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Complex numbers and complex exponentials simplify many calculations re-
lated to differential equations in and elegant way. Formulas from trigonometry
are easy to understand by considering them to be basic properties of complex
exponentials and complex multiplication. Integrals with exponentials and sines
or cosines are no harder to solve than integrals involving only exponentials.

A complex number is something of the form

z = x + iy ,

where x and y are real numbers. The rules for adding and multiplying complex
numbers are the same as the ordinary rules of algebra, if we think of i as a
variable with

i2 = −1 .

It is easy to check many properties of complex arithmetic:

• Commutatitivity of multiplication: z1 · z2 = z2 · z1.

• Commutatitivity of addition: z1 + z2 = z2 + z1.

• Associativity of addition: (z1 + z2) + z3 = z1 + (z2 + z3).

• Associativity of multiplication: (z1 · z2) · z3 = z1 · (z2 · z3).

• Distributitivity: z1 · (z2 + z3) = (z1 · z2) + (z1 · z3).

• Multiplicative inverse (division): for any z 6= 0 there is a unique u with
uz = 1. We write this as u = 1/z.

Graphically, we think of a complex number as a point in the complex plane,
with the horizontal axis being the real axis and the vertical axis being the
imaginary axis. If z = x+ iy, then the real part is Re(z) = x, and the imaginary
part is Im(z) = y. The real part is the coordinate on the real axis and the
imaginary part is the coordinate on the imaginary axis. The complex conjugate
of z is z = x − iy = Re(z) − iIm(z). It is the image of z reflected through
the real axis. You can check that if z and w are two complex numbers, then
(z + w) = z + w, and that (z · w) = z · w. The norm, or modulus of z is the
distance from (x, y) to the origin in the complex plane: |z| =

√
x2 + y2. You

can check that |zw| = |z| |w|, and that |z|2 = zz (complex multiplication). In
fact the first property may be proven from the second:

|zw|2 = (zw) · (zw)
= (zz) · (ww) (commutatitivity of complex multiplication)

= |z|2 |w|2 .
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If f(x) is a function of x, it is likely that we can extend f to f(z), defined
also when its argument is complex1. This clearly is possible when f involves
only the elementary arithmetic operations, such as f(x) = x2+1

x2−2 , which extends

to f(z) = z2+1
z2−2 . We soon will see how to define other powers, such as

√
z. Our

goal is to define the complex exponential ez.
We can describe the location of a complex number in the complex plane

using polar coordinates, z = x + iy, where x = r cos(θ) and y = r sin(θ). The
polar coordinates are r = |z|, and θ, the angle formed with the real axis. We
call θ the argument of z and write θ = Arg(z). The argument is not defined
uniquely since we may add or subtract 2π without moving z. All other things
being equal, we generally choose the θ between 0 and π for z in the upper half
plane (Im(z) > 0) and −π < θ < 0 for z in the lower half plane. Others choose θ
with 0 ≤ θ < 2π as the default. For example, we could write Arg(−i) = −π

2 or
Arg(−i) = 3π

2 (the two default conventions), but Arg(−i) = 7π
2 also works. The

geometric rule for multiplying complex numbers is: multiply the lengths, add
the angles. The first part we saw already: |zw| = |z| |w|. The second we can
(but refrain at the moment) verify using angle sum formulas from trigonometry.
This rule is one reason not to be strict about which argument of z we choose.
For example, note that i5 = i2i2i = (−1) · (−1) · i = i. If we take the standard
value, Arg(i) = π

2 , then

Arg(i5) = Arg(i · i · i · i · i) =
π

2
+

π

2
+

π

2
+

π

2
+

π

2
=

5π

2
.

