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Week 6

1 The Ito integral

The Black Scholes reasoning asks us to apply calculus, stochastic calculus, to
expressions involving differentials of Brownian motion and other diffusion pro-
cesses. To do this, we define the Ito integral with respect to Brownian motion
and a general diffusion. Things discussed briefly and vaguely here are discussed
in more detail and at greater length in Stochastic calculus.

Suppose Xt is a diffusion process that satisfies (18) and (19) from week
5. Suppose that ft is another stochastic process that is adapted to the same
filtration F . The Ito integral is

Yt =
∫ t

0

fs dXs . (1)

You could call this the “indefinite integral” because we care how the answer
depends on t. In particular, the Ito integral is one of the ways to construct a
new stochastic process, Yt, from old ones ft and Xt.

It is not possible to define (1) unless ft is adapted. If ft is allowed to depend
on future values Xt′ (t′ > t), then the integral may not make sense or it may
not have the properties we expect.

The essential technical idea in the definition of (1) is that dXs is in the
future of s. If we think that dXs = Xs+ds−Xs, then we must take ds > 0 (but
infinitely close to zero). This implies that if Xt is a martingale, then Yt also is
a martingale. Indeed, following the argument of the last paragraph of week 5,
you look at (recall that fs has a known value given Fs)

E [ fsdXs | Fs] = fsE [ dXs | Fs] = 0 .

The martingale condition is that E[ dXs | Fs] = 0. At time s, with the infor-
mation in Fs, the value of fs is known but the value of the forward looking
differential dXs is not known. The tower property and Ft ⊆ Fs implies then
that

E [ fsdXs | Ft] = 0

too. Now you get

E [Yt′ − Yt | Ft] =
∫ t′

t

E [dXs | Ft] = 0 .
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The fact that (1) produces a martingale from a martingale is a continuous time
version of Doob’s theorem . Think of Xt as a tradable asset and ft as a trading
strategy. You cannot make an expected profit trading on a martingale.

There is an official general way to define integrals like (1) that I will not give
here.1 Instead I give a definition of the integral involves the limit as δt→ 0 of a
Riemann sum approximation. (The δt here is not the same as the δt from week
5.) This works when Xt and ft are diffusions. The approximation is

Y δtt =
∑

0≤tj<t

ftj
(
Xtj+1 −Xtj

)
. (2)

Here, we used the familiar notation tj = j δt. The theorem is that the limit as
δt→ 0 of the approximations (2) exists in some sense and the limiting process
Yt satisfies E[dYt | F)t] = 0 and var(dYt | Ft] = f(t)2b(Xt)2dt.

Here is a hint at how it might go. We want to see what happens as δt→ 0,
so we compare the δt and the δt/2 approximations. The smaller time step δt/2
cuts each interval (tj , tj+1) in half. I adopt the notation tj+1/2 = (j+ 1

2 )δt. Let
Rδtt = Y

δt/2
t − Y δtt be the difference. A calculation shows that

Rδtt ≈
∑
tj<t

(
Xtj+1 −Xtj+1/2

) (
ftj+1/2 − ftj

)
.

Let Uj be the general term on the right:

Uj =
(
Xtj+1 −Xtj+1/2

) (
ftj+1/2 − ftj

)
.

If the Rδtt go to zero fast enough as δt→ 0, then it is likely that the limit of the
Y δtt exists. For that reason, we calculate E

[(
Rδtt
)2]. This is

E
[(
Rδtt
)2]

=
∑
ti<t

∑
tj<t

E [UiUj ] =
∑
j=i

E [UiUj ] +
∑
j 6=i

E [UiUj ] .

Looking at this shows the martingale and diffusion stuff at work. The second
sum is zero and the first sum is small. For the second sum, suppose (without
loss of generality) that ti > tj . Then note that almost everything is known at
time ti+1/2, so

E
[
UiUj | Fti+1/2

]
= E

[(
Xti+1 −Xti+1/2

)
| Fti+1/2

] (
fti+1/2 − fti

) (
Xtj+1 −Xtj+1/2

) (
ftj+1/2 − ftj

)
= 0 .

