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Week 10

1 More on the Gaussian copula model

There is a simple general way to map a one dimensional random variable, X,
to a one dimensional standard normal, Y . This is built on a transformation
that takes either one to a standard uniform random variable, U . Standard uni-
form means that the probability density of U is h(u) = 1 if 0 ≤ u ≤ 1, and
h)u) = 0 otherwise. Random number generators produce (approximately) inde-
pendent standard uniforms. Monte Carlo algorithms like Box Muller, mapping,
and rejection create random variables with other distributions out of standard
uniforms. The copula construction is based on mapping.

The cumulative distribution function (CDF), F (x) = Pr(X ≤ x) maps any
random variable, X to a standard uniform. If X is a random variable whose
CDF is F , then

U = F (X) (1)

has the standard uniform distribution. This goes both ways. If U is a standard
uniform and X is found from U by solving (1) for X, then X has the CDF F .

The relationship between X and U is easiest to understand when the proba-
bility density f(x) never vanishes. In that case F ′(x) = f(x) > 0 for all x. This
implies that for any U there is a unique X that satisfies (1). If the probability
density f(x) has no δ−function components, then F (x) is continuous and U is
well defined for each X. Both of these conditions are violated in practical appli-
cations we are interested in. For example, the exponential random variable has
probability density f(x) = λe−λx if x ≥ 0 and f(x) = 0 if x < 0. However, it is
easy to see that (1) defines a unique relationship between U and X in this case
too. The Bernoulli random variable has X = 0 with probability p and X = 1
with probability 1− p. Its probability density is f(x) = pδ(x) + (1− p)δ(x− 1).
In that case, the relationship (1) becomes X = 0 if 0 ≤ U < p, and X = 1 if
p ≤ U ≤ 1. If we know U then X is determined. If we know X, then U is still to
some extent random. The point is that it is easy to construct copulas in cases
that do not have 0 < f(x) < ∞ for all x. But the construction may be more
complicated to describe in general.

The verification of the copula facts is so simple it can be confusing. Let us
check first that if X has F as its CDF and U is found from X using (1), then U
is uniformly distributed in the interval [0, 1]. Clearly, U ∈ [0, 1], because F (x)
is a probability and therefore is in the interval [0, 1] (I said this was easy). To
show that U is uniformly distributed, we need to show that for any u ∈ [0, 1],
Pr(U < u) = u. To do that, let x be the unique number with F (x) = u. Then
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U ≤ u is equivalent to X ≤ x. So Pr(U ≤ u) = Pr(X ≤ x) = F (x) = u, Q.E.D.1

Suppose, on the other hand, that U is uniformly distributed in [0, 1] and that
X is found from U by solving (1). It is as easy to see that Pr(X ≤ x) = F (x).
Indeed, if u = F (x), then we know Pr(U < u) = u = F (x). Therefore, Pr(X ≤
x) = Pr(U ≤ u) = u f(x), Q.E.D, again.

Using the two way nature of this mapping, we can transform any one di-
mensional random variable into any other. If F is the CDF of X and G is
another CDF, then we can start with X, calculate U from (1), then calculate Y
by solving G(Y ) = U . This makes Y a function of X, and G is the CDF of Y .
We can avoid writing U (but not calculating it) by writing these two steps as

X ⇐⇒ Y if G(Y ) = F (X) .

With this relation we can calculate X from Y or Y from X. A special case is
when Y is a standard normal and G(y) = N(y), then

X ⇐⇒ Y if N(Y ) = F (X) . (2)

Let us make this concrete by combining it with the one factor correlation
model from last week. In this model, there are idiosyncratic factors Zi for each
Yi and one common factor, Z0. The Zk are i.i.d N (0, 1) standard normals. The
Yi come from these factor loadings ai in the interval [−1, 1] using

Yi = aiZ0 +
√

1− a2
i Zi . (3)

This has the consequence that var(Yi) = a2
i + (1− a2

i ) = 1, and

cov(Yi, Yj) = E[YiYj ] = E

[(
aiZ0 +

√
1− a2

iZi

)(
ajZ0 +

√
1− a2

jZj

)]
= aiajE

[
Z2

0

]
= aiaj ,

if i 6= j. The covariance matrix of the Yi in this one factor model is the sum of
a diagonal matrix and a matrix of rank one. The diagonal matrix has 1− a2

i on
the diagonals. The rank one2 matrix is aat, so the total covariance matrix is

C = cov(Y ) = E
[
Y Y t

]
= diag(1− a2

i ) + aat .

