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Week 6

1 The Ito integral

The Black Scholes reasoning asks us to apply calculus, stochastic calculus, to
expressions involving differentials of Brownian motion and other diffusion pro-
cesses. To do this, we define the Ito integral with respect to Brownian motion
and a general diffusion. Things discussed briefly and vaguely here are discussed
in more detail and at greater length in Stochastic calculus.

Suppose X; is a diffusion process that satisfies (18) and (19) from week
5. Suppose that f; is another stochastic process that is adapted to the same
filtration F. The Ito integral is

t
Y, :/Ofsts. (1)

You could call this the “indefinite integral” because we care how the answer
depends on t. In particular, the Ito integral is one of the ways to construct a
new stochastic process, Y;, from old ones f; and X;.

It is not possible to define (1) unless f; is adapted. If f; is allowed to depend
on future values Xy (¢’ > t), then the integral may not make sense or it may
not have the properties we expect.

The essential technical idea in the definition of (1) is that dX, is in the
future of s. If we think that dX; = X445 — X5, then we must take ds > 0 (but
infinitely close to zero). This implies that if X; is a martingale, then Y; also is
a martingale. Indeed, following the argument of the last paragraph of week 5,
you look at (recall that fs has a known value given Fy)

E[fdX,|F] = fyE[dX,|F] = 0.

The martingale condition is that E[dX, | F5] = 0. At time s, with the infor-
mation in Fy, the value of f; is known but the value of the forward looking
differential dX; is not known. The tower property and F; C Fs implies then
that

E[fsts | ‘7:15] =0

too. Now you get

t/
t



The fact that (1) produces a martingale from a martingale is a continuous time
version of Doob’s theorem . Think of X; as a tradable asset and f; as a trading
strategy. You cannot make an expected profit trading on a martingale.

There is an official general way to define integrals like (1) that I will not give
here.! Instead I give a definition of the integral involves the limit as 6t — 0 of a
Riemann sum approximation. (The 6t here is not the same as the dt from week
5.) This works when X; and f; are diffusions. The approximation is

Yt&t = Z ftj (th+1 *th) : (2)
0<t;<t

Here, we used the familiar notation t; = j dt. The theorem is that the limit as
0t — 0 of the approximations (2) exists in some sense and the limiting process
Y, satisfies E[dY; | F)t] = 0 and var(dY; | F;] = f(¢)?b(X;)%dt.

Here is a hint at how it might go. We want to see what happens as §t — 0,
so we compare the 6t and the 6t/2 approximations. The smaller time step 6t/2
cuts each interval (¢;,%,41) in half. I adopt the notation ¢; 1o = (j + 5)dt. Let

R3 = Y% _ Y2t be the difference. A calculation shows that
ot
Rtt ~ Z (th+1 - th+1/2) (ftj+1/2 - ftj) :
t; <t
Let U; be the general term on the right:
U; = (th+1 - th+1/2) (ftj+1/2 - ft,-) :

If the R2* go to zero fast enough as 6t — 0, then it is likely that the limit of the
Y%t exists. For that reason, we calculate F {(th)q. This is

E [(Rfﬂ =Y Y B = ZE[Uin] + Y EUU) .

t;<tt;<t Ve

Looking at this shows the martingale and diffusion stuff at work. The second
sum is zero and the first sum is small. For the second sum, suppose (without
loss of generality) that ¢; > ¢;. Then note that almost everything is known at
time t;41/2, SO

E [UiUJ | ‘7:757:+1/2] = FE [(Xtiﬂ - Xti+1/2) | ‘7:‘51‘+1/2] (ftz‘+1/2 B ftz) (th+1 - th+1/2) (ft_7‘+1/2 - ftj)
= 0.
For the ¢ = j terms, we have
E [Uzz | fti+l/2:| = FE [(th:+1 7Xti+1/2)2 (fti+1/2 - fti)2 | ‘7:ti+1/2:| (3)
= FE |:(Xti+1 - Xti+1/2)2 | ‘7:ti+1/2:| (fti+1/2 - fti)2 (4)
~ b2(Xt1:+1/2)§t (fti+l/2 - fti)2 (5)

LA popular reference is Stochastic Differential Equations, by Bernt Oksendal. A quicker
and more precise treatment is Introduction to Stochastic Integration by Kai Lai Chung and
Ruth Williams.



If f; is a diffusion, then E[(fti+1/2 - fti)z] ~ B26t. Altogether,
E[R’] = Y E 1] 6t* = O(tdt) . (6)

t; <t
To summarize: If X; is a martingale, putting the X differences in the future of
the integrand, f, (i.e. (Xy,,, —Xy,) /i, instead of, for example, (X, — Xy, ) f1,)
makes it easy to compute expected values because most of them are zero. This
is why the off diagonal terms U;U; have expected value zero. The difference of
a diffusion has variance of order dt. This applies both for X; and f;.