For the i = j terms, we have

E
[
U2
i | Fti+1/2

]
= E

[(
Xti+1 −Xti+1/2

)2 (
fti+1/2 − fti

)2 | Fti+1/2

]
(3)

= E
[(
Xti+1 −Xti+1/2

)2 | Fti+1/2

] (
fti+1/2 − fti

)2 (4)

≈ b2(Xti+1/2)δt
(
fti+1/2 − fti

)2 (5)

1A popular reference is Stochastic Differential Equations, by Bernt Oksendal. A quicker
and more precise treatment is Introduction to Stochastic Integration by Kai Lai Chung and
Ruth Williams.
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If ft is a diffusion, then E[
(
fti+1/2 − fti

)2] ≈ β2δt. Altogether,

E
[
R2
]
≈
∑
ti<t

E
[
b2β2

]
δt2 = O(tδt) . (6)

To summarize: If Xt is a martingale, putting the X differences in the future of
the integrand, fti (i.e. (Xti+1−Xti)fti instead of, for example, (Xti−Xti−1)fti)
makes it easy to compute expected values because most of them are zero. This
is why the off diagonal terms UiUj have expected value zero. The difference of
a diffusion has variance of order δt. This applies both for Xt and ft.

The estimate (6) implies that R is of the order of
√
δt. This can be turned

into an argument (not a complete mathematical proof) that the limit exists
based on the following lemma. Suppose Ak is a sequence of numbers and∑∞
k=1 |Ak+1 −Ak| < ∞. Then limk→∞Ak exists. To apply the lemma here,

choose a sequence of time steps δtk = 2−k converging to zero exponentially.
Then the corresponding R ∼ 2−k/2, also go to zero exponentially. Since Y δtk+1

t −
Y δtkt = Rk, the lemma implies that the limit of the Y δtkt exists.

Putting the dX in the future is not just a technical trick for the proof, it
changes the answer. One famous example of this is the integral

It =
∫ t

0

Ws dWs . (7)

The correct approximation scheme (2) for this example is

It ≈ Iδtt =
∑
tj<t

Wtj

(
Wtj+1 −Wtj

)
. (8)

To this we apply a simple trick:2

Wtj =
1
2
[(
Wtj+1 +Wtj

)
−
(
Wtj+1 −Wtj

)]
.

This allows us to express Iδt as 1
2

(
Jδt +Kδt

)
, where

Jδt =
∑
tj<t

(
Wtj+1 +Wtj

) (
Wtj+1 −Wtj

)
=

∑
tj<t

(
W 2
tj+1
−W 2

tj

)
≈ W 2

t − W 2
0 = W 2

t

Kδt =
∑
tj<t

(
Wtj+1 −Wtj

) (
Wtj+1 −Wtj

)
=

∑
tj<t

(
δWtj

)2
≈

∑
tj<t

δt = t .

2It will be clear how someone (might have) thought up this trick once you see the general
theory.
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Combining these calculations gives the limit of (8) as

It =
1
2
W 2
t −

1
2
t . (9)

Other seeming plausible approximations to the Ito integral (7) have limits
(as δt → 0) that are different from the correct answer (9). An example is to
approximate WtdWt by Wt+δt (Wt+δt −Wt) = Wt+δtδWt. You can figure out
that something is wrong right away by taking the expected value:

E [Wt+δtδWt] = E [(Wt + δWt) δWt] = E
[
(δWt)

2
]

= δt .

The correct approximation (8) has E[Iδtt ] = 0. The present incorrect approxi-
mation has

E

∑
tj<t

Wtj+1 δWj

 =
∑
tj<t

δt ≈ t .

In fact, repeating the algebra leading to (9) leads to

lim
δt→0

∑
tj<t

Wtj+1 δWj =
1
2
W 2
t +

1
2
t .

The difference between this and the right answer (9) is exactly the expected
value t.

2 Ito’s lemma

Ito’s lemma is something like a stochastic version of the following version of the
ordinary chain rule. Suppose x(t) and y(t) are two functions and we construct
F (t) = f(x(t), y(t)). The differential of F comes from the chain rule

dF = ∂xf(x, y)dx + ∂yf(x, y)dy . (10)

In ordinary calculus this may be written

dF

dt
= ∂xf(x(t), y(t))

dx

dt
+ ∂yf(x(t), y(t))

dy

dt
. (11)

These expressions have an intuitive meaning, but you might have heard that
they are not “rigorous”.

