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Week 4

1 Mathematical preliminaries

If X and Y are random variables, then X ∼ Y will mean that X and Y have the
same probability distribution. In other words, X ∼ Y if and only if E[V (X)] =
E[V (X)] for any function V . We also write X ∼ f if f is the probability density
of X. The normal density with mean m and variance v is written N (m, v), so
X ∼ N (m, v) means that X is a normal random variable with those parameters.
We already used the fact that if Z ∼ N (0, 1), then m+

√
vZ ∼ N (m, v). Taking

V (x) = ex, we get E[eX ] = E[em+
√
vZ ], so

1√
2πv

∫ ∞
−∞

ex e
(x−m)2

2v dx =
1√
2π

∫ ∞
−∞

emz+
√
vz e−z

2/2 dz .

You can understand this identity simply as using the change of variables x =
m+

√
vz, dx =

√
vdz in the integral. The same change of variables gives

1√
2πv

∫ a

−∞
ex e

(x−m)2

2v dx =
1√
2π

∫ a−m√
v

−∞
emz+

√
vz e−z

2/2 dz .

The upper limit on the right comes from x = a⇐⇒ z = a−m√
v

.
The relation X ∼ Y does not imply that X and Y have the same value.

For example, if Z ∼ N (0, 1), then −Z ∼ Z. If Zk are independent with Zk ∼
N (0, 1), then Z1 + Z2 ∼

√
2Z3.

If X ∼ f , then the cumulative distribution function, or CDF, is

F (x) = Pr(X ≤ x) =
∫ x

−∞
f(x′) dx′ .

The CDF for the standard normal is written N(z). It is given by

N(z) = Pr(Z ≤ z) =
1√
2π

∫ z

−∞
e−z

′2/2 dz′ . (1)

We use the N(z) notation because there is no explicit formula for the integral.
It is related to, but not the same as, the error function.

If X ∼ N (m, v), then

Pr(X ≤ a) = Pr(m+
√
vZ ≤ a) = N

(
a−m√

v

)
.
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Also, Pr(Z ≤ z) + Pr(Z ≤ z) = 1. Moreover, the symmetry of the standard
normal density implies that Pr(Z ≥ z) = Pr(Z ≤ −z). Together, these imply
the relation

N(−z) = 1 − N(z) . (2)

If F (x) is the CDF of a random variable then F is an increasing function of
x that goes to zero as x→ −∞ and goes to one as x→∞. For the cumulative
normal, there are approximate formulas for these limits

N(z) ≈ 1√
2π

1
|z|
e−z

2/2 as z → −∞ (3)

N(z) ≈ 1 − 1√
2π

1
z
e−z

2/2 as z →∞ (4)

These approximations come from looking at the integral∫ ∞
z

e−t
2/2 dt

then making the change of variable t = z + s, expanding the exponential as
t2 = z2 + 2zs+ s2, then dropping the s2:∫ ∞

z

e−t
2/2 dt ≈ e−z

2/2

∫ ∞
0

e−zs ds = e−z
2/2 1

z
.

Well, the integrand e−zs should have been e−zs−s
2/2. But, and this is what

makes the approximation work, if z is large, then the e−zs already approaches
zero so quickly that the value of the integral is almost exactly determined before
the extra s2 makes a difference.

2 The continuous time limit

The Black Scholes model is a limit as δt→ 0 of the binomial tree model. There
are several reasons to want δt to go to zero. First, actual trading takes place
in nearly continuous time.1 Second, the continuous time limit would be a good
simple approximation even if δt were merely small.

The continuous time limit is a “good” approximation not only in the sense
that is reasonably accurate, but also in that it is simpler. The same thing hap-
pens in ordinary calculus. The δt→ 0 limit of a finite difference is the derivative.
It may take some time to make this limit rigorous in the mathematical sense,2

but the formulas and rules of differentiation are simpler than the rules of finite
1Trading time on exchanges is measured in milliseconds. On that scale, trading is done in

discrete orders. There can be many trades per millisecond, but on this scale it does not look
very much like Brownian motion, or the binomial tree model.

2Historically, it took about a century. Newton and Leibnitz started working with deriva-
tives and integrals in the late 1600’s. Boltzano and Cauchy gave the mathematical definition
of a limit in the late 1700’s.
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differences. The same is true for the δt → 0 limit of Riemann sums, which are
integrals.

The continuous time limit of the binomial tree process is geometric Brownian
motion. We will approach this in two steps. This week we discuss only the
δt → 0 limit of ST to see that this is a lognormal random variable. That is
enough to derive the Black Scholes formula. The stochastic dynamics, Brownian
motion, diffusion processes, and Ito calculus, all that is coming in a few weeks.

