
Derivative Securities, Fall 2010
Mathematics in Finance Program
Courant Institute of Mathematical Sciences, NYU
Jonathan Goodman
http://www.math.nyu.edu/faculty/goodman

Week 3
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1 Dynamic replication

The dynamic replication strategy of Black and Scholes is important enough that
it is worth repeating from last week. Recall the setup. From day1 k − 1 to day
k, the stock (risky asset price) either goes up Sk−1 → Sk = uSk or goes down
Sk = dSk−1 (recall that we actually did not necessarily need u > 1 or d < 1, but
it is convenient to think of u as up and d as down.) The replicating portfolio
is a dynamically rebalanced combination of stock and cash. At time t0 = 0 the
value is f0(S0), which is known today. At time tk, the value will be fk(Sk),
which is not known today. More precisely, the numbers fk(s) are known today
for all possible values of Sk, but we do not know Sk. At the expiration time,
the value will be fn(Sn) = V (Sn). No matter which value Sn takes, the value
of the portfolio at time tn = T will be exactly the payout of the option. The
replicator will be able to satisfy the option holder by liquidating the portfolio.
Repeating from last week, there also is an arbitrage argument. If the option
is not selling for f0(S0), the arbitrager can buy or sell the option and make a
guaranteed profit by replicating the option and keeping the price difference.

We review in more detail the rebalancing step on day k. The replicator
ended day tk−1 with ∆k−1 units of stock and Mk−1 “units” of cash (bond).
The value of the stock position was Xk−1 = ∆k−1Sk−1. The total value of the
portfolio was Xk−1 +Mk−1. Let us assume that this was equal to the planned
value fk−1:

∆k−1Sk−1 + Mk−1 = fk−1(Sk−1) .

The next morning (assuming the stock moves only overnight) the replicator
finds either Sk = uSk−1 or Sk = dSk−1. The stock position is now worth X−k =
∆k−1Sk and the cash position is now worth M−k = 1

BMk−1. Rebalancing on day
k means choosing Xk 6= X−k and Mk 6= M−k but with X−k +M−k = Xk+Mk. The
last condition is that the replication strategy is self financing. The replicator
does not add or remove assets from the replicating portfolio, she or he only
moves some of the assets from cash to stock or from stock to cash.

On day tk−1 the replicator chose ∆k−1 so that the portfolio value on the
morning of day tk would be fk(Sk). She or he did that knowing that Sk =

1I refer to time tk as day k. Real dynamic trading strategies could rebalance more often
(up to several times per second) or less often (each month).
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uSk−1 or Sk = dSk−1, but not which. She or he also knew the target numbers
fu = fk(uSk−1) and fd = fk(dSk−1). On day k − 1, the portfolio equations
therefore were (see equation (4) from Week 2)

fu = ∆k−1uSk−1 + Mk−1

fd = ∆k−1dSk−1 + Mk−1 .

}
(1)

Solving as last week gives

∆k−1 =
fu − fd

uSk−1 − dSk−1
, (2)

and
Mk−1 = B

ufd − dfu
u− d

. (3)

The value of this portfolio on day k − 1 was (do the math)

∆k−1Sk−1 + Mk−1 =
1−Bd
u− d

fu +
Bu− 1
u− d

fd . (4)

This is exactly fk−1(Sk−1), if the fk are chosen using equation (18) from Week
2.

So, the replicator arrives on day k to find a portfolio worth fk(Sk), but the
allocation is wrong. She or he uses the formulas (2) and (3), but for day k, to
calculate the new ∆k and Mk. She or he is pleased to see that ∆kSk + Mk =
fk(Sk), confirming that f had been computed correctly and the hedge had been
done accordingly up to that point. If ∆k > ∆k−1, she or he buys ∆k − ∆k−1

shares of stock at the price Sk. The cost turns out to be exactly M−k −Mk

(because Xk −X−k = (∆k −∆k−1)Sk = M−k −Mk, do the math).

2 Probabilities on path space

In math, the set of objects you are considering is called your space. For example,
in linear algebra the set of all vectors forms a vector space. Probability has
its probability spaces. For example, if X is a scalar random variable, then
R is the probability space. In dynamic pricing theory, the random object is the
sequence of stock prices S[0,n] = (S0, S1 . . . , Sn). Such a sequence is a path. More
generally, the notation S[i,k] will refer to an object of the form (Si, Si+1, . . . , Sk).
If the random object is a path, we say the probability space is a path space.