A rigorous version could involve integration. Clearly it is desirable that,
however we define dF , the integral of dF should be the change in F :∫ T

0

dF = F (T ) − F (0) . (12)

The rigorous meaning of (10) could be

F (T ) − F (0) =
∫ T

0

∂xf(x(t), y(t)) dx +
∫ T

0

∂yf(x(t), y(t)) dy . (13)
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A proof might replace the informal expression (10) with the more formal

δF = F (t+ δt) − F (t) = ∂xf(x, y)δx + ∂yf(x, y)δy + O(δt2) . (14)

Then define δFj = F (tj+1) − F (tj) (with tj = jδt, δt = T/n → 0 as n → ∞
with T fixed, as usual) and write the obvious

F (T ) − F (0) =
n−1∑
j=0

δFj .

The approximation (14) makes this

F (T ) − F (0) =
∑
tj<T

∂xf(x(tj), y(tj)) δxj +
∑
tj<T

∂yf(x(tj), y(tj)) δyj + error ,

where
|error| ≤

∑
tj<T

O(δt2) ≤ T O(δt)→ 0 as δt→ 0 .

The sums on the right are Riemann sum approximations and converge to the
integrals on the right side of (13).

Ito’s lemma uses all this reasoning plus one extra piece of information. Sup-
pose Xt is a diffusion and we want to find an expression for df(Xt, t). We already
saw that in the time interval δt, the increment of X is of order

√
δt (because

E
[
δX2

t

]
is of order δt). Therefore, a Taylor series expansion of δf(Xt, t) has to

include more terms before the error is smaller than order δt. A suitable Taylor
expansion is

f(Xt+δXt, t+δt)− f(Xt, t) = ∂xf(Xt, t)δXt +
1
2
∂2
xf(Xt, t)δX2 + ∂tf(Xt, t)δt + error .

The error terms include ∂3
xf δX

3 and ∂2
x∂t f δX

2δt, which are order δt3/2 and
δt2 respectively (in particular, smaller than order δt). Therefore, we have

f(XT , T ) − f(X0, 0) ≈
∑
tj<T

∂xf(Xtj , tj) δXtj

+
1
2

∑
tj<T

∂2
xf(Xtj , tj) δX

2
tj

+
∑
tj<T

∂tf(Xtj , tj) δt .

The first sum on the right converges to the Ito integral
∫ T
0
∂xf(Xt, tj) dXt. The

last term converges to the Riemann integral (the kind from ordinary calculus)∫ T
0
∂tf(Xt, tj) dt.
The middle term is new to Ito. In its limit, you are allowed to replace

δX2
tj with its expected value in Ftj . Here is why. Equation (19) from week 5
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gives this as E[δX2
tj | Ft] = b(Xtj )

2δt + error. Write the difference as Mj =
δX2

tj − b(Xtj )
2δt. Then E[Mj | Ft] ≈ 0 (actually the expected value is the

negligable O(δt2). This gives (writing gt for ∂2
xf(Xtj , tj) for simplicity)∑

tj<T

gtj δX
2
tj =

∑
tj<T

gtj b
2
tjδt +

∑
tj<T

gtjMtj .

The first term converges to the Riemann integral∫ T

0

gtb
2
t dt .

The second term is small for the same reason Rδt was small in the previous
section. The expected square is

E


∑
tj<T

gtjMtj

2
 =

∑
ij

E
[
gtiMti gtjMtj

]
The terms with i 6= j all are (approximately) zero as before This leaves the
terms with i = j

E


∑
tj<T

gtjMtj

2
 =

∑
j

E
[
g2
tjM

2
tj

]
.

