties hold:

1. W is a continuous function of t
2. $W(0)=0$
3. The increments are independent Gaussian random variables with $\operatorname{var}\left(Y_{k}\right)=t_{k}=s_{k}$.

- Theorem: Arithmetic (ordinary) random walk can be scaled and normalized so that it converges to Brownian motion as $\delta t \rightarrow 0$
- Therefore, a path whose increments are the sum of many smaller independent increments may be modeled as Brownian motion

Newton/Leibnitz/Reimann to Ito: Tiny becomes small

- $\delta W(t)=W(t+\delta t)-W(t)$ has
- $E\left[\delta W^{2}\right]=\delta t$ and
- $|\delta W|=O(\sqrt{\delta t})$
- Riemann sum, left ended
$R_{-}=\sum_{t_{k}<T} f\left(t_{k}\right) \delta g\left(t_{k}\right) \longrightarrow \int_{0}^{T} f(t) d g(t)$ as $\delta t \rightarrow 0$
- Right ended: $R_{+}=\sum_{t_{k}<T} f\left(t_{k+1}\right) \delta g\left(t_{k}\right)$
- If f and g are smooth, then $R_{+}-R_{-}$is tiny, because $R_{+}-R_{-}=\sum_{t_{k}<T} \delta f\left(t_{k}\right) \delta g\left(t_{k}\right)=\sum_{t_{k}<T} O\left(\delta t^{2}\right)=O(\delta t T)$
- If $f=g=$ Brownian motion, then the difference is small:
$R_{+}-R_{-}=\sum_{t_{k}<T} \delta W\left(t_{k}\right)^{2} \rightarrow T$ (law of large numbers)

Ito integral with respect to Brownian motion

- $\int_{0}^{T} F(t) d W(t)=\lim _{\delta t \rightarrow 0} F\left(t_{k}\right) \delta W\left(t_{k}\right)$
left ended approximations only
- F may be random, but it must be nonanticipating
- $F(t)$ is known at time t
- Increments of W beyond t completely unknown
- $E\left[F\left(t_{k}\right) \delta W\left(t_{k}\right)\right]=E\left[F\left(t_{k}\right)\right] E\left[\delta W\left(t_{k}\right)\right]=0$
- $\int_{0}^{T} W(t) d W(t)=\frac{1}{2}\left(W(T)^{2}-T\right)$
- The expected value is zero, as it must be
- If $W(t)$ were a smooth function of t, would not have $\frac{1}{2} T$
- The right ended approximation gives $\frac{1}{2}\left(W(T)^{2}+T\right)$, as it should

The Ito differential

- If $F(t)$ is a random function, then $d F$ is defined by

$$
-\int_{t_{1}}^{t_{2}} d F(t)=F\left(t_{2}\right)-F\left(t_{1}\right)
$$

- Get a formula for $d F$ by calculating δF and keeping small terms and neglecting tiny terms.
- ϵ is tiny if
- $|\epsilon|=O\left(\delta t^{p}\right)$ with $p>1$, or
- $|\epsilon|=O(\delta t)$ and $E[\epsilon]=0$
- Ito's rule: if $|\epsilon|=O(\delta t)$, then $\epsilon=E[\epsilon]+$ tiny.
- Example: $\delta\left(W^{2}\right)(t)$

$$
\begin{aligned}
= & (W(t)+\delta W)^{2}-W(t)^{2}=2 W(t) \delta W(t)+(\delta W(t))^{2} \\
& -d\left(W(t)^{2}\right)=2 W(t) d W(t)+d t \\
& -W(T)^{2}-W(0)^{2}=\int_{0}^{T} d\left(W(t)^{2}\right)=2 \int_{0}^{T} W(t) d W(t)+\int_{0}^{T} d t
\end{aligned}
$$

Ito's lemma

- Suppose $u(w, t)$ is a smooth function of w and t. What is $d u(W(t), t)$?

$$
\begin{aligned}
\delta u & =u(W+\delta W, t+\delta t)-u(W, t) \\
& =\partial_{w} u \delta W+\frac{1}{2} \partial_{w}^{2} u \delta W^{2}+\partial_{t} u \delta t+\text { tiny terms } \\
& =\partial_{w} u \delta W+\frac{1}{2} \partial_{w}^{2} u \delta t+\partial_{t} u \delta t+\text { tiny terms }
\end{aligned}
$$

- Ito's lemma: $d u(W, t)=u_{w} d W+\left(\frac{1}{2} u_{w w}+u_{t}\right) d t$
- Meaning $\# 1: u(W(T), T)-u(0,0)=$

$$
\int_{0}^{T} u_{w}(W(t), t) d W(t)+\int_{0}^{T}\left(\frac{1}{2} u_{w w}+u_{t}\right) d t
$$

- Meaning \#2: $d F=a(t) d t+b(t) d W$ if
- $E[\delta F]=a(t) \delta t+$ tiny
- $E\left[(\delta F)^{2}\right]=b^{2}(t) \delta t+$ tiny
- $E\left[(\delta F)^{4}\right]=$ tiny (very technical - don't worry about it)

Ito differential equation

- An equation of the form $d X=a(X) d t+b(X) d W$.
- Seek a solution in the sense of meaning 2 above:
- $E[\delta X]=a(t) \delta t+$ tiny
- $E\left[(\delta X)^{2}\right]=b^{2}(t) \delta t+$ tiny
- $E\left[(\delta X)^{4}\right]=$ tiny
- Stock price process: $d S(t)=\mu S d t+\sigma S d W$
- Solution: $S(t)=S(0) \exp \left(\sigma W(t)+\left(\mu+\frac{1}{2} \sigma^{2}\right) t\right)$. Check it!