Let us use this to create correlated default times in the simple exponential
default model. In that model, Ti is the default time for bond i. Suppose we have

1Q.E.D. stands for the Latin phrase “quod (that which) erat (was supposed to be) demon-
strandum (proven)”. We use the phrase now to announce the end of a proof, even an easy one
like this. European math and science books used to be written in Latin. Newton’s Philosophi
Naturalis Principia Mathematica was published in 1687. Gauss’ Disquisitiones Arithmeticae
was published in 1801.

2The rank of a matrix is the dimension of the vector space spanned by its columns, which
is the same (a theorem of linear algebra) as the dimension of the vector space spanned by the
rows. If a matrix, M , has rank one, then the columns are proportional to each other. This
means that that the columns satisfy m2 = a2m1, m3 = a3m1. If a = (1, a2, . . . , an is the row
vector, this says that M = m1a. A symmetric matrix of rank one must have the form aat,
for some column vector a.
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a pool of n bonds with the same rating and maturity. If λ is the common default
intensity, then the CDF for each of the Ti is F (t) = Pr(Ti < t) = 1− e−λt. The
solution to F (T ) = U is T = − 1

λ ln((1−U). The general copula formula in this
case boils down to

Ti =
−1
λ

ln (1−N(Yi)) . (4)

Note that 1 − U = 1 − N(Y ) is larger than zero, so the log is defined, and is
less than one, so the log is negative. Therefore, (4) produces a positive T .

There is the question of how to choose the factor loadings ai. If the bonds
really are identical, one would choose them all to be the same. Taking ai =

√
ρ

makes ρ the common correlation coefficient between any pair Yi, Yj . With this,
the complete correlated default model has just three parameters, λ, ρ, and the
recovery rate, R.

There is a formula more general than (3) that allows you to construct corre-
lated Gaussian random variables with any positive definite covariance matrix,
C. One way to do it is to use the Cholesky factorization, C = LLt. The
Cholesky factorization theorem is that any positive definite symmetric matrix
C may be factored as C = LLt, where L is an upper triangular matrix. Upper
triangular means that the entries of L below the diagonal are all zero: Lij = 0
if j < i. Any good linear algebra software package can compute L from C in
about as much work as it takes to solve a system of linear equations. For a
500× 500 matrix, C, the Clolesky factorization takes less than a second on my
several years old midrange laptop using LAPACK. Once you have L, you form
a column vector, Z of independent standard normals. The covariance matrix of
Z is CZ = E[ZZt] = I. Then you compute Y = LZ. The covariance of Y then
becomes

CY = E
[
Y Y t

]
= E

[
LZZtLt

]
= LE

[
ZZt

]
Lt = LILt = LLt = C .

As an example, one might try to use sector factors as well as an overall
factor to model bond defaults. For example, you could classify the bonds into
sectors (housing, tech, energy, etc.) and create sector factors as well as an overall
factor. Then each bond could have a sector loading as well as the idiosyncratic
and overall market factors. It is not clear how one would calibrate such a model.

2 Market price of risk

We now leave credit risk and begin a long discussion of short rate models of the
yield curve. In these models, the yield curve is explained using a single diffusion
process for rt, the short rate, or overnight rate. In these models the short time
bond price is given by

B(t, t+ dt) = e−rtdt . (5)

At time t = 0 (today), the future short rate rt is unknown. Only B(0, dt) =
e−r0dt is known today. A primary goal of this approach to interest rate modeling
is to predict the yield curve, deriving a formula for B(0, t), from the stochastic
differential equation for rt.
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The arguments here are different from those used to derive the Black Scholes
model because they do not require rt to be a tradable asset. The short rate one
factor models assume that the yield curve at any given time t is a function of rt
alone. This means that in the part of the economy related to the yield curve,
every tradable asset is driven by the same single source of noise that drives rt.
However, the various traded assets are not payouts on rt, as they were in the
Black Scholes derivative pricing model.