Thus, following the geometric rules of complex multiplication leads to argu-
ments outside the conventional range. We should get used to that. Should we
forget that “the” argument is not uniquely defined, we might get apparent con-
tradictions such as: i5 = i, so Arg(i5) = Arg(i) and therefore 5π

2 = π
2 (which is

not true).
The key to the complex exponential is the remarkable formula

eiθ = cos(θ) + i sin(θ) . (1)

More generally,

ez = ex+iy = exeiy = ex (cos(y) + i sin(y)) = ex cos(y) + iex sin(y) . (2)

There are many ways to derive this formula and we eventually will see several
of them. However, we cannot prove it because it really is the definition of
the complex exponential. What we can do is to show that this definition is
consistent with other reasonable definitions and that the complex exponential
has many properties of ordinary exponentials.. The two important ones are

ez+w = ez · ew , (3)

1The extended function is the same as the original when the argument is real, i.e. when
Im(z) = 0.
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and
ew = 1 + w + O(|w|2) . (4)

For solving differential equations, the crucial property of the complex exponen-
tial is that, for any complex number z,

d

dt
ezt = zezt . (5)

We could verify this by differentiating

e(x+iy)t = ext cos(yt) + iext sin(yt) ,

but we prefer to do it directly using the properties (3) and (4)

d

dt
ezt = lim

∆t→0

ez(t+∆t) − ezt

∆t
(def. of derivative)

= lim
∆t→0

eztez∆t − ezt

∆t
(property (3))

= lim
∆t→0

ezt e
z∆t − 1

∆t
(distributivity)

= ezt lim
∆t→0

ez∆t − 1
∆t

(pull a constant out of the limit)

= ezt lim
∆t→0

z∆t + O(∆t2)
∆t

(property (4) with w = z∆t)

= eztz .

Complex exponentials are a great computational aid, but the eventual solu-
tion of a differential equation probably is real. One way to get a real function
from a complex exponential is to take the real or imaginary part. For example,
we can express simple oscillations in terms of complex exponentials as

cos(ωt) = Re(eıωt) , and sin(ωt) = Im(eiωt) .

Conversely, we can manipulate sine or cosine functions using complex exponen-
tials.
Example. Use the complex exponential to calculate

I =
∫ t

0

sin(4s)ds .

Since integration is just addition and Re(z1 + z2 + · · ·) = Re(z1) + Re(z2) + · · ·,
we have (and also for the imaginary part)∫

Re(f(s))ds = Re
(∫

f(s)ds

)
.

Using sin(4s) = Im(e4is), we find I = Im(J), where

J =
∫ t

0

e4isds .
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Now, from the differentiation formula (5), we can find the antiderivative:

e4is =
d

ds

1
4i

e4is ,

so (note 1
i = −i because i · (−i) = −i2 = −(−1) = 1):∫ t

0

e4isds =
1
4i
· e4is

∣∣∣t
0

=
1
4i

(
e4it − 1

)
=

−i

4
(cos(4t)− 1) +

−i

4
i sin(4t)

=
1
4

sin(4t) + i ·
(
−1
4

(cos(4t)− 1)
)

.

The imaginary part is in big parentheses on the bottom right:∫ t

0

sin(4s)ds = Im
(∫ t

0

e4isds

)
=

1− cos(4t)
4

.

Example. Solve the differential equation

dx

dt
+ kx = sinωt , x(0) = 0 .

We can write x(t) = Im(z(t)), where

dz

dt
+ kz = eiωt , z(0) = 0 .

Using the integrating factor µ(t) = ekt, we get

d

dt

(
ektz(t)

)
= ekteiωt = e(k+iω)t .

Taking the indefinite integral of both sides gives

ektz(t) =
1

k + iω
e(k+iω)t + C ,

so
z(t) = e−kt 1

k + iω
e(k+iω)t + Ce−kt =

1
k + iω

eiωt + Ce−kt .

The initial condition z(0) = 0 gives

0 =
1

k + iω
+ C ,

so
z(t) =

1
k + iω

eiωt − 1
k + iω

e−kt .
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To find the answer x = Im(z), we have to calculate the imaginary parts of the
two terms on the right. The second term involves only a real exponential, so we
calculate

1
k + iω

=
1

k + iω

k − iω

k − iω
=

k − iω

k2 + ω2
,

so

Im
(

−1
k + iω

e−kt

)
=

ωe−kt

k2 + ω2
.