One can ask questions about the path, such as Pr(Si < K for 0 ≤ i ≤ n).
Any set of paths,2 such as the set of paths with Si < K for 1 ≤ i ≤ n, is called
an event. If A is an event, then Pr(A) is the probability that the path is in A.
It is the sum of the probabilities of the paths that make up this event:

Pr(A) =
∑

S[0,n]∈A
Pr(S[0,n]) . (5)

2Warning, if the probability space is continuous then there are non-measurable events what
do not have probabilities. You may learn more about this in Stochastic Calculus, but not in
this class.
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This simple formula may not be very useful in practice, particularly if the num-
ber of terms is too big for the computer to handle.

The risk neutral probabilities of paths in the binomial model are determined
by the rules that each step is independent of all previous steps, and that the
probability of an up or down step is pu or pd. Since steps are independent, the
probability of two steps being up is p2

u, etc. The probability of a given path of
length n is pjup

n−j
d , where j is the number of up steps. This probability does

not depend on which of the n steps are up. It is the same for all paths that
contain j up steps. Therefore, the probability of j up steps is pjup

n−j
d multiplied

by the number of paths with j up steps. That number is(
n
j

)
=

n!
j!(n− j)!

=
n(n− 1) · · · (n− j + 1)

j(j − 1) · · · 2
.

Therefore,

Pr(Sn = ujdn−jS0 ) =
(
n
j

)
pjup

n−j
d . (6)

This formula is an instance of the general formula (5). The event A is the set
of paths with j up steps, which is the set of paths with Sn = ujdn−jS0. Each
of the terms in the sum on the right of (5) is the probability of the path, which
is pjup

n−j
d . This is the same for every such path. The number of paths in this

event is
(
n
j

)
.

Next week we will use (6) in the limit n → ∞ with pu and pd chosen
appropriately to derive the lognormal distribution of ST .

3 Adapted processes, filtrations, martingales

A discrete time stochastic process is a sequence of random variables X1, X2, . . .
We usually think of Xk as the value of some number at time tk. Another way
to say this is that tk is the time when you learn the value of Xk. The stock
price is an example of a stochastic process. The stock price at time tk is Sk.
This becomes completely known at time tk but not before.

We make financial decisions at time tk depending on the information avail-
able at that time. If the world consists of a single stochastic process, Sk, the
information available at time tk is the values Si for i ≤ k. At time tk you are
supposed to work with the conditional probability distribution of Sk+1, condi-
tional on S0, S1, . . ., Sk. We write Fk to represent the information available at
time tk. We use it in conditional expectations, such as

E[Sk+1 | Fk]

In this class, we will treat this as being the same as E[Sk+1 | S[0,k]], though
fancier discussions of stochastic processes treat them as different kinds of ob-
jects.
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The recurrence formula (4) may be written in terms of the risk neutral
probabilities

pu =
1
B

1−Bd
u− d

, pd =
1
B

Bu− 1
u− d

. (7)

as (changing k − 1 to k and writing EQ for expectation in the risk neutral
measure)

fk(Sk) = B
(
pufk+1(uSk) + pdfk+1(dSk)

)
= BEQ [ fk+1(Sk+1) | Fk] . (8)

This is firstly because the conditional probability given Fk is the conditional
probability given S0, . . .,Sk is the same as the conditional probability given Sk.
Secondly, given Sk, Sk+1 can have the values uSk or dSk, and the probabilities
are pu and pd respectively.

If the option payout is Sn, then the option is identical to the stock, so we
should have fk(Sk) = Sk. In particular, you can check that

EQ [Sk+1 | Fk] = puuSk + pddSk =
1
B
Sk . (9)

If A is any random variable depending on S[0,n], then E[A | Fk] is a function
of S[0,k]. It might not be a function of Sk alone. For example, if you have a
contract that pays Si at time i until it expires at time n, then A =

∑n
i=0 Si. A

calculation shows that

E[A | Fk] =
k−1∑
i=0

Si +
1

Bn−k − 1
1
B − 1

Sk (10)

You will be asked to derive this in the homework. Notice that the right side
depends on information that is known at time tk.