The estimate (6) implies that R is of the order of v/dt. This can be turned
into an argument (not a complete mathematical proof) that the limit exists
based on the following lemma. Suppose Ay is a sequence of numbers and
Y opeq |Ak41 — Ax] < oo. Then limy_,o Ay exists. To apply the lemma here,
choose a sequence of time steps &t = 27% converging to zero exponentially.
Then the corresponding R ~ 27%/2 also go to zero exponentially. Since th’““ —
Yt&*‘ = Ry, the lemma implies that the limit of the Yt‘”’“ exists.

Putting the dX in the future is not just a technical trick for the proof, it
changes the answer. One famous example of this is the integral

t
I = / W, dW; . (7)
0
The correct approximation scheme (2) for this example is
I = L' = ZWtj (W = W3,) - (8)
tj <t

To this we apply a simple trick:?
1
Wi, = 9 [(Wty’+1 JrWtj) - (Wtj+1 - Wtj)] .

This allows us to express I°" as §(.J% + K°), where

J6t = Z (Wtj+1 + Wtj) (Wtj+1 - Wtj)
t;<t
= 2 (wE. -mE)
t;<t

Q

WE - Wg = W

K" = Z (Wtj+1 - Wt]‘) (Wt_7~+1 - Wt].)

t; <t

= Z(‘SW%‘)Q
t;<t

~ Zét:t.
i<t

21t will be clear how someone (might have) thought up this trick once you see the general
theory.



Combining these calculations gives the limit of (8) as

1 1
I, = §Wt2 -5t (9)

Other seeming plausible approximations to the Ito integral (7) have limits
(as 6t — 0) that are different from the correct answer (9). An example is to
approximate WydW; by Wiist Wipse — W) = Wipts:dWy. You can figure out
that something is wrong right away by taking the expected value:

E Wi s:0W,] = E[(W; +6W,)6W,] = E [(5Wt)2] = ot.

The correct approximation (8) has E[I*] = 0. The present incorrect approxi-
mation has

E (> Wy 0W;| = > 6t ~t.
t;<t t;<t
In fact, repeating the algebra leading to (9) leads to
1t
5t

The difference between this and the right answer (9) is exactly the expected
value ¢.

2 Ito’s lemma

Ito’s lemma is something like a stochastic version of the following version of the
ordinary chain rule. Suppose z(t) and y(t) are two functions and we construct
F(t) = f(x(t),y(t)). The differential of F' comes from the chain rule

dF = O f(z,y)dz + 0y f(x,y)dy . (10)
In ordinary calculus this may be written
dr dx dy
S = 0 u(0) 5+ O, u() D ()

These expressions have an intuitive meaning, but you might have heard that
they are not “rigorous”.

A rigorous version could involve integration. Clearly it is desirable that,
however we define dF, the integral of dF' should be the change in F":

/T dF = F(T) — F(0). (12)
0

The rigorous meaning of (10) could be

T T
B(T) = F(0) = ; O f(w(t), y(t)) do + ; Oy f(x(t),y(t)dy . (13)



A proof might replace the informal expression (10) with the more formal
§F = F(t+6t) — F(t) = 0. f(z,y)6x + 0, f(x,y)dy + O(t?) .  (14)

Then define §F; = F(tj+1) — F(t;) (with t; = jét, 6t = T/n — 0 as n — oo
with T fixed, as usual) and write the obvious

F(T) — F(0) = ni:aFj.
j=0

The approximation (14) makes this

F(T) = F(0) = Y 0uf(a(ty),y(t;) 6z + D 0,f(x(t;),y(t;)) 8y; + error ,

t; <T t; <T

where
lerror| < Z O(6t*) < T O(6t) — 0 as 6t — 0.
t;<T

The sums on the right are Riemann sum approximations and converge to the
integrals on the right side of (13).