For the first term we have (note that if b is real, then Im(bz) = bIm(z)):

Im
(

1
k + iω

eiωt

)
=

1
k2 + ω2

Im
(
(k − iω)(cos(ωt) + i sin(ωt))

)
=

1
k2 + ω2

(
k sin(ωt)− ω cos(ωt)

)
.

Altogether, we get

x(t) =
1

k2 + ω2

(
k sin(ωt)− ω cos(ωt)

)
+

ωe−kt

k2 + ω2
.

This is what we got before. The answer is not simpler, but the derivation is.
The complex exponential gives a simple way to remember certain trigono-

metric identities. For example, eiθ1 · eiθ2 = ei(θ1+θ2) gives(
cos(θ1) + i sin(θ1)

)(
cos(θ2) + i sin(θ2)

)
= cos(θ1 + θ2) + i sin(θ1 + θ2) .

Multiplying out the left side and equating real and imaginary parts gives

cos(θ1) cos(θ2)− sin(θ1) sin(θ2) = cos(θ1 + θ2) ,

(note the minus sigh which comes from i2 = −1) and

cos(θ1) sin(θ2) + cos(θ2) sin(θ1) = sin(θ1 + θ2) .

The polar coordinate representation of a complex number is z = reiθ. If z1 =
r1e

iθ1 and z2 = r2e
iθ2 , then

z1z2 = r1e
iθ1r2e

iθ2 = r1r2e
iθ1eiθ2 = r1r2e

i(θ1+θ2) .

This demonstrates (but still does not prove) the rule: multiply the lengths, add
the angles.

We have seen that z(t) = eiωt corresponds to simple oscillation. As time
increases, z(t) moves with constant speed angular velocity ω in a counterclock-
wise direction around the unit circle. The real part goes back and forth si-
nusoidally (or “cosinusoidally”) along the real axis while the imaginary part
goes up and down the imaginary axis. More generally, consider the function
z(t) = Aeiω(t−t0), where A > 0 is the amplitude and t0 is the phase lag of the
oscillation. This moves with steady angular velocity about a circle of radius A
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and |z(t)| = A always. The t0 is a lag because, for example, Aeiω(t−t0) “up-
crosses” the real axis (goes from below to above) at time t0 while the simpler
formula z(t) = eiωt upcrosses when t = 0. If we multiply this out, we get

Im(z(t)) = A
(
cos(ωt0) sin(ωt)− sin(ωt0) cos(ωt)

)
,

which agrees with what we got (in a more complicated way) in Homework 1.

Exercises.

1. If z = x + iy, w = u + iv, and zw = a + ib, verify by direct calculation
without complex exponentials that a2 + b2 = (x2 + y2)(u2 + v2). What
rule of complex multiplication does this verify?

2. For f(z) = z2+1
z2−2 , evaluate f(i) and f(1 + i)

3. Calculate (1 + i)2 in two ways:

(a) Just do it.

(b) Find r = |1 + i| and θ = Arg(1 + i), then find the complex number
with length r2 and argument 2θ graphically.

4. If w = ez, then
√

w = ±ez/2. Use this to calculate the square root of
i = eiπ/2. Check your answer by multiplication.

5. Use complex exponentials and the binomial formula (a+b)3 = a3 +3a2b+
3ab2 + b3 to verify the formula cos(3θ) = cos3(θ)− 3 cos(θ) sin2(θ).

6. (a) Verify that
∫ 2π

0

einθdθ = 0 whenever n is an integer and n 6= 0.

(b) Verify the formula cos(θ) =
eiθ + e−iθ

2
.

(c) Use these facts to calculate
∫ 2π

0

cos2(θ)dθ.
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