The “datasets” Fk form something called a filtration. The definition of
filtration is that Fk ⊆ Fk+1, which is to say that any information available
at time tk is still available at time tk+1 (i.e. no disk crashes or congressional
investigations). The stochastic process Xk is adapted to the filtration if the
value of Xk is completely determined by the information in Fk, which is to
say Xk = E[Xk | Fk]. For example, if Fk is generated by (i.e. determined by
the all the information in) S[0,k], then Xk =

∑
i≤k Si or Xk = Sk/Sk−1, or

Xk = maxi≤k Si all are adapted to Fk. On the other hand, Xk = Sk+1 is not
adapted to Fk. Any trading or hedging strategy must be adapted, because the
decision made at time tk must use only information available then.

An adapted (to Fk) stochastic process X[0,n] is called a martingale if

E[Xk+1 | Fk] = Xk . (11)

If Xk represents the value of a portfolio at time tk, the martingale condition
says that the portfolio never has a positive or negative expected return. A
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simple example is the discounted future stock price in the risk neutral process,
Xk = BkSk, which satisfies

EQ[Xk+1 | Fk] = BEQ[BkSk+1 | Fk] = BkSk , (12)

Because BEQ[Sk+1 | Fk] = Sk.
The same example may be restated in terms of the forward price. Let us fix

the delivery date as T = tn > tk and write Fk as the forward price at time tk
of the stock for delivery at time T . This is

Fk =
1

B(n−k)Sk . (13)

The fact that the forward price is a martingale in the risk neutral measure is
practically the definition of risk neutral measure. The forward price at time tk
is the price the market would agree on at time tk for the asset at time T . In a
risk neutral world, this is the expected price given the information available at
time tk, (i.e. conditional on Fk). That is

Fk = EQ[Sn | Fk] ,

which is the same as (13). The fact that the forward price is a martingale in the
risk neutral measure makes many pricing and hedging arguments simpler when
using the forward and cash rather than using the underlier and cash.

An important fact about martingales is a theorem of Doob3 that says you
can’t make an expected profit with a trading strategy on a martingale. Suppose
Xk is a martingale adapted to the filtration Fk. An adapted trading strategy is
a sequence of positions Rk, also adapted to Fk. At time tk the investor places
a bet of size Rk on Xk+1 −Xk. The total winnings up to time tk are Yk, which
satisfy

Yk+1 = Yk + Rk(Xk+1 −Xk) . (14)

The strategy Rk being adapted means that Rk is a function of X[0,k]. From (14)
you can see that Yk also is adapted to Fk. You can prove this by induction on k,
which means that we assume Yk and Rk are determined by X[0,k] and show that
Yk+1 is determined by X[0,k+1]. But this is clear from (14). Every number on
the right side is determined by the numbers up to Xk. The new information one
learn at time tk+1 is only the value of Xk+1. Therefore, Yk+1 is determined by
X[0,k+1]. In particular, it is possible to have betting strategies Rk that depend
on Yk as well as Xk. For example, we could stop betting (set Ri = 0 for i ≥ k)
if Yk is bigger or smaller than a given level.

Doob’s theorem is that Yk also is a martingale. This is obvious from (14).
We need to show that E[Yk+1 | Fk] = Yk. But on the right side of (14), only
Xk+1 is random, given Fk. That means that

E[Yk+1 | Fk] = Yk + Rk (E[Xk+1 | Fk] − Xk ) .
3You might call this the Doob martingale theorem, but there are several martingale theo-

rems by Doob. This one is related to the Doob stopping time theorem that we may discuss
later (otherwise, you will see it in Stochastic Calculus).
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And, of course, E[Xk+1 | Fk] − Xk = 0 because Xk is a martingale.
The Doob stopping time paradox is an interesting example of the martingale

theorem. Stopping time means adapted stopping time. Suppose, for concrete-
ness, that Xk+1 = Xk ± 1 with all steps independent. This Xk is a martingale
if Pr(+1) = Pr(−1) = 1

2 . Suppose further that X0 = 0 and the we stop the first
time Xk = 3 (say). That is Rk = 1 if Xi < 3 for all i ∈ [0, k] and Rk = 0 if
Xi = 3 for any i ≤ k. The stopping time (also called hitting time), denoted τ , is
defined in this case as τ = min {i | Xi = 3}. You should verify for yourself that
(14) implies that Yi = Xi if i ≤ τ and Yi = 3 for i > τ . The term “stopping
time” is because because the Y process stops the first time Xk = 3.