Ito’s lemma uses all this reasoning plus one extra piece of information. Sup-
pose X, is a diffusion and we want to find an expression for df (X, t). We already
saw that in the time interval 6t, the increment of X is of order v/dt (because
E [6X?] is of order 6t). Therefore, a Taylor series expansion of § f(X;,t) has to
include more terms before the error is smaller than order §¢. A suitable Taylor
expansion is

1
J(Xi+0Xy, t40t) — f(Xi,t) = Ouf(Xe, 1)0 X + iaif(Xt, t)0X? + 0, f(X¢, )0t + error .

The error terms include 93 f §X? and 020 f §X26t, which are order 6t3/? and
dt? respectively (in particular, smaller than order §t). Therefore, we have

FXr,T) = f(X0,0) ~ Y 0uf(Xy,.t;)0X,,

t;<T
1
+ o5 > (X, ) 0X7,
tj<T
+ > 0f (X, 1) 0t
t]‘<T

The first sum on the right converges to the Ito integral fOT Or f(X4,t;) dX;. The
last term converges to the Riemann integral (the kind from ordinary calculus)
T
Jo Ocf (Xy,t;) dt.
The middle term is new to Ito. In its limit, you are allowed to replace
5Xt2j with its expected value in 7. Here is why. Equation (19) from week 5



gives this as E[éthj | Fi] = b(Xy,)?6t + error. Write the difference as M; =
0X7 — b(Xy,;)?6t. Then E[M; | Fi] ~ 0 (actually the expected value is the
negligable O(6¢?). This gives (writing g; for 02 f(Xy,,t;) for simplicity)

Z gtj 5Xt2] = Z gtj biét + Z gtthj .
t; <T t; <T t;<T

The first term converges to the Riemann integral

T
/ g:b? dt .
0

The second term is small for the same reason R was small in the previous
section. The expected square is

FE Z ge; My, = ZE [gtthi gtthj}

t;<T iJ

The terms with ¢ # j all are (approximately) zero as before This leaves the
terms with ¢ = j

EY g0, - ZE[gijfj] .

t; <T 7

But Mj is of order dt, so MJ2 is the negligibly small order 6¢2. Putting this all
together gives

T 1 T T
f(X7,T) - f(Xo,0) :/0 Bmf(Xt,tj)dXﬁ—g/o 8§f(Xt,tj)b2(Xt)dt+/0 Ouf (X, t;) dt

(15)
Written in differential form, this is

df (X¢,t) = 0, f (X, t5)dX, + %5§f(Xt7tj)b2(Xt)dt + 0 f (X, t)dt . (16)

It may be easier to remember this if you write (dX?) for E [dX? | F] =
b(X¢)2dt. This standard from of Ito’s lemma is

F(Xirt) = O f(Xirty)dXe + S02F(Xooty) (AXP) + O (Xust)de . (17)

We are not saying that dX? = b2dt. It isn’t. But the expected value of dX?
is b?dt, which is enough for (15). You might wonder why we cannot replace
dX; with its expected value, which would be zero in the martingale case. The
answer is that dX is so much bigger than dX? that fluctuations in dX matter
while fluctuations in dX? do not.



3 Examples

In ordinary calculus the operations are differentiation and integration. The rules
of differentiation allow you to calculate the derivative of any algebraic expres-
sion. You calculate integrals by trial and error using the rules of differentiation.
There are many integrals that cannot be expressed using elementary functions.
The cumulative normal N(z) is one of the best known. This is pretty much the
situation in stochastic calculus. Ito’s lemma allows us to compute differentials.
Finding a functional form for an Ito integral boils down to trial and error with
Tto’s lemma and the basic relation (12).

Consider the example (7). If W, were an ordinary smooth funcion of s, we
could calculate

¢ b AW 1 [t/d 1
/ WedW, = / W,——ds = 7/ —W2)ds = W7

But Ito’s lemma (17) and (13) tell us that fot W,dW, = $W? is the same as

1
(5me) =
But this is not true. If we take X; = W4, and f(x,t) = %w2, Owf =w, 02 f =1,
and 9 f = 0, so (17) becomes

1 1
d(QWf) = WidW; + 3 (AW?) = WydW, + dt # dW,.  (18)

As we already saw by direct calculation, the Ito integral is not ordinary calculus:
Jo WedW, # SW2.

There are several ways to go from the Ito calculation (18) to the right answer.
One is to use the correct part of (18) together with (12) to get

W2 = aw? = | WaaW, + = [ ds = | WdW, + =t.

Rearranging this gives the correct answer (9). Here we used the fact that an
integral with respect to ds or dt is an ordinary non-Ito Riemann integral. The
definition of the integral in the previous section produces the Riemann integral
when the diffusion X; has the form a;dt (check this).

This is true even if a; is random, as long as it is continuous (or Riemann
integrable). For example, consider the Ito integral

t
I = / W2dw, .
0

Motivated by the above, we start by taking the Ito differential of the presumably

incorrect calculus answer f(w,t) = fw3. The derivatives are 9, f = w? and

3
02 f = 2w. Therefore

1
d<3Wt3) = W2dW + W;dt.



This may be rearranged to

1

W2 dW = d(3

Wf’) — Wydt,
SO
t 1 t
/Wdes = WP — / W, ds .
0 3 0

The integral term on the right is an ordinary calculus Riemann integral with a
random integrand.