Following Hull, Chapter 27, suppose the traded assets have price histories
ft, gt, ht, etc. Given that prices are positive, we can write the dynamics as

dft = µf,tft dt + σf,tft dWt , (6)

dgt = µg,tgt dt + σg,tgt dWt , (7)

etc. Two comments about this. One is that these really are the definitions of
µf,t and σf,t. We do not suppose that µ and σ are constant. We do not know
how they change with time or how they differ from each other. But if ft is a
diffusion and is positive, we can define µf,t and σf,t as

µf,t =
E [dft | Ft]

ft dt
,

σ2
f,t =

var [dft | Ft]
f2
t dt

.

Economists have the notion of risk vs. return as a tradeoff – you get more
expected return in exchange for accepting more risk. Of course, some investors
are more risk averse than others. But the market should come to some balance
where the law of supply and demand turns the risk preferences of the market
participants into an overall market risk aversion. One manifestation of this is
the quantity market price of risk, which is

λt =
µf,t − rt
σf,t

. (8)

The notation here has λ depending on time, but not on f . This is the funda-
mental theorem of one factor markets: The market price of risk is the same for
every traded asset in a one factor market.

The proof uses a hedging argument of the kind we used in the Black Scholes
pricing theory. We make a locally risk free portfolio that is carefully constructed
linear combination of traded assets, and argue that the return on risk free port-
folios is the risk free rate. For now, everything takes place at the same time t,
so I do not write the t subscript. Let f and g be two traded assets, and choose
a portfolio

Π = ∆ff −∆gg .

The weights ∆f = gσg and ∆g = fσf make the coefficient of dW in dΠ, which
is

∆ffσf − ∆ggσg = gσgfσf − fσfgσg
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equal to zero. Therefore, rΠ dt = E[dΠ], which gives

r ( gσgf − fσfg ) dt = ∆fE [df ] − ∆gE [dg] = gσgµff dt − fσfµgg dt .

Removing the common factors fg dt simplifies this to

rσg − rσf = µfσg − µgσf ,

which may be manipulated to

(µf − r)σg = (µg − r)σf ,

and finally to
µf − r
σf

=
µg − r
σg

.

This proves the claim that the right side of (8) is independent of the asset f .
The Black Scholes theory led us to consider reweightings of the measure

defining the process St that change the expected return from µ to r. In
general, we saw that Girsanov’s theorem allows reweightings that change the
drift coefficient, a(x), but not the noise coefficient b(x) in a diffusion given by
dX = a(X)dt + b(X)dW . In particular, we saw that the weight

L = e
R T
0 mtdWt− 1

2

R T
0 m2

tdt

Makes
EL [dWt | Ft] = mtdt

while keeping EL
[
dW 2

t

]
= dt. In this weighted world, we can calculate

EL [dft | Ft] = µf,tftdt + σf,tftEL [dWt] = µf,tftdt + σf,tftmtdt . (9)

Of course, the short time variance is unchanged:

varL [dft | Ft] = σ2
f,tf

2
t dt . (10)

This means that in the reweighted world, the equations (6) and (7) are changed
to

dft = (µf,t + σf,tmt) ft dt + σf,tft dW̃t , (11)

dgt = (µg,t + σg,tmt) gt dt + σg,tgt dW̃t . (12)

The notation d̃W indicates that the Brownian motion in (11) and (12) is dif-
ferent from the one in (6) and (7). But you are not supposed to take this
so seriously. The real definition of a stochastic process is (9) and (10). The
stochastic differential equation (11) is just a convenient way to express (9) and
(10).

Well, the equations (11) and (12), in that it is the same dW̃ in both, also
express the fact that

cov(dft, dgt | Ft) = EL[ dft dgt | Ft] = σf,tσg,tftgt dt .
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This makes the correlation coefficient between dft and dgt equal to one:

corr(dft, dgt | Ft) =
cov(dft, dgt | Ft)√

var(dft | Ft) var(dgt | Ft)
= 1 .