Now look back to (18) from Week 3 and the discussion there. The log variable
at time tk may be written

Xδt
tk

= X0 +
k−1∑
j=0

Zδtj . (5)

I have changed notation to explicitly how things depend on δt. X0 is known
and does not depend on δt, but the distribution of the steps Zδtj does. The
continuous time limit is the limit δt→ 0 and k →∞ with tk fixed.

The continuous time limit is a limit in distribution, which is written

Xδt
T
D→ XT as δt→ 0. (6)

This notation does not imply that the actual numbers Xδt
T converge as δt→ 0,

only the distributions of the random variables. This is related to the ∼ notation
used above, which might have been written D=. It means that

E
[
V (Xδt

T )
]
→ E [V (XT )] as δt→ 0, (7)

at least for reasonable3 functions V . The distributions of the Xδt
tk

, and therefore
the distribution of X is in the risk neutral measure of the risk neutral binomial
tree.

If the Xδt
tk

have a limiting distribution, the central limit theorem says that it
should be Gaussian. This Gaussian has a mean and variance that grow linearly
with t:

Xδt
tk

D
≈ N (X0 +mkδt, σ2 kδt) = N (X0 +mtk, σ

2tk) . (8)

The mean and variance both are proportional to the number of terms in the
sum (5), which is k. If these are to have limits as δt → 0, E[Zδtk ] and var[Zδtk ]
must be proportional to δt. The formula (8) assumes this. The conclusion is
that

Xδt
T
D→ XT = N (X0 +mT, σ2T ) as δt→ 0. (9)

It is helpful in calculations to express XT in terms of a standard normal

Xt ∼ X0 + mT + σ
√
TZ where Z ∼ N (0, 1) . (10)

3The most common notion of “reasonable” in this context is that V should be continuous
and bounded. The payout functions we use are not bounded, but grow slowly enough as
|x| → ∞ that the limits (7) hold for them too.
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Since XT is the continuous time limit of the log process, ST = eXT is the
continuous time limit of the lognormal process itself, in the risk neutral measure.
Setting T − 0 gives S0 = eX0 . Therefore, we have

ST ∼ S0e
mT+σ

√
TZ . (11)

Now consider a European option that pays V (ST ) at time T . Let f(s, T ) be
the continuous time limit of the risk neutral price of option price today (at time
t = 0) if the asset spot price is S0 = s. This is given by

f(s, T ) = e−rTE [V (ST )]
= e−rTE

[
V
(
eXT

)]
= e−rTE

[
V
(
semT+σ

√
TZ
)]

f(s, T ) = e−rT
1√
2π

∫ ∞
−∞

V
(
semT+σ

√
Tz
)
e−z

2/2 dz . (12)

We said last week that σ, the volatility, is determined from market data.
The other parameter, m, is determined by theory. Risk neutral pricing theory
states that E[ST ] = erTS0. One way to see this is to apply the pricing formula
to the “option” that pays one unit of stock at time T . If there is no counterparty
risk or interest rate risk, there is no difference between having the stock given
to you at time T and having it today. Therefore, the price of the “option” must
be the price of the stock today. The risk neutral option pricing relation gives
S0 = e−rTE[ST ].

On the other hand, we saw in the first homework assignment that

E [ST ] = E
[
S0e

mT+σ
√
TZ
]

= S0e

“
m+σ2

2

”
T
.

Together with the above, this gives rT =
(
m+ σ2

2

)
T , which implies that m =

r − σ2

2 . Finally we reach the desired general expression

f(s, T ) = e−rT
1√
2π

∫ ∞
−∞

V

(
se

“
r−σ2

2

”
T+σ

√
Tz
)
e−z

2/2 dz . (13)

We end this section with some comments on the lognormal random variable

ST ∼ S0e

“
r−σ2

2

”
T+σ

√
Tz

.

If T is small, the exponent is close to zero and we can expand in a Taylor series.
The first non-trivial term in this Taylor series is a Gaussian:

ST
D
≈ S0 + σ

√
TZ +

(
r − σ2

2

)
T .

This means that for short time, stocks look roughly Gaussian, in the lognormal
model. Looking more carefully at the two terms, when T is small,

√
T is much
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larger than T . Therefore, we expect the noise term, σ
√
TZ,to dominate (be

larger than)
(
r − σ2

2

)
T , which is the drift term. All this is reversed when T

is large and the drift terms dominates. In the market today, r is so small that
we expect the drift term to be negative. This means that the typical value
of ST is roughly emT , where m is negative. This says that the typical ST is
exponentially small. You should wonder how a random variable that typically
is exponentially small manages to have an exponentially large expected value
E[ST ] = S0e

rT . The answer is that rare but very large ST values suffice to bring
up the mean. This is what people mean when they talk about the “fat upside
tail” of the distribution of ST for large T .

