Ordinary Differential Equations Homework 9

Given: November 10 **Due**: November 15

1. Section 7.1, #19, 20, 21.

2. Section 7.3, #1, 2, 8, 9, 15, 16, 24.

3. Section 7.5, #5 (by hand without computer), 11.

4. Consider the second order differential equation for a two component column vector

 $\ddot{x} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \dot{x} + \begin{pmatrix} 0 & -4 \\ 2 & -4 \end{pmatrix} x. \tag{1}$

An exponential solution takes the form $x(t) = e^{rt}\xi$, where ξ is a two component column vector.

- (a) For a general equation $\ddot{x} = A\dot{x} + Bx$, write the equation in terms of matrices A and B and the vector ξ and the number r that we have to solve to find exponential solutions. What is the matrix that has to be singular in order for there to be $\xi \neq 0$? Hint: it involves matrices multiplied by r and r^2 , one of them being the identity matrix.
- (b) Write this matrix for the specific problem (1).
- (c) Calculate the determinant of this matrix, which is a polynomial of degree 4 in r.
- (d) Show that this polynomial factors into a product of quadratics one of which is $r^2 + r + 4$. Find the other factor.
- (e) List all the numbers, r_1 , r_2 , r_3 , and r_4 , that correspond to exponential solutions of (1).
- (f) What kind of behavior do they represent? (growth/decay, simple/oscillatory)
- (g) Find the ξ corresponding to r = 1 + i.
- (h) Take the real part of $e^{rt}\xi$ from part g to find a real solution of (1).
- 5. In each case there are three elements of the vector space of functions of t. Either show that the functions (vectors) are linearly independent or find a linear combination $0 = c_1 f_1(t) + c_2 f_2(t) + c_3 f_3(t)$.

(a)

$$f_1(t) = t(t-1)$$

 $f_2(t) = (t-2)(t-3)$
 $f_3(t) = (t+2)(t+3)$

(b)

$$f_1(t) = \sin(t)$$

$$f_2(t) = \sin(2t)$$

$$f_3(t) = \sin(3t)$$