As an aside, note that you can state the hedging argument above as saying
that if var(dΠt | Ft) = 0, then dΠt = rtΠtdt. To summarize, reweighting using
the function mt in the Girsanov formula changes the expected return of every
traded asset as (11) and (12). The market price is also changed

λt → λt + mt , (13)

as you can see by using (11) in (8). A reweighting can change the market price
of risk, but it cannot change the fact that it is the same for every traded asset.

The formulas for bond prices are derived by making quotients of traded
assets into martingales through rewieghting. Recall that a diffusion Xt is a
martingale if E[dXt | Ft] = 0. To figure out the expected change of quotients,
we use the Taylor expansion

1
1 + ε

= 1− ε+ ε2 +O
(
ε3
)
.

Continuing,

1
x+ ε

=
1

x
(
1 + ε

x

) =
1
x

1
1 + ε

x

=
1
x

(
1− ε

x
+
ε2

x2
+O

(
ε3
))

=
1
x
− ε

x2
+
ε2

x3
+O

(
ε3
)
.

Applying this to the quotient gives (dropping terms like (dgt)
3 as usual)

d

(
ft
gt

)
=

ft + dft
gt + dgt

− ft
gt

= (ft + dft)

(
1
gt
− dgt

g2
t

+
(dgt)

2

g3
t

)
− ft
gt

=
(
dft
gt
− ft dgt

g2
t

)
+

(
−dft dgt
g2
t

+
ft (dgt)

2

g3
t

)
.

The formulas (6) and (7) imply that dft dgt = ftgtσf,tσg,t dt, and the above
simplifies to

d

(
ft
gt

)
=

ft
gt

(
µf,t − µg,t − σf,tσg,t + σ2

g,t

)
+

ft
gt

(σf,t − σg,t) dWt .

Therefore, ft
gt

is a martingale in a given weighing (13) if, in that weighting,

µf,t − µg,t − σf,tσg,t + σ2
g,t = 0 . (14)

We start by substituting (8) and (13), which puts this condition in the form

r + λtσf,t + σf,tmt − r − λtσg,t − σg,tmt − σf,tσg,t + σ2
g,t = 0 ,
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which simplifies to
λt + mt − σg,t = 0 .

This gives the following conclusion: the reweighting that makes ft/gt into a
martingale is the reweighting that makes λt = σg,t – the market price of risk is
equal to the volatility of g. Notice that this does not depend on which f you
use. If ft/gt is a martingale, and if ht is another traded asset in this one factor
world, then ht/gt also is a martingale.

The denominator, gt, is called the numeraire. The ratio ft/gt is the size of
ft measured in units of gt. The numeraire is the standard unit used to measure
the sizes of other things. The reweighted measure in which ft/gt is a martingale
is the martingale measure for numeraire gt. Any traded asset can be used as
the numeraire. Of course, there is a reweighting in which λt = 0. This is the
risk neutral measure, as before.

3 Money market as numeraire

The money market fund is the totally liquid fund that is always invested at the
risk free rate. You can think of the money market fund as being invested in the
overnight rate every day. This will earn the short rate in each time interval dt.
That means that

dMt = rtMt dt . (15)

We may as well assume M0 = 1. We can integrate the ordinary differential
equation (15), and use the initial condition, to get

Mt = e
R t
0 rs ds . (16)

If you take the Ito differential of (16), you get (15) with no Ito term because
(dMt)

2 = r2tM
2
t (dt)2 = 0. Of course, Mt is a tradable asset, as one can invest as

much money as one likes in the short rate and add or remove funds at will. This
is the definition of tradable asset. Because σt,M = 0, the martingale measure for
Mt, the reweighting that makes ft/Mt a martingale, is the risk neutral measure:
λ = σM,t.

Consider a traded zero coupon bond that matures at time T . Before it
matures, its price is B(t, T ). In the money market, risk neutral, martingale
measure,

B(t, T )
Mt

is a martingale, when considered as a function of t with T being a fixed param-
eter. Therefore (and this is the main point)

B(0, T )
M0

= ERN

[
B(T, T )
MT

]
.