But Mj is of order δt, so M2
j is the negligibly small order δt2. Putting this all

together gives

f(XT , T )− f(X0, 0) =
∫ T

0

∂xf(Xt, tj) dXt +
1
2

∫ T

0

∂2
xf(Xt, tj)b2(Xt)dt+

∫ T

0

∂tf(Xt, tj) dt

(15)
Written in differential form, this is

df(Xt, t) = ∂xf(Xt, tj) dXt +
1
2
∂2
xf(Xt, tj)b2(Xt)dt + ∂tf(Xt, tj) dt . (16)

It may be easier to remember this if you write
(
dX2

t

)
for E

[
dX2

t | Ft
]

=
b(Xt)2dt. This standard from of Ito’s lemma is

df(Xt, t) = ∂xf(Xt, tj) dXt +
1
2
∂2
xf(Xt, tj)

(
dX2

t

)
+ ∂tf(Xt, tj) dt . (17)

We are not saying that dX2
t = b2dt. It isn’t. But the expected value of dX2

t

is b2dt, which is enough for (15). You might wonder why we cannot replace
dXt with its expected value, which would be zero in the martingale case. The
answer is that dX is so much bigger than dX2 that fluctuations in dX matter
while fluctuations in dX2 do not.
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3 Examples

In ordinary calculus the operations are differentiation and integration. The rules
of differentiation allow you to calculate the derivative of any algebraic expres-
sion. You calculate integrals by trial and error using the rules of differentiation.
There are many integrals that cannot be expressed using elementary functions.
The cumulative normal N(z) is one of the best known. This is pretty much the
situation in stochastic calculus. Ito’s lemma allows us to compute differentials.
Finding a functional form for an Ito integral boils down to trial and error with
Ito’s lemma and the basic relation (12).

Consider the example (7). If Ws were an ordinary smooth funcion of s, we
could calculate∫ t

0

WsdWs =
∫ t

0

Ws
dW

ds
ds =

1
2

∫ t

0

(
d

ds
W 2
s

)
ds =

1
2
W 2
t .

But Ito’s lemma (17) and (13) tell us that
∫ t
0
WsdWs = 1

2W
2
t is the same as

d

(
1
2
W 2
t

)
= Wt ,

But this is not true. If we take Xt = Wt, and f(x, t) = 1
2w

2, ∂wf = w, ∂2
wf = 1,

and ∂tf = 0, so (17) becomes

d

(
1
2
W 2
t

)
= Wt dWt +

1
2
(
dW 2

t

)
= Wt dWt + dt 6= dWt . (18)

As we already saw by direct calculation, the Ito integral is not ordinary calculus:∫ t
0
WsdWs 6= 1

2W
2
t .

There are several ways to go from the Ito calculation (18) to the right answer.
One is to use the correct part of (18) together with (12) to get

1
2
W 2
t =

1
2

∫ t

0

dW 2
s =

∫ t

0

WsdWs +
1
2

∫ t

0

ds =
∫ t

0

WsdWs +
1
2
t .

Rearranging this gives the correct answer (9). Here we used the fact that an
integral with respect to ds or dt is an ordinary non-Ito Riemann integral. The
definition of the integral in the previous section produces the Riemann integral
when the diffusion Xt has the form atdt (check this).

This is true even if at is random, as long as it is continuous (or Riemann
integrable). For example, consider the Ito integral

It =
∫ t

0

W 2
s dWs .

Motivated by the above, we start by taking the Ito differential of the presumably
incorrect calculus answer f(w, t) = 1

3w
3. The derivatives are ∂wf = w2 and

∂2
wf = 2w. Therefore

d

(
1
3
W 3
t

)
= W 2

t dW + Wt dt .
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This may be rearranged to

W 2
t dW = d

(
1
3
W 3
t

)
− Wt dt ,

so ∫ t

0

W 2
s dWs =

1
3
W 3
t −

∫ t

0

Ws ds .

The integral term on the right is an ordinary calculus Riemann integral with a
random integrand.

Last week we discussed the geometric Brownian motion, which was the so-
lution of the stochastic differential equation

dSt = µStdt + σStdWt . (19)

As in the above examples, you need to use the Ito calculus to find the correct
Ito solution to this. The formula from last week is

St = S0e

“
µ−σ2

2

”
t+σWt . (20)

We verified that this formula satisfies E[dSt | Ft] = µStdt and E[(dSt)2 |
Ft] = σ2S2

t dt. Now we can use Ito’s lemma (17) to verify that the formula

(20) satisfies the SDE (19). The function is f(w, t) = S0e

“
µ−σ2

2

”
t+σw with

derivatives ∂wf = σf , ∂2
wf = σ2f , and ∂tf =

(
µ− σ2

2

)
f . Therefore (writing

the various terms on separate lines)

d

(
S0e

“
µ−σ2

2

”
t+σw

)
= σS0e

“
µ−σ2

2

”
t+σw

dWt

+
1
2
σ2S0e

“
µ−σ2

2

”
t+σw

dt

+
(
µ− σ2

2

)
S0e

“
µ−σ2

2

”
t+σw

dt .