The paradox concerns the fact that E[Yk] = 0 for all k, and yet4 Pr(Yk =
3)→ 1 as k →∞. Informally, let Y = limk→∞ Yk. On one hand, Y = 3 (almost
surely, which means “with probability one”), so E[Y ] = 3 (duh!). On the other
hand, Y is the limit of a sequence of the Yk with E[Yk] = 0, so we might expect
E[Y ] = 0. This Yk represents the betting strategy: “Keep betting until you are
up 3, then stop.” You are guaranteed to hit 3 and stop eventually. This seems
to a certain way to make a profit betting on a martingale. The answer is that
you may have to wait arbitrarily long or go arbitrarily far into debt first. If
you have a limit on the length of time or a limit on the maximum debt, then
the expected value remains zero. For large k, Yk is likely to be equal to three.
But it has enough probability to be far in the negative that its expected value
is zero. This is a way to skew the return to the positive without changing the
expected return (another was on homework 1).

The tower property is a simple but useful fact about conditional expectation.
Suppose i < k so Fi ⊆ Fk. Suppose A is some random variable and Ak = E[A |
Fk]. The tower property is the fact that

E[Ak | Fi] = E[A | Fi] = Ai .

Suppose i corresponds to Monday, k corresponds to Tuesday, and A is the value
on Friday. Then Ak is the expected value of A given what we know Tuesday.
The tower property says that the expected value of the value on Friday, given
the information on Monday, is the expected value on Monday of the expected
value on Tuesday. I do not give a formal proof of this intuitive fact.

If Xk is a martingale then E[Xn] = X0, a consequence of the tower property.
But the martingale property is much more than this. For example, suppose
X0 = 0 and Xk+1 = .5Xk +Zk, where the Zk are independent random numbers
with mean zero. Then E[Xn] = 0, but the Xk do not form a martingale. In fact,
E[Xk+1 | Fk] = .5Xk (assuming that Fk is generated by Z1, . . . , Zk). This says
that if Xk is positive, then Xk+1 is likely to be smaller than Xk. It is possible
to make an expected profit trading on a mean reverting process like this.

Stochastic processes and martingales can be more than one dimensional.
We would say that Xk = (X(1)

k , X
(2)
k ) is a two component stochastic process if

each of the components is a stochastic process as above. We would say that
this process is a two dimensional martingale if it satisfies (11). Doob’s theorem

4Take my word for this, or wait until you cover it in Stochastic Calculus.
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holds for multi-component martingales as well. You cannot make an expected
profit trading in the components of a multi-component martingale.

4 Martingale measure, P and Q, and re-weighting

(I did not cover this material in class, but you will be responsible for it.)
We do not immediately need the material in this section. We will use it

when we get to yield curve modeling in Week 10, if the current schedule holds.
I put it here because it is so simple and concrete in the binomial model while it
is much more technical in the setting of continuous time diffusion processes.

It is possible that a stochastic process5 Xk may be re-weighted to form a
martingale. This is useful because then X0 = EM [Xn], where we write EM [· · ·]
for the martingale measure in which Xk is a martingale. This is a pricing
formula if Xk is the market price of some asset and Xn is easy to understand.
For example, Xk may be the price of a European option that expires at time
tn, or Xk may be the price of a bond that pays 1 at time tn. The martingale
measure M then plays the role of a risk neutral measure.

The simplest form of re-weighting involves a random variable X ∈ R and
two probability densities f(x) and g(x). Let us suppose that f(x) is the “real
world” probability density of X – the density you would estimate from many
measurements of X. Define the likelihood ratio6 L(x) = f(x)/g(x). Suppose
that g(x) 6= 0 if f(x) 6= 0, so L(x) is well defined wherever it needs to be.
Consider the simple identity∫ ∞

−∞
V (x)f(x) dx =

∫ ∞
−∞

V (x)L(x)g(x) dx .