With the information available at time t = 0, the left side is known, which
explains why there is no expectation on the left. Also, M0 = 1 is the initial
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value of the money market fund. Finally B(T, T ) = 1. Altogether, we get a risk
neutral formula for the bond price today, using (16):

B(0, T ) = ERN

[
e−
R T
0 rtdt

]
. (17)

4 Models of the short rate

Using the pricing formula (17), any model of the short rate gives a prediction
of the shape of the yield curve. These models of rr are different from the stock
price (equity) models we used before. There we derived the risk neutral model
from the real world model using the arbitrage argument. Here we directly model
the risk neutral measure.

Generally speaking there are two kinds of one factor short rate models,
equilibrium models and no arbitrage models. The term equilibrium model comes
from the fact that these models predict a long term equilibrium model for the
probability distribution of rt. This is possible because, unlike stocks, there is no
reason the short rate cannot be mean reverting, tending to a natural long term
value. These models have a small number of parameters that can be calibrated
by using a known yield curve. They have the drawback that they cannot fit
any given yield curve. The more complex equilibrium models have more fitting
parameters and can fit a wider range of yield curve shapes.

No arbitrage models contain whole functions of time as parameters. For this
reason, they can fit a more or less arbitrary yield curve shape. This is called
“no arbitrage” because if you offered a bond for sale at a price different from
the yield curve, that would create an arbitrage opportunity for your customers.

The simplest equilibrium model that makes any sense is the Vasicek model

drt = a(r − rt)dt + σdW . (18)

The parameters are a, the mean reversion rate, r, the equilibrium interest rate,
and σ, the volatility of the short rate. Mathematicians call the diffusion process
that satisfies

dXt = −aXtdt + σdWt

the Ornstein Uhlenbeck process. The substitution Xt = rt− r turns the Vasicek
model into the Ornstein Uhlenbeck process. The solution is given by

Xt = e−atX0 + σ

∫ t

0

e−a(t−s) dWs .

In terms of the short rate, this is

rt = r + e−at (r0 − r) + σ

∫ t

0

e−a(t−s) dWs . (19)

This means that rt is a gaussian random variable with mean

E [rt] = r + e−at (r0 − r) ,
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and variance

var [rt] = σ2

∫ t

0

e−2a(t−s) ds =
σ2

2a
(
1− e−2at

)
.

Clearly, mean and variance of rr converge to finite values r and σ2/2a as t→∞.
This is the limiting equilibrium distribution of rt, which confirms the statement
that it is an equilibrium model.

Moreover, it is possible to evaluate the expectation (17) explicitly. One way
to see this is that the exponent Z = −

∫ T
0
rtdt is a Gaussian random variable as

well. We know that E
[
eZ
]

= eµZ+σ2
Z/2. Integrating (19) allows us to evaluate

µZ = −E
[∫ T

0
rtdt

]
and σ2

Z = var
(∫ T

0
rtdt

)
explicitly. The result is that when

T is large,

B(0, T ) ≈ e
−
“
r− σ2

2a2

”
T
, (20)

You get the effective yield, Y T , (these are the numbers plotted in the yield
curve) for B(0, T ) with

e−Y TT = B(0, T ) ,

This, together with (20) gives the long term yield as

Y T ≈ r − σ2

2a2

Note that although the short rate mean reverts to r, the long term yield is less
than the average short rate by an amount that depends on the volatility and
the rate of mean reversion.

There are several criticisms of the simple Vasicek model. One is that it has a
limited range of shapes of the yield curve. Another is that it allows the interest
rate sometimes to be negative. The Cox Ingersoll Ross model, called CIR most
of the time, fixes the latter. It is

drt = a (r − rt) dt +
√
rtσ dWt . (21)

The factor
√
r in front of the noise effectively turns off the noise as r → 0, which

means that the noise will not push r into negative territory. The yield curve
shapes for the CIR model are similar to those of the Vasicek model, but the
formulas are more complicated.

9