You can check that this is the same as (19).
Ito’s lemma applied to diffusions other than Brownian motion. The Black

Scholes argument applies it to the goemetric Brownian motion. To prepare for
that consider the simple example

∫ T
0
StdSt. (I changed notation to avoid writing

SsdSs.) Now (dS2) = σ2S2dt, so the Ito calculation is

dS2
t = 2StdSt + σ2S2

t dt .

As above, this leads to∫ T

0

St dSt =
1
2
S2
T − σ2

∫ T

0

S2
t dt .
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4 The Black Scholes argument

The original pricing argument of Black and Scholes did not use the binomial
tree. Instead it used the following form of the arbitrage/replication argument.
Let Πt be the value of an actively managed portfolio but self financing portfolio.
Suppose Πt is a diffusion process with zero noise, which means that E[dΠ | Ft] =
atdt and E[(dΠ)2 | Ft] = 0. Then Π is risk free, which implies that it grows at
the risk free rate: dΠt = rΠtdt.

This argument assumes that trading takes place in continuous time and
that you can have any amount of stock, provided you pay the market price.
It assumes that the stock price, St, is a geometric Brownian motion (19). A
technically correct version of the argument is a little involved3 The argument
presented by Black and Scholes, which I present below, was slightly incomplete
or incorrect, depending on how gentle a grader you are. The issue is how you
model the self financing aspect. We did this carefully in the binomial tree model,
but not here.

The Delta hedge is a portfolio consisting of one option and a short position
of ∆ units of stock. The value of the option at time t is f(St, t). Part of the
Black Scholes argument is that there is such a pricing function f(s, t) so that
the option price is completely determined by the stock price and the time to
expiration. I return to this point below. But for now, please accept that there
is such a pricing function. The time variable, t, is calendar time, not the time
to expiry, which is T − t. The value of the portfolio at time t is

Πt = f(St, t) − ∆tSt . (21)

The informal argument of Black and Scholes asks us to calculate dΠ holding
∆t fixed. The argument is that you buy a hedge and hold it for time dt while
the market moves. Of course, ∆ must be determined by the information in Ft.
Hedging knowing the future would have higher returns. Applying Ito’s lemma
(17) gives

dΠt = ∂sf(St, t) dSt +
1
2
∂2
sf(St, t)(dSt)2 + ∂tf(St, t) dt − ∆t dSt .

The noise term is eliminated by the choice

∆t = ∂sf(St, t) . (22)

From (19) we get (dSt)2 = σ2S2
t dt, so

dΠt =
(
σ2S2

t

2
∂2
sf(St, t) + ∂tf(St, t)

)
dt .

Since this has zero noise, Black and Scholes argue that it is equal to rΠtdt.
Putting in (22) into (21), that is

r
(
f(St, t) − ∂sf(St, t)St

)
dt =

(
σ2S2

t

2
∂2
sf(St, t) + ∂tf(St, t)

)
dt .

3See, for example, Martingale Methods in Financial Modeling by Marek Musiela and Marek
Rutkowski.
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Combining terms leads to the Black Scholes equation

0 = ∂tf +
σ2S2

t

2
∂2
sf(St, t) + rs∂sf − rf . (23)

The PDE (partial differential equation) (23) determines option prices in much
the same way the binomial tree does. You specify the value of the option at
time T , the expiration time, then use (23) to “march” backward in time toward
the present. We will talk about that process in more detail next week.

There are two simple solutions to (23) that you can use to check that you
have the equation right. The first is the option that pays one dollar at time T
no matter what. The value at time t < T of this is f(s, t) = e−r(T−t). This
satisfies (23) because ∂tf = rf (note the plus sign) and all the s derivatives are
zero. The second is the option that pays one share of stock at time T . Having
one share of stock at time T is the same as having one share at time t < T .
Therefore f(s, t) = s should be a solution, and it is.
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