We re-write this as
Ef [V (X)] = Eg[V (X)L(X)] . (15)

This gives two different ways to compute Ef [V (X)]. The left side assumes that
X is in the f−world with the corresponding f probability density. The right
side assumes that we are in the g−world where g is the probability density of
X. To get the same answer, we have to include the weight factor L(X) in the
right side of (15). The likelihood ratio allows us to change “worlds” from the
f−world to the g−world.7

In passing I note that re-weighting schemes like (15) are the basis of a Monte
Carlo technique called importance sampling. On the left, you generate samples
from the f density, evaluate V on the samples, and average. On the right, you
generate samples from the g density, evaluate V (X)L(X) and average. If you
do it right, the expected values are the same. The idea there is to choose L so

5We always assume that a stochastic process is adapted to some filtration Fk and often
neglect so say so.

6The likelihood ratio is Radon Nikodym derivative of the probability measure f(x)dx with
respect to g(x)dx, but we do not need this fancy measure theory fact here.

7I do not love the “world” terminology, but Hull and many others use it.
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that the Monte Carlo error in evaluating the right side is much less than the
error in evaluating the left side.

Now back to paths. Consider a Q world where pu = Pr(Sk → uSk) and
pd = Pr(Sk → dSk). In this world, the probability of a particular path S[0,n] is
pjup

n−j
d , where j is the number of up steps. Suppose there is a P world where

ru = Pr(Sk → uSk) and rd = Pr(Sk → dSk), but ru 6= pu. (It would seem more
natural to use qu and pu for the up probabilities in the Q and P worlds, but pu
for the Q world is universal, so we have to make do.) Anyway, to re-weight the
Q probabilities to P probabilities, we need the likelihood ratio defined through
the relation

PrQ(P[0,n]) = L(P [0, n]) PrP (P0,n]) . (16)

The path P0,n] is the same on both sides, so j, the number of up-steps, also is
the same. This means that the likelihood ratio is

L(P[0,n]) =
(
pu
ru

)j (
pd
rd

)n−j
. (17)

If A(P[0,n]) is any function of a path (the maximum, the average, etc.), then

EQ[A(P[0,n]) ] = EP [L(P[0,n])A(P[0,n]) ] .

5 Calibration of binomial models

Calibration is the process of choosing parameters in a model to match market
data. Our binomial tree market model has parameters u, d, and δt = tk+1 −
tk. Roughly speaking, the two kinds of calibration are historical and implied.
Historical calibration is a statistical estimation process in which one estimates
parameters in the market model to fit the observed dynamics of the markets.
Implied calibration means choosing parameters so that predicted option prices
match those in the market. One finds the parameter values that are implied
by market option prices. As a general rule sell siders tend to be Q measure
people who do implied calibration, while buy siders use the P measure and
historical calibration. This class discusses implied calibration mostly. Historical
calibration is discussed in asset allocation classes such as Risk and Portfolio
Management with Econometrics.

Implied calibration, in effect, uses some market prices of some options to
make predictions or judgements about other option prices. For example, an
options dealer may need to quote a price for an OTC8 option requested by a
customer on an underlier that also has exchange traded vanillas. Or a hedger
may want to know the ∆ of an exchange traded option to estimate how much
the option price will change as a function of the pric of the underlier.

8OTC stands for over the counter. It refers to options not sold on exchanges, but negotiated
directly between the counterparties. Prices of and terms OTC options may or may not be
made public. This is one of the subjects of current revisions of financial regulations, as you
can read in some links posted on the class site.
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One often hears the statement that implied parameters are better than his-
torical parameters because the implied ones are “forward looking”. They are
said to represent the market’s view of future parameter values rather than es-
timates of past parameter values. There are empirical studies showing this is
true to some extent. For example, implied volatility (definitions to follow) may
be a somewhat better predictor of future realized volatility than past realized
volatility.

An embarrassment of implied calibration is that the parameters, which are
supposed to depend only on the dynamics of the underlier, actually depend on
which options you use for calibration. If the binomial tree model were exactly
true, one set of model parameters would produce market prices for all exchange
traded options on a given underlier. Instead we have expressions such as volatil-
ity skew and smile to express the dependence on the strike of the option, and
term structure of volatility, or even volatility surface9 to express the dependence
on expiration time and stock prices.

