Courant Institute of Mathematical Sciences

New York University

Mathematics in Finance

Derivative Securities, Fall 2009

Class 4

last corrected October 13 to fix page 12

Jonathan Goodman

http://www.math.nyu.edu/faculty/goodman/teaching/DerivSec09/index.html

Ito calculus: keep small, neglect tiny

• Keep
$$\delta t$$
: $\sum_{t_k < T} a(t_k) \delta t \rightarrow \int_0^T a(t) dt \neq 0$, as $\delta t \rightarrow 0$

Neglect higher powers:

$$\sum_{t_k < T} a(t_k) \delta t^{3/2} \approx \left[\int_0^T a(t) dt \right] \delta t^{1/2} \to 0 \text{ as } \delta t \to 0$$

- Application: suppose $F_{k+1} = (1 + b(t_k)\delta t) F_k$
- Taylor series: $1 + \epsilon = e^{\epsilon \frac{1}{2}\epsilon^2}$ ($\epsilon = \text{small}, \epsilon^2 = \text{tiny}$)
- $F_n \approx F_0 \exp\left(\sum_{t_k < T} b(t_k) \delta t\right) \exp\left(\sum_{t_k < T} \frac{1}{2} b(t_k)^2 \delta t^2\right)$

•
$$F_n \to F_0 \exp\left(\int_0^T b(t) dt\right)$$
 as $\delta t \to 0$

Geometric random walk/Brownian motion

•
$$S_{k+1} = X_k S_k$$
, $E[X_k] = 1 + \mu \delta t$, $\operatorname{var}(X_k^2) = \sigma^2 \delta t$

- Write $X_k = 1 + Y_k$, with $E[Y_k] = \mu \delta t$
- $E[Y_k^2] = \sigma^2 \delta t \text{ (small)} + \mu^2 \delta t^2 \text{ (tiny)} \approx \sigma^2 \delta t.$

•
$$S_n \approx S_0 \exp\left(\sum_{t_k < T} Y_k - \frac{1}{2} \sum_{t_k < T} Y_k^2\right)$$

- Central limit theorem: $\sum_{t_k < T} Y_k \approx \mu T + \sigma W_T$
- Law of large numbers: $\sum_{t_k < T} Y_k^2 \approx \sigma^2 T$
- Altogether: $S_n \approx S_0 \exp\left(\left(\mu \frac{1}{2}\sigma^2\right)T + \sigma W_T\right)$
- The limit $\delta t \rightarrow 0$ depends only on $E[Y_k]$ and $var(Y_k)$

Brownian motion

- W(t) is a random function of t. W is a random path.
- Let s₁ ≤ t₁ ≤ s₂ ≤ t₂ ≤ · · · ≤ s_n ≤ t_n be start and end times for disjoint intervals: I_k = [s_k, t_k]
- Increments of Brownian motion are $Y_k = W(t_k) W(s_k)$
- It's standard ($\mu = 0, \sigma = 1$) Brownian motion if the following properties hold:
 - 1. W is a continuous function of t
 - 2. W(0) = 0
 - 3. The increments are independent Gaussian random variables with $var(Y_k) = t_k = s_k$.
- Theorem: Arithmetic (ordinary) random walk can be scaled and normalized so that it converges to Brownian motion as $\delta t \rightarrow 0$
- Therefore, a path whose increments are the sum of many smaller independent increments may be modeled as Brownian motion

Newton/Leibnitz/Reimann to Ito: Tiny becomes small

•
$$\delta W(t) = W(t + \delta t) - W(t)$$
 has
- $E[\delta W^2] = \delta t$ and
- $|\delta W| = O(\sqrt{\delta t})$

• Riemann sum, left ended

$$R_{-} = \sum_{t_{k} < T} f(t_{k}) \delta g(t_{k}) \longrightarrow \int_{0}^{T} f(t) dg(t)$$
as $\delta t \to 0$

- Right ended: $R_+ = \sum_{t_k < T} f(t_{k+1}) \delta g(t_k)$
- If f and g are smooth, then $R_+ R_-$ is tiny, because $R_+ - R_- = \sum_{t_k < T} \delta f(t_k) \delta g(t_k) = \sum_{t_k < T} O(\delta t^2) = O(\delta tT)$
- If f = g = Brownian motion, then the difference is small: $R_+ - R_- = \sum_{t_k < T} \delta W(t_k)^2 \rightarrow T$ (law of large numbers)

Ito integral with respect to Brownian motion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Ito differential

- If F(t) is a random function, then dF is defined by - $\int_{t_1}^{t_2} dF(t) = F(t_2) - F(t_1)$
- Get a formula for dF by calculating δF and keeping small terms and neglecting tiny terms.
- *ϵ* is *tiny* if

•
$$|\epsilon| = O(\delta t^p)$$
 with $p > 1$, or

- $|\epsilon| = O(\delta t)$ and $E[\epsilon] = 0$
- *Ito's rule*: if $|\epsilon| = O(\delta t)$, then $\epsilon = E[\epsilon] + \text{tiny}$.