Black Scholes formula for a European put

- $S_{T} \sim S_{0} \exp \left(\left(r-\frac{\sigma^{2}}{2}\right) T+\sigma \sqrt{T} Z\right)$ (same distribution)
- $I_{A}(s)=$ indicator function $=1$ (if $s \in A$) or 0 (if $s \notin A$) Here, $A=\{S \leq K\}$
- $P=$ Put price
$=e^{-r T} E\left[\left(K-S_{T}\right)_{+}\right]$
$=e^{-r T} E\left[\left(K-S_{T}\right) I_{S_{T}<K}\left(S_{T}\right)\right]$
$=e^{-r T} K \operatorname{Pr}\left(S_{T}<K\right)+e^{-r T} E\left[S_{T} I_{S_{T}<K}\left(S_{T}\right)\right]$
- $S_{T} \leq K \Longleftrightarrow Z \leq \frac{\ln \left(K / S_{0}\right)-\left(r-\sigma^{2} / 2\right) T}{\sigma \sqrt{T}}=-d_{2}$
- $d_{2}=\frac{\ln \left(S_{0} e^{r T} / K\right)-\sigma^{2} T / 2}{\sigma \sqrt{T}}, \ln \left(S_{0} e^{r T} / K\right)=$ moneyness
- $e^{-r T} K \operatorname{Pr}\left(S_{T} \leq K\right)=K e^{-r T} N\left(-d_{2}\right)$

BS, European put, cont...

- Need $e^{-r T} E\left[S_{T} I_{S_{T}<K}\left(S_{T}\right)\right]$, with $S_{T}=S_{0} e^{r T} e^{-\sigma^{2} T / s} e^{\sigma \sqrt{T} Z}$
- Get $S_{0} e^{-\sigma^{2} T / 2} \int_{S_{T} \leq K} e^{\sigma \sqrt{T} z} e^{-z^{2} / 2} \frac{d z}{\sqrt{2 \pi}}$
- We just saw that $S_{T}<K \Longleftrightarrow z \leq-d_{2}$.
- Complete the square in the exponent:

$$
\frac{-1}{2}\left(z^{2}-2 z \sigma \sqrt{T}\right)=\frac{-1}{2}\left((z-\sigma \sqrt{T})^{2}-\sigma^{2} T\right)
$$

- So need (after cancellations):
$S_{0} \int_{z \leq-d_{2}} e^{-(z-\sigma \sqrt{T})^{2} / 2} \frac{d z}{\sqrt{2 \pi}}=S_{0} N\left(-d_{2}-\sigma \sqrt{T}\right)$
- $d_{1}=d_{2}+\sigma \sqrt{T}$,

BS, European put, final

- moneyness $=\ln \left(S_{0} e^{r T} / K\right)$
- dimensionless measure of the spot relative to the strike
- moneyness $\rightarrow \infty$ (or $-\infty$) as $S_{0} \rightarrow \infty$ (or 0).
- $d_{2}=\frac{\text { moneyness }-\frac{\sigma^{2} T}{2}}{\sigma \sqrt{T}}$

$$
=\frac{\text { moneyness }}{\sigma \sqrt{T}}-\frac{\sigma \sqrt{T}}{2}
$$

- $d_{1}=d_{2}+\sigma \sqrt{T}=\frac{\text { moneyness }}{\sigma \sqrt{T}}+\frac{\sigma \sqrt{T}}{2}$
- $P=e^{-r T} K N\left(-d_{2}\right)-S_{0} N\left(-d_{1}\right)$
- Check: $S_{0} \rightarrow 0$ recovers forward contract price.

Black Scholes European call

- Do it all over again ... NO!
- Use put/call parity
- In payouts (diagram): Call $\left(K, S_{T}\right)-\operatorname{Put}\left(K, S_{T}\right)=S_{T}-K$
- Prices today: $C\left(K, S_{0}\right)-P\left(K, S_{0}\right)=S_{0}-e^{-r T} K$
- $C=P-K e^{-r T}+S_{0}$, and
- $N(d)=1-N(-d)$
- Get:

$$
C\left(K, S_{0}\right)=S_{0} N\left(d_{1}\right)-e^{-r T} K N\left(d_{2}\right)
$$

The Greeks

- Delta $=\Delta=\partial_{S}$ (option value)
- Used for Delta hedging: replicate using $\Delta_{t} S_{t}+$ cash $_{t}$
- Gamma $=\Gamma=\partial_{S}^{2}$ (option value)
- Convexity: how nonlinear is your position?
- How much rebalancing is needed?
- Vega $=\Lambda=\partial_{\sigma}$ (option value)
- Vol is unknown and/or has large unpredictable moves
- The hedge depends on the vol.
- A more robust hedge works well over a range of σ.
- Theta $=\Theta=\partial_{t}$ (option value)
- Rho $=\rho=\partial_{r}$ (option value)