After those disclaimers, I want to talk about calibrating a binomial tree
process to market data. We will do this again when we come to the continuous
time model, but the present calibration exercise will make the continuous time
version easier to understand. We use the log process, Xk = log(Sk). The main
observation is that Xk is a random walk if Sk is the binomial tree process. To
see this (and learn the definition of random walk), note that conditional on Fk
there are two possible values of Xk+1. In the up state, Xk+1 = log(Sk+1) =
log(uSk) = log(Sk)+α = Xk+α, where α = log(u) and β = log(d). This makes
Xk a binary random walk with step probabilities

Xk+1 = Xk +
{
α with probability pu
β with probability pd

Let Zk be the step taken at time tk, which satisfies pu = Pr(Zk = α) and
pd = Pr(Z = β). The Zk for different k values are independent, but have the
same distribution.10 The Xk process may be rewritten

Xk+1 = Xk + Zk . (18)

A stochastic process like (18) with the Zk being i.i.d. is called a random walk.
Sometimes I will call it an arithmetic random walk so that the original binomial
tree process can be called a geometric random walk. This terminology is not
standard, but it is standard to call St = eWt a geometric Brownian motion if
Wt is an ordinary (arithmetic) Brownian motion.

Now suppose that X0 = log(S0) is fixed and not random. Suppose that
the time intervals δt = tk+1 − tk are all the same size so that tk = kδt. Then
the volatility, σ (often called vol), is defined by (I write Xtk instead of Xk to
emphasize the time.)

var(Xtk) = σ2tk . (19)

9See, for example, the excellent book The Volatility Surface by Jim Gatheral.
10Independent and identically distributed is written i.i.d.
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Since Xk = X0 + Z0 + · · ·+ Zk−1, X0 is not random, and the Zi are i.i.d. with
variance var(Z), and there are k terms, we get var(Xk) = k var(Z), and then

σ =

√
var(Z)
δt

. (20)

The volatility is a measure of the noisiness of the process. From (19) in the
form σ2 = var(Xtk)/tk, we see that the square of the vol is the rate of variance
increase of the log process. Next week we will study the continuous time limit
where take δt to zero and n to infinity so that T = nδt stays fixed. Today,
I just want to see how to adjust the parameters u and d so that the vol does
not change during that process. Since Xk is dimensionless (being the log of
something), (19) gives σ2 units of 1/time.

Now we have two “physical” parameters B and σ. B is given by the yield
curve (LIBOR or treasuries) and is the same for every asset. For small δt we
may take B = e−rδt, where r comes from the yield curve for short dated loans,
the short rate. The vol is different for each underlier, and may be inferred from
prices of options on the underlier. We have three model parameters u, d, and
pu. Therefore there is some freedom in choosing the model parameters from the
physical ones. Some arbitrary choice must be made. I choose symmetry of the
probabilities pu = pd = 1

2 . One also could assume symmetry of the steps, either
in S space (u − 1 = 1 − d) or in log space (d = 1/u, α = −β). It turns out
that whichever normalization you choose, the other two are almost true as well
when δt is small.

Assuming pu = pd = 1
2 , there are two equations that determine the two

model parameters from B and σ, which are

1
B

= upu + dpd =
1
2
(
eα + eβ

)
, (21)

and

σ2 =
var(Z)
δt

=
(α− β)2

4δt
.

(To see the latter, note first that var(Z) = 1 if α = 1 and β = −1 because then
Z2 = 1 always, so var(Z) = E[Z2] = 1. But this corresponds to α − β = 2.
Subtracting the mean does not change α− β and scaling Z scales the variance
by the square.11) It will be convenient to rewrite this as

α− β = 2σ
√
δt . (22)

In the binomial model, calibration just means finding the vol. This may be
found by trial and error, or a more sophisticated numerical equation solving
method. Given a trial σ, one computes α and β by solving (21) and (22). Next
one computes the binomial tree to determine the theoretical option price. The
vol is adjusted until this theoretical price matches a given market price. People
sometimes quote prices in implied vol. This implied vol depends on δt a little.

11The lengths we go to avoid algebra.
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But if δt is small enough, the dependence on δt may be negligible. An option
that is “selling for thirty vol”, means that the market price is the theoretical
binomial tree price (with a small δt) corresponding to σ = .3.

This discussion should make clear that the binomial tree model is not really
meant to be taken seriously as a model of price movements. If it were, we would
get u and d by watching price movements of the underlier and adjust pu.
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