3 The Black Scholes formula

Black and Scholes gave formulas for the integrals (12) for the cases of vanilla
European puts and calls. The prices are called f(s, T ) = P (s, T ) and f(s, T ) =
C(s, T ) respectively. The put price comes from inserting the put payout (K −
ST )+ into the integral (12). I write ST (z) if I want to indicate how ST depends
on z. Since the payout is zero for ST > K, the integral over z only needs to go
up to Z∗, where ST (Z∗) = K. This equation is

K = se

“
r−σ2

2

”
T+σ

√
TZ∗ .

Solving gives

Z∗ =
log(K/s)−

(
r − σ2

2

)
T

σ
√
T

. (14)

With this, we can write the put price as

P (s, T ) = e−rTE

[(
K − se

“
r−σ2

2

”
T+σ

√
TZ
)

+

]

= e−rT
1√
2π

∫ Z∗

−∞

(
K − se

“
r−σ2

2

”
T+σ

√
Tz
)
e−z

2/2 dz , (15)

where Z∗ given by (14). The last integral is the sum of two terms, which will
become the two terms in the Black Scholes formula. The first one is just

Ke−rT
1√
2π

∫ Z∗

−∞
e−z

2/2 dz = Ke−rTN(Z∗) . (16)

The second term is

− se−
−σ2T

2
1√
2π

∫ Z∗

−∞
eσ
√
Tz−z2/2 dz .
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We evaluate this integral by completing the square as you did in homework 1:

σ
√
Tz − z2/2 = −σ2T/2 + σ

√
Tz − z2/2 + σ2T/2

= −
(
z − σ

√
T
)2

/2 + σ2T/2 .

Now the second integral is

−s
√

2π
∫ Z∗

−∞
e(z−σ

√
T)2

/2 dz .

The last step is to simplify the exponent in the integrand for the purpose of
expressing the answer in terms of the cumulative normal. Therefore, take w =
z − σ

√
T , which is the same as z = w + σ

√
T . To express the upper limit of

integration in terms of w, define W∗ so that z = Z∗ when w = W∗. The formula
is

W∗ = Z∗ − σ
√
T =

log(K/s)−
(
r + σ2

2

)
T

σ
√
T

. (17)

The final form of the second integral is

−s
√

2π
∫ W∗

−∞
e−w

2/2 dw = −sN(W∗) , (18)

where W∗ is given by (17). Combining the two terms (16) and (18) gives a
formula for the put price

P (s, T ) = Ke−rTN(Z∗) − sN(W∗) . (19)

Now look in Hull (page 291). The formula there is a little different from
(19), with (14) and (17). Most people use the formulas in the notation of Hull,
so I write them here. It will be a homework exercise to use put/call parity and
(2) to see the equivalence.

d1 =
log(s/K) +

(
r + σ2

2

)
T

σ
√
T

(20)

d2 =
log(s/K) +

(
r − σ2

2

)
T

σ
√
T

= d1 − σ
√
T (21)

P (s, T ) = Ke−rTN(−d2) − sN(−d1) (22)
C(s, T ) = sN(d1) − Ke−rTN(d2) (23)

It is worthwhile taking the time to understand and interpret these formulas.
To start, the N function is dimensionless (being a number between 0 and 1).
To get a price (an amount of money), you need to multiply N by a price. For
both the call and the put, one term has s and the other has Ke−rT . Both of
these represent prices today. K by itself is a price paid in the future. You bring

6



it back to today, to compare it to s, by multiplying by the discount factor e−rT .
Note also the units in d1 and d2. The argument of the log, s/K, is dimensionless
as any proper argument to log should be. Because the log term is dimensionless,
the second part of the numerator also must be dimensionless, as rT and σ2T
are. The denominator, σ

√
T also is dimensionless, as we saw last week when

talking about the units of vol.
Similar comments concern (20), which may be rewritten as

d1 =
log(serT /K) + σ2T/2

σ
√
T

=
log(serT /K)

σ
√
T

+ σ
√
T/2 . (24)

The argument of the log is the ratio of the forward price to the strike price,
which is called moneyness. The moneyness terms are the same for d1 and d2,
only the noise correction 1/(σ

√
T ) change signs.

Next, consider how the put and call prices depend on s (more properly, the
moneyness). When s→ 0, both d1 and d2 go to −∞. This makes the arguments
in the N functions for P go to ∞ and those in C go to −∞. In this limit, the
put price simplifies to P (s, T ) ≈ Ke−rT −s, which is the the present price of a
forward contract with K as the settlement price. That means that when it is far
in the money, the put has approximately the same price as the corresponding
forward contract. This is natural; it is unlikely that the holder would not wish
to exercise the option, so her or his right not to do so is of little value. The
limit s → 0 takes the call out of the money, making the call worth very little.
d1,2 → −∞ takes both N functions in the call formula (23) to zero.

I end with a final trick for remembering the formulas. An at the money
forward contract has strike equal to the forward price, s = e−rTK. Both the
call and put need to have positive value in that case. The call in that case is
C = s (N(d1)−N(d2)). This happens only if d2 < d1, since N is an increasing
function of d. That is why you subtract something from d1 to get d2.

4 Implied vol

Suppose S0 is the spot price of a stock, and CM is the market price of a particular
call option on this stock with a specific strike and expiration. The implied vol
is the value of σ that makes (23) equal to CM . As we discussed last week, there
are several reasons to want the Black Scholes implied vol even if the price is
already known.

A math person would start by asking: “Do such values of σ exist? Are they
unique”. It helps to know the derivative with respect to σ. It happens that the
σ derivatives of P and C are the same. They are called Vega which usually is
written Λ (Hull uses a better, but non-standard V.). That is the Greek capital
Lambda, which looks like an upside down V. The formula is

∂P

∂σ
=

∂C

∂σ
= Λ = s

√
TN ′(d1) , (25)
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where (see (1)) N ′(z) = dN(z)
dz = 1√

2π
e−z

2/2. It takes some time to verify this,
but it is only algebra.

This formula answers the math questions. Since Vega is positive, there is
at most one implied vol for any price. Also, the pricing formulas (22) and (23)
show that, for fixed parameter values (s, r, K, and T ), both P and C are
bounded. For example, C < s always, because N(d1) < 1 and N(d2) > 0. The
bottom line is that the implied vol may exist, and if it does exist, it is unique.
In practice, market prices almost always lie in the range where the implied vol
is defined. In practice, the implied vol is found by solving for σ in the Black
Scholes formula using some numerical method.

If the Black Scholes model were correct, the implied vol would be the same for
every option on the same underlier. But this is far from true in the marketplace.
Instead, the implied vol depends on the strike and expiration in interesting ways.
There are many more sophisticated Black Scholes like theories – jump diffusions,
stochastic volatility, volatility surfaces, etc. – that you will learn about in future
classes.

To begin with, consider options expiring at a fixed time T on the same
underlier but with a range of strikes. We consider mostly short dated (small T )
options because longer dated options are less liquid. Out of the money options
are more interesting than in the money options because in the money options are
pretty much the same as forwards, as we saw today and in previous homeworks.
Puts are out of the money when the strike is below spot (ignoring erT factors
because T is small or r is small), while calls are out of the money when the
strike is above the spot. If you compute the implied vol as a function of the
strike, you typically will use puts below the spot and calls above. This implied
vol is a strike corrected measure of how expensive the option is. Out of the
money options naturally are cheaper than at the money options, but how much
cheaper should they be. If an out of the money has a much higher implied vol,
you can think of it as being relatively expensive, compared to the at the money
option.

Implied vol curves are characterized by skew and smile. Skew is the overall
slope. Equity implied vols usually skew up as the strike decreases. This means
that out of the money puts are more expensive (as measured in implied vol)
than at the money options or out of the money calls. There are several informal
explanations. One invokes the law of supply and demand. The market has a net
positive position in any equity, market cap is positive. This means that more
people own the stock and are worried about price drops than are short worried
about price increases. Out of the money puts are insurance against price drops,
so there is more demand for them. Support for this theory comes from currency
markets, which have less skew.

Smile is convexity of the implied vol curve. Out of the money options in
both directions have higher implied vol than near the money options. In cur-
rency markets, you can imagine there are traders on both sides of the currency
seeking protection against large moves. Another factor in the smile is that the
lognormal model greatly under-estimates the tails of the future price distribu-
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tion. The asymptotic formula (3) implies that put prices should decay more
than exponentially as the strike moves away from the spot. Actual deep out of
the money options are more valuable because the actual probabilities of going
there are much larger than the lognormal model estimates.

Implied vols often are larger for longer dated options (larger T ). One ex-
planation of this (though certainly not the only explanation) is a stochastic vol
model. Stochastic vol means that the vol itself is changing over time in an un-
predictable way. If the vol goes up, then the tails become larger the options
become more valuable. The longer the time horizon, the greater the chance the
vol has increased so the larger the implied vol for the total time period.

Liquidity is another factor that makes implied vol curves hard to interpret.
In most markets there is much less option trading than trading of the underlying
asset. The bid/ask spread4 is larger for options than for the underlier, and the
volume is much smaller. The quoted price may be the midpoint between the
bid and ask.

4Most markets have an order book listing offers, called limit orders, to buy or sell at certain
prices. The highest price of an offer to buy is the bid price. If you want to sell, you either
accept the bid price (a market order), or you enter a limit order in the order book and hope
that a buyer comes along who is willing to pay your price. The lowest offer to sell is the ask.
The difference between them is the bid/ask spread.
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