• Example:
$$\delta(W^2)(t)$$

= $(W(t) + \delta W)^2 - W(t)^2 = 2W(t)\delta W(t) + (\delta W(t))^2$
- $d(W(t)^2) = 2W(t)dW(t) + dt$
- $W(T)^2 - W(0)^2 = \int_0^T d(W(t)^2) = 2\int_0^T W(t)dW(t) + \int_0^T dt$

Ito's lemma

• Suppose u(w, t) is a smooth function of w and t. What is du(W(t), t)?

$$\begin{split} \delta u &= u(W + \delta W, t + \delta t) - u(W, t) \\ &= \partial_w u \, \delta W + \frac{1}{2} \partial_w^2 u \, \delta W^2 + \partial_t u \, \delta t + \text{tiny terms} \\ &= \partial_w u \, \delta W + \frac{1}{2} \partial_w^2 u \, \delta t + \partial_t u \, \delta t + \text{tiny terms} \end{split}$$

• Ito's lemma: $du(W, t) = u_w dW + \left(\frac{1}{2}u_{ww} + u_t\right) dt$

• Meaning #1:
$$u(W(T), T) - u(0, 0) = \int_0^T u_w(W(t), t) dW(t) + \int_0^T \left(\frac{1}{2}u_{ww} + u_t\right) dt$$

• Meaning #2: dF = a(t)dt + b(t)dW if

•
$$E[\delta F] = a(t)\delta t + \text{tiny}$$

• $E[(\delta F)^2] = b^2(t)\delta t + \text{tiny}$
• $E[(\delta F)^4] = \text{tiny} (\text{very technical } - \text{don't worry about it})$

Ito differential equation

- An equation of the form dX = a(X)dt + b(X)dW.
- Seek a solution in the sense of meaning 2 above:

•
$$E[\delta X] = a(t)\delta t + \text{tiny}$$

•
$$E\left[\left(\delta X\right)^2\right] = b^2(t)\delta t + \operatorname{tiny}$$

•
$$E\left[\left(\delta X\right)^4\right] = \operatorname{tiny}$$

- Stock price process: $dS(t) = \mu Sdt + \sigma SdW$
- Solution: $S(t) = S(0) \exp(\sigma W(t) + (\mu + \frac{1}{2}\sigma^2) t)$. Check it!

Black Scholes formula for a European put

•
$$S_T \sim S_0 \exp\left(\left(r - \frac{\sigma^2}{2}\right)T + \sigma\sqrt{T}Z\right)$$
 (same distribution)

• $I_A(s) = \text{indicator function} = 1$ (if $s \in A$) or 0 (if $s \notin A$) Here, $A = \{S \le K\}$

•
$$P = Put price$$

= $e^{-rT} E[(K - S_T)_+]$
= $e^{-rT} E[(K - S_T) I_{S_T < K}(S_T)]$
= $e^{-rT} K Pr(S_T < K) + e^{-rT} E[S_T I_{S_T < K}(S_T)]$
• $S_T \le K \iff Z \le \frac{\ln(K/S_0) - (r - \sigma^2/2)T}{\sigma\sqrt{T}} = -d_2$
• $d_2 = \frac{\ln(S_0 e^{rT}/K) - \sigma^2 T/2}{\sigma\sqrt{T}}$, $\ln(S_0 e^{rT}/K) = moneyness$
• $e^{-rT} K Pr(S_T \le K) = K e^{-rT} N(-d_2)$

BS, European put, cont...

• Need $e^{-rT}E[S_T I_{S_T < K}(S_T)]$, with $S_T = S_0 e^{rT} e^{-\sigma^2 T/s} e^{\sigma \sqrt{T}Z}$

・ロット (日) (日) (日) (日) (日)

- Get $S_0 e^{-\sigma^2 T/2} \int_{S_T \leq K} e^{\sigma \sqrt{T}z} e^{-z^2/2} \frac{dz}{\sqrt{2\pi}}$
- We just saw that $S_T < K \iff z \le -d_2$.
- Complete the square in the exponent: $\frac{-1}{2} \left(z^2 - 2z\sigma\sqrt{T} \right) = \frac{-1}{2} \left(\left(z - \sigma\sqrt{T} \right)^2 - \sigma^2 T \right)$
- So need (after cancellations): $S_0 \int_{z \leq -d_2} e^{-(z - \sigma\sqrt{T})^2/2} \frac{dz}{\sqrt{2\pi}} = S_0 N(-d_2 - \sigma\sqrt{T})$ • $d_1 = d_2 + \sigma\sqrt{T}$,

BS, European put, final

• moneyness =
$$\ln(S_0 e^{rT}/K)$$

- dimensionless measure of the spot relative to the strike
- moneyness $ightarrow\infty$ (or $-\infty$) as $S_0
 ightarrow\infty$ (or 0) .

•
$$d_2 = \frac{\text{moneyness} - \frac{\sigma^2 T}{2}}{\sigma \sqrt{T}}$$

 $= \frac{\text{moneyness}}{\sigma \sqrt{T}} - \frac{\sigma \sqrt{T}}{2}$
• $d_1 = d_2 + \sigma \sqrt{T} = \frac{\text{moneyness}}{\sigma \sqrt{T}} + \frac{\sigma \sqrt{T}}{2}$
• $P = e^{-rT} K N(-d_2) - S_0 N(-d_1)$

• Check: $S_0 \rightarrow 0$ recovers forward contract price.

Black Scholes European call

- Do it all over again ... NO!
- Use put/call parity
 - In payouts (diagram): $Call(K, S_T) Put(K, S_T) = S_T K$

- Prices today: $C(K, S_0) P(K, S_0) = S_0 e^{-rT}K$
- $C = P Ke^{-rT} + S_0$, and
- N(d) = 1 N(-d)

Get:

$$C(K, S_0) = S_0 N(d_1) - e^{-rT} K N(d_2)$$

The Greeks

• Delta = $\Delta = \partial_S$ (option value)

- Used for Delta hedging: replicate using $\Delta_t S_t + {\sf cash}_t$

• Gamma =
$$\Gamma = \partial_S^2$$
(option value)

- Convexity: how nonlinear is your position?
- How much rebalancing is needed?
- Vega = $\Lambda = \partial_{\sigma}($ option value)
 - Vol is unknown and/or has large unpredictable moves

- The hedge depends on the vol.
- A more robust hedge works well over a range of σ .
- Theta = $\Theta = \partial_t$ (option value)
- Rho = $\rho = \partial_r$ (option value)