Last week we discussed the geometric Brownian motion, which was the so-
lution of the stochastic differential equation

dSt = /.LStdt + O'Stth . (19)

As in the above examples, you need to use the Ito calculus to find the correct
Ito solution to this. The formula from last week is

S, = Spelr=F)rrows (20)

We verified that this formula satisfies E[dS; | F;] = uSidt and E[(dS;)? |
Fi] = 02S82dt. Now we can use Ito’s lemma (17) to verify that the formula

02
(20) satisfies the SDE (19). The function is f(w,t) = Soe(FhT)ng with
derivatives 0, f = of, 02f = o®f, and O,f = (u — "72) f. Therefore (writing

the various terms on separate lines)
d (soe(“‘f>t+“w> = asoe(”*%”"“’ dw,
+ %025()6(”_%)“_01” dt
+ (u — U;) Soe<”‘§)t+"“’ dt .

You can check that this is the same as (19).
Ito’s lemma applied to diffusions other than Brownian motion. The Black
Scholes argument applies it to the goemetric Brownian motion. To prepare for

that consider the simple example fOT S¢dS;. (I changed notation to avoid writing
SsdSs.) Now (dS?) = 02S2dt, so the Ito calculation is

dS} = 28,dS; + o?S7dt .

As above, this leads to

T 1 T
/ S,dS, = =52 —02/ S2 dt .
0 2 0



4 The Black Scholes argument

The original pricing argument of Black and Scholes did not use the binomial
tree. Instead it used the following form of the arbitrage/replication argument.
Let II; be the value of an actively managed portfolio but self financing portfolio.
Suppose I1; is a diffusion process with zero noise, which means that E[dII | F;] =
ardt and E[(dI)? | F;] = 0. Then II is risk free, which implies that it grows at
the risk free rate: dIl; = rIl;dt.

This argument assumes that trading takes place in continuous time and
that you can have any amount of stock, provided you pay the market price.
It assumes that the stock price, S, is a geometric Brownian motion (19). A
technically correct version of the argument is a little involved® The argument
presented by Black and Scholes, which I present below, was slightly incomplete
or incorrect, depending on how gentle a grader you are. The issue is how you
model the self financing aspect. We did this carefully in the binomial tree model,
but not here.

The Delta hedge is a portfolio consisting of one option and a short position
of A units of stock. The value of the option at time ¢ is f(S¢,¢). Part of the
Black Scholes argument is that there is such a pricing function f(s,t) so that
the option price is completely determined by the stock price and the time to
expiration. I return to this point below. But for now, please accept that there
is such a pricing function. The time variable, t, is calendar time, not the time
to expiry, which is T' — t. The value of the portfolio at time ¢ is

Ht == f(St,t) - AtSt . (21)

The informal argument of Black and Scholes asks us to calculate dII holding
A; fixed. The argument is that you buy a hedge and hold it for time dt while
the market moves. Of course, A must be determined by the information in F;.
Hedging knowing the future would have higher returns. Applying Ito’s lemma
(17) gives

dlly; = O5f (S, t)dS; + %8§f(st,t)(dst)2 + O f(Se,t)dt — AdS; .
The noise term is eliminated by the choice
A, = 0.f(Sit). (22)
From (19) we get (dS;)? = 0252dt, so

025t2 2
dll, = ( =FO2f (S t) + 0uf (Si.t) ) dt .

Since this has zero noise, Black and Scholes argue that it is equal to rIl;dt.
Putting in (22) into (21), that is

025?

T(f(Stﬂf) - asf(Stvt)St) dt = (2'58S2f(5t,t) + atf(Sht)) dt .

3See, for example, Martingale Methods in Financial Modeling by Marek Musiela and Marek
Rutkowski.



Combining terms leads to the Black Scholes equation

2Q2

Si O2f(Ss,t) + rs0.f — rf . (23)

0= af+ %

The PDE (partial differential equation) (23) determines option prices in much
the same way the binomial tree does. You specify the value of the option at
time T, the expiration time, then use (23) to “march” backward in time toward
the present. We will talk about that process in more detail next week.

There are two simple solutions to (23) that you can use to check that you
have the equation right. The first is the option that pays one dollar at time T
no matter what. The value at time ¢t < T of this is f(s,t) = e="(T=Y). This
satisfies (23) because 9 f = rf (note the plus sign) and all the s derivatives are
zero. The second is the option that pays one share of stock at time 7. Having
one share of stock at time 7' is the same as having one share at time ¢ < T.
Therefore f(s,t) = s should be a solution, and it is.

10



