Courant Institute of Mathematical Sciences
 New York University
 Mathematics in Finance
 Derivative Securities, Fall 2009

Class 5

Jonathan Goodman

http://www.math.nyu.edu/faculty/goodman/teaching/DerivSec09/index.html

Review: discrete pricing and hedging

1. Model possible dynamics of the underlier:

- $S \rightarrow u S$ or $S \rightarrow d S$
- Probabilities not specified

2. Hedging/replication argument leads to $P\left(S_{0}, T\right)$ from the payout.
3. This algebra may be interpreted as $e^{-r T}$ multiplying a weighted average of the payout values in various future states of the world.
4. This "weighted average" is interpreted as the "expected value" if the weights are the probabilities of the future states of the world.
5. These probabilities are called "risk neutral", because pricing something at its discounted expected value implies being "neutral" (indifferent) to risk.

Preview: how it goes in continuous time

1. Model dynamics of the underlier: $d S=\mu S d t+\sigma S d W$

- Probabilities are specified specified
- σ relevant (binary step size), μ irrelevant (binary probabilities)

2. Hedging/replication argument leads to the Black Scholes PDE
3. The solution of this PDE may be interpreted as the value function of a function of a random process:

- $d S=r S d t+\sigma S d W$

4. Thus, the option price is the discounted expected value using a "risk neutral process"
5. The μ and r processes are related by a reweighting

- Cameron Martin Girsanov formula
- Processes related by reweighting are equivalent, but not the same.

Continuous time hedging

- $f(S(t), t)=$ market price of a traded option on underlier $S(t)$.
- $\Pi_{t}=\Delta_{t} S_{t}+C_{t}$ replicating portfolio of stock and cash.
- In time $d t, d f=f_{s} d S+\frac{1}{2} f_{s s}\left(d S^{2}\right)+f_{t} d t$
- Ito: $d S=\mu S d t+\sigma S d W,(d S)^{2}=\sigma^{2} S^{2} d t+$ tiny
- So: $d f=\sigma S f_{s} d W+\mu S f_{s} d t+\frac{\sigma^{2} S^{2}}{2} f_{s s} d t+f_{t} d t$
- Compute $d \Pi$ assuming $d \Delta_{t}=0$: rebalance between trading periods.
- $d \Pi=\Delta S \sigma d W+\Delta S \mu d t+C r d t$
- Get $d f=d \Pi$ only if $\Delta=f_{s}$
- Get the Black Scholes Partial Differential Equation (PDE)

$$
\partial_{t} f+\frac{\sigma^{2} s^{2}}{2} \partial_{s}^{2} f+r s \partial_{s} f-r f=0
$$

Diffusions

- A diffusion process: $d X_{t}=a\left(X_{t}, t\right) d t+b\left(X_{t}, t\right) d W_{t}$
- $a(x, t)=$ drift coefficient
- $b(x, t)=$ noise coefficient
- In multidimensional diffusions, a is a vector and b is a matrix.
- $\delta X_{t}=X_{t+\delta t}-X(t), \delta t>0$
- $a(x, t) d t+$ tiny $=E\left[\delta X_{t} \mid X_{t}=x\right]$
- $b^{2}(x, t) d t+$ tiny $=\operatorname{var}\left(\delta X_{t} \mid X_{t}=x\right)$

$$
=E\left[\left(\delta X_{t}\right)^{2} \mid X_{t}=x\right]+\text { tiny }
$$

- $E\left[\left|\delta X_{t}\right|\right]=O(\sqrt{\delta t}) \gg$ drift motion
- Black Scholes model (Samuelson?) $d S=\mu S d t+\sigma S d W$
- Drift $=a(s)=\mu s$
- Noise $=b(s)=\sigma s, \sigma=$ volatility

Value functions

- $V(x)=$ final time payout
- $f(x, t)=E_{x, t}\left[V\left(X_{T}\right)\right]=E\left[V\left(X_{T}\right) \mid X_{t}=x\right]$
- Want only $f\left(x_{0}, 0\right)$, compute all $f(x, t)$ to get it
- e.g. $X_{t}=$ Brownian motion, $V(x)=x^{2}, f(x, t)=x^{2}+T-t$
- e.g. $d X=r X d t+\sigma X d W, V(s)=\mathbf{1}_{s \leq K}, f(x, t)=N\left(-d_{2}\right)$
- Related value functions

$$
\begin{array}{rlrl}
-f(x, t) & =e^{-r(T-t)} E_{x, t}\left[V\left(X_{T}\right)\right] & & \text { Discount } \\
-f(x, t) & =E_{x, t}\left[\int_{t}^{T} V\left(X_{s}\right) d s\right] & \text { Running gain (cost) } \\
-f(x, t) & =E_{x, t}\left[\exp \left(\int_{t}^{T} r\left(X_{s}\right) d s\right)\right] & & \text { Interest rate models }
\end{array}
$$

Value function to PDE: the backward equation

- If $d X=a(X) d t+b(X) d W$, and $f(x, t)=E_{x, t}\left[V\left(X_{T}\right)\right]$:

$$
\begin{gathered}
\partial_{t} f+\frac{1}{2} b^{2}(x) \partial_{x}^{2} f+a(x) \partial_{x} f=0 . \quad \text { (backward equation) } \\
f(x, T)=V(x) . \quad \text { (final conditions) }
\end{gathered}
$$

- Derivation: tower property
- If $f(x, t)=e^{-r(T-t)} E_{x, t}\left[V\left(X_{T}\right)\right]$, then

$$
\partial_{t} f+\frac{1}{2} b^{2}(x) \partial_{x}^{2} f+a(x) \partial_{x} f+r f=0
$$

- If $f(x, t)=E_{x, t}\left[\int_{t}^{T} V\left(X_{s}\right) d s\right]$, then

$$
\partial_{t} f+\frac{1}{2} b^{2}(x) \partial_{x}^{2} f+a(x) \partial_{x} f+f=0
$$

Risk neutral process

- The stochastic process whose value function satisfies the PDE.

