Derivative Securities, Courant Institute, Fall 2010
http://www.math.nyu.edu/faculty/goodman/teaching/DerivSec10/index.html
Always check the class bboard on the blackboard site from home.nyu.edu (click on academics, then on Derivative Securities) before doing any work on the assignment.

Assignment 6, due October 20
Corrections: (none yet)

1. Verify by explicit calculation that the right side of the formula $\int_{0}^{t} W_{t} d W_{t}=$ $\frac{1}{2} W_{t}^{2}-\frac{1}{2} t$ is a martingale. This is more than $E\left[\frac{1}{2} W_{t}^{2}-\frac{1}{2} t\right]=0$.
2. The Black Scholes equation (derivation at the end of week 6 notes) implies that a vanilla European call option satisfies

$$
\Theta_{C}+\frac{s^{2} \sigma^{2}}{2} \Gamma_{C}+r s \Delta_{C}-r C=0
$$

Verify this using the explicit formulas for the Greeks.
3. Let $I^{n}=\sum_{k=0}^{n-1} f_{t_{k}}\left(X_{t_{k+1}}-X_{t_{k}}\right)$ as in the week 6 notes. Take $T=n \delta t$. Write the expression for $R^{n}=I^{2 n}=I^{n}$ in the case $f_{t}=S_{t}$ and $X_{t}=S_{t}$, where $d S_{t}=\mu S_{t} d t+\sigma S_{t} d W_{t}$. This is just the formula in the notes for this case. Find an approximation

$$
E\left[\left(R^{n}\right)^{2}\right] \approx \delta t E\left[\int_{0}^{T} A_{t} d t\right]
$$

Here $A_{t}$ is a simple function of $S_{t}$ that you will find as part of the solution.
4. Suppose $S_{0}=X_{0}=1$, and suppose that $X_{t}$ is found from $S_{t}$ using

$$
\begin{equation*}
\frac{d X_{t}}{X_{t}}=2 \frac{d S_{t}}{S_{t}} \tag{1}
\end{equation*}
$$

This is a model of a "leveraged" fund, that returns twice some other asset returns.
(a) Show that if $S$ is a differentiable function of $t$ than $X_{t}=S_{t}^{2}$. Hint: use ordinary calculus and calculate $\frac{d\left(S_{t}^{2}\right)}{S_{t}^{2}}$, or calculate $d \log \left(X_{t}\right)$ and $d \log \left(S_{t}\right)$ and use (1).
(b) Show that if $S_{t}$ is a diffusion process then (1) does not imply that $\log \left(X_{T}\right)=2 \log \left(S_{T}\right)$. Find the correct formula for $\log \left(X_{T}\right)$ in terms of $\log \left(S_{T}\right)$ and a Riemann integral.
(c) Evaluate this formula explicitly in the case $S_{t}$ is a geometric Brownian motion.
5. Suppose $S_{1, t}, \ldots, S_{n, t}$ are independent geometric Brownian motions with expected return rates $\mu_{i}$ and volatilities $\sigma_{i}$ (so $d S_{i, t}=\mu S_{i, t} d t+\sigma S_{i, t} d W_{i, t}$, where the $W_{i}$ are independent Brownian motions). Let

$$
X_{t}=\sum_{i=1}^{n} w_{i} S_{i, t}
$$

be a portfolio of these assets with portfolio weights $w_{i}$. Is it true that $X_{t}$ is a geometric Brownian motion? Why or why not?
6. No computing this week (not for this